小麦灌浆期高温、干旱及其互作对籽粒蛋白质形成、品质性状及产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2006~2008年在河南农业大学科教示范园区进行,采用盆栽与人工气候室模拟相结合的方式,以豫麦34(强筋)和豫麦50(弱筋)为试验材料,研究了灌浆期不同时段高温、干旱胁迫及其互作对籽粒蛋白质积累调控关键酶活性、蛋白质品质性状及籽粒产量的影响。主要研究结果如下:
     1.灌浆期不同时段高温胁迫使小麦旗叶谷氨酰胺合成酶(GS)、谷氨酸丙酮酸转氨酶(GPT)活性降低,不同时期相比,豫麦34和豫麦50分别受前期(花后5~9 d)和中期(花后15~19 d)高温胁迫影响较大。高温胁迫下0~10 d籽粒GS、GPT活性升高,之后明显降低,且两品种均以中期高温胁迫影响较大。土壤干旱胁迫下,小麦旗叶GS活性下降,豫麦34和豫麦50分别受前期和中期干旱胁迫影响较大;受前期干旱胁迫影响,旗叶GPT活性略有提高,而中期干旱胁迫使其活性显著降低。干旱胁迫导致两品种籽粒GS活性下降,且均以中期干旱胁迫影响较大。干旱胁迫后5~10 d内籽粒GPT活性提高,之后明显降低,豫麦34和豫麦50分别以中期和前期受影响较大。从高温与干旱效应对旗叶和籽粒GS、GPT活性的影响大小看,高温效应明显大于干旱效应。
     2.灌浆期不同时段高温与干旱胁迫提高了籽粒总蛋白含量,但降低了蛋白质产量,其影响程度随胁迫程度加深而加大,而不同时段处理则随着处理时间推迟而减弱。品种间比较,豫麦50籽粒蛋白含量受高温胁迫的影响较豫麦34明显。高温胁迫下,豫麦34籽粒清蛋白和球蛋白含量下降,而豫麦50清蛋白含量增加,球蛋白含量则表现为前期和中期高温处理下增加,后期(花后25~29 d)下降;两品种籽粒醇溶蛋白和谷蛋白含量均有增加趋势。受干旱胁迫影响,豫麦34籽粒清蛋白和球蛋白含量下降,而豫麦50则在前期和中期增加,后期下降;两品种醇溶蛋白和谷蛋白含量增加。高温与干旱胁迫均使谷/醇比值不同程度降低。研究还表明,高温与干旱对小麦蛋白质品质有明显的互作效应,温度是影响其品质的主要因子。
     3.对籽粒谷蛋白大聚合体(GMP)含量的研究结果表明,高温胁迫提高了两品种成熟期籽粒GMP含量;干旱胁迫下两品种籽粒GMP含量存在品种间差异:豫麦34籽粒GMP含量因干旱胁迫而降低,而豫麦50增加。方差分析结果表明,高温与干旱及其互作对两品种籽粒GMP含量均有显著或极显著影响。
     4.高温胁迫下豫麦34籽粒氨基酸总含量略有下降,而豫麦50则显著增加;干旱胁迫下两品种籽粒氨基酸总含量(TAA)均有明显增加。高温与干旱胁迫均使籽粒中第一限制性氨基酸(赖氨酸)含量降低,必需氨基酸含量占氨基酸总含量的百分比(EAA/TAA)下降。品种间比较,高温与干旱胁迫对豫麦34籽粒氨基酸含量及其组分影响较豫麦50明显。研究还表明,高温与干旱对氨基酸含量及其组分的影响存在显著的互作效应,其中豫麦34和豫麦50分别以W_1T_2和W_2T_3处理组合受高温与干旱双重胁迫伤害最大。
     5.研究表明,花后不同时段高温胁迫均降低籽粒灌浆速率,使最大灌浆速率出现时间提前,灌浆持续期缩短,千粒重、穗粒重和产量显著下降。不同时段高温胁迫对粒重和产量的影响在不同品种间存在差异:豫麦34和豫麦50千粒重分别以前期和中期受高温胁迫影响较大,而产量以前期影响最为严重,后期受影响相对较小。受干旱胁迫影响,豫麦34粒重以中期受影响最大,而豫麦50以前期受影响较大,而产量均以前期影响最为严重,在后期干旱胁迫下,两品种粒重均略有增加。研究还表明,高温和干旱对小麦籽粒灌浆特性及粒重的影响存在明显的水、温互作效应。渐增期平均灌浆速率的降低及快增期、缓增期持续时间的缩短是最终导致粒重降低的主要原因。两品种比较,弱筋小麦豫麦50较强筋小麦豫麦34更易受高温与干旱胁迫影响。
     上述研究结果表明,不同专用型小麦品种对高温与干旱胁迫的响应存在一定的差异:总体来看,弱筋小麦豫麦50产量和蛋白质品质性状受高温与干旱影响较大。高温与干旱胁迫使小麦粒重降低,因而籽粒蛋白质含量相对提高,但导致籽粒谷/醇比值降低,使加工品质明显下降。因此,小麦实际生产中应针对不同专用型小麦品种的品质需要,采取适当的栽培调控措施,缓解小麦生育后期不同时段的干热风危害,以提高小麦产量和品质。
To evaluate effects of post-anthesis high temperature (HT) and drought stress (D) and their interaction on protein formation and protein quality traits in wheat grains, two wheat cultivars with different gluten-strengths, Yumai 34 ( a strong-gluten cultivar) and Yumai 50 ( a weak-gluten cultivar) were used under pot-cultured conditions. The experiments were carried out at Henan Agricultural University Research farm, Zhengzhou (34oN latitude, 113o E longitude), in wheat growing-seasons of 2006-2007 and 2007-2008. Plants in pot grown in open area till flowering. After anthesis, pots were divided into three groups in the artifical weather room for each variety randomly, were grown under 28℃, 2 day 38℃high temperature stress and 4 day 38℃high temperature stress, respectively. For each temperature regime, two soil water levels were established as moderate water status (relative water content, RWC = 75%±5%), drought ( RWC = 55%±5% ). Thus different temperature and water regimes were established for wheat after anthesis to evaluate post-anthesis high temperature and drought stress effects on activities of key regulatory enzymes of protein accumulation and protein traits in grains and yield of
     winter wheat.
     The main results were as follows:
     1. Post-anthesis high temperature decreased both GS and GPT activity in flag leaves of wheat. However, the response of two cultivars to high temperature at different grain filling stages were different: when suffered from high temperature in early and middle grain filling stage, the reduction in GS and GPT activity of Yumai 34 and Yumai 50 was relatively greatest, respectively. During 0 to 10 days after high temperature treatment in early grain filling stage, GS and GPT activity in grains was increased, and then decreased in 10 days after high temperature treatment, the reduction in GS and GPT activity in middle grain filling stage of two cultivars were greatest. GS and GPT activity in flag leaves of the two wheat cultivars was decreased by drought in early and middle grain filling stages. The reduction in GS activity in flags in middle and early grain filling stage of Yumai 34 and Yumai 50 was relatively greatest under drought stress, respectively. While in early grain filling stage, GPT activity in flags was increased by drought stress, but decreased in middle grain filling stage. GS activity in grains the two wheat cultivars was decreased by drought in early and middle grain filling stages. The reduction in GS activity in grains in middle grain filling stage of two wheat cultivars was relatively greatest under drought stress. During 5 to 10 days after drought treatment in early grain filling stage, GPT activity in grains was increased, and then decreased in 10 days after high temperature treatment, when suffered from drought stress in middle and early grain filling stage, the reduction in GPT activity of Yumai 34 and Yumai 50 was relatively greatest, respectively. The results also showed that significant interactions of high temperature and drought on GS and GPT activity in both wheat cultivars. The influence of high temperature was greater than Drought stress.
     2. Studies on effects of post-anthesis high temperature and drought stress and their interactions on protein concentration and its composition in grains. The results indicated that high temperature and drought stress increased protein concentration, but reduced protein yield, the influence of high temperature and drought stress on protein concentration aggravation follow their stress deepened, and the influence reduction with processing time delay. The influence of high temperature and drought stress on protein of Yumai 50 was greater than that of Yumai 34. While high temperature decreased concentration of albumin and globulin of Yumai 34, however, high temperature increased concentration of albumin of Yumai 50, and when suffered from high temperature in early and middle grain filling stage, the concentration of globulin was increased, but decreased in late grain filling stage. The concentration of gliadin and glutein were increased under high temperature stress. Under drought stress, concentration of albumin and globulin of Yumai 34 was decreased, however, when suffered from high temperature in early and middle grain filling stage, the concentration of that of Yumai 50 was increased, but decreased in late grain filling stage. The concentration of gliadin and glutein were increased under drought stress. High temperature and drought stress reduced ratio of gliadin/glutein. The results also showed that significant interactions of high temperature and drought on protein in both wheat cultivars, and the temperature were the main factor of its protein quality.
     3. Studies on effects of high temperature and drought stress and their interactions on GMP concentration. The results indicated that high temperature stress increased GMP concentration in both two wheat cultivars. However, the response of two cultivars to drought stress at GMP concentration was different: when suffered from high temperature, the concentration of GMP was decreased in grains of Yumai 34, but increased in grains of Yumai 50. The result also indicated that there had a significant influence of high temperature and drought stress and their interactions on concentration of GMP in both two cultivars.
     4. The results indicated that, high temperature stress decreased the Total Amino Acid in grains of Yumai 34, however increased the Total Amino Acid in grains of Yumai 50. When suffered from drought stress, Total Amino Acid was increased by high temperature and drought in both wheat cultivars. High temperature and drought stress reduced concentration of Lysine, and decreased the ratio of Essential Amino Acid to Total Amino Acid. The influence of high temperature and drought stress on Yumai 34 was greater than Yumai 50. The results also showed that there had a significant interaction of high temperature and drought stress on concentration and composition of grain Amino Acid in both cultivars. The influence of interaction of high temperature and drought stress on the treatment W_1T_2 (RWC=75%±5%, 2 day 38℃high temperature stress) and W2T3 (RWC=55%±5%, 4 day 38℃high temperature stress) was injury largest for strong and weak-gluten cultivar respectively.
     5. The results showed that high temperature stress decreased both grain filling rate and period, and caused early appearance of the maximal grain filling rate, thus reduced grain dry matter accumulation. However, the response of two cultivars to high temperature at different grain filling stages were different: when suffered from high temperature in early and middle grain filling stage, the reduction in grain weight of Yumai 34 and Yumai 50 was relatively greatest, respectively. While in the late grain filling stage, grain weight was less influenced by high temperature and drought in both wheat cultivars. The dry matter accumulation of two cultivars was reduced by drought in early and middle grain filling stages. The reduction in grain weight in middle and early grain filling stage of Yumai 34 and Yumai 50 was relatively greatest under drought stress, respectively. But grain weight was slightly increased in late grain filling stage under drought stress. The results also showed that significant interactions of high temperature and drought on grain filling characteristic existed in both wheat cultivars. The decreased of grain weight was mainly caused by decrease of grain filling rate during slow-increase stage, and duration of rapid-increase and slight-increase stage. High temperature and drought stress and their interactions had a significant influence on grain yield and its components in this experiment. The influence of high temperature and drought stress on Yumai 50 was greater than Yumai 34, indicated that cultivar Yumai 34 with strong-gluten was more sensensive than Yumai 50 with weak-gluten.
     In conclusion, it was showed that the response of two cultivars with different gluten to high temperature and drought stress at different grain filling stages were different: in generally, weak-gluten wheat cultivar Yumai 50 showed relative sensitive to temperature and drought stress on yield and protein property in grain filling stage. High temperature and drought stress decreased grain yield, thus relative increased grain protein concentration, but caused ratio of gliadin/glutein and processing quality traits significant declined. So, in actual production of wheat, cultivating measures should be taken according to the quality need in different cultivars to avoid or relieve damages of high temperature and drought stress at later growth stages.
引文
[1]林作揖.食品加工与小麦品质改良[M].北京:中国农业出版社, 1994. 5-7.
    [2]张宝军,蒋纪芸.小麦籽粒品质及其影响因素[J].国外农学–麦类作物, 1995, 4: 29-37.
    [3]曹广才,王绍中.小麦品质生态[M].北京:中国科学技术出版社, 1994.
    [4]张保军,樊虎玲.环境条件对小麦蛋白质的影响研究进展[J].水土保持研究, 2002, 9(2): 61-63.
    [5]郭天财,王晨阳,朱云集,等.后期高温对冬小麦根系及地上部衰老的影响[J].作物学报, 1998, 24 (6): 57-962.
    [6]王晨阳,郭天财,阎耀礼,等.花后短期高温胁迫对小麦叶片光合性能的影响[J].作物学报, 2004, 30 (1): 8-91.
    [7] Lea D J, Robinson S A, Stewart G R. The enzymology and metabolism of glutamine, glutamate, and asporagine[J]. Miflin B J, Lea P J, ed. The Biochemistry of Plants. New York: Academic Press, 1990, 16: 121-159.
    [8] Cren M, Hirel B. Glutamine synthetase in higher plant: Regulation of gene and protein expression from the organ to the cell[J]. Plant Cell Physiol, 1999, 40: 1187-1193.
    [9]王月福,于振文,李尚霞,等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报, 2002, 28(6): 743-748.
    [10]毛凤梧,赵会杰,徐立新,等.水氮运筹对小麦品质形成的调控效应[J].河南农业大学学报, 2001, 35(1): 13-15.
    [11]王旭东,于振文,石玉,等.磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响[J].作物学报, 2007, 32(3): 339-344.
    [12]赵辉,荆奇,戴廷波,等.花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响[J].作物学报, 2007, 33(12): 2021-2027.
    [13]谢祝捷,姜东,曹卫星,等.花后土壤水分状况对小麦籽粒淀粉和蛋白质积累关键调控酶活性的影响[J].植物生理与分子生物学报, 2003, 29(4): 309-316.
    [14]范雪梅,姜东,戴廷波.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚调控酶活性的影响[J].中国农业科学, 2005, 38(6): 1132-1141.
    [15]扬延兵,高荣岐,尹燕枰.不同基因型小麦籽粒蛋白质合成动态及相关酶活性的研究[J].华北农学报, 2007, 22(3): 43-47.
    [16]王月福,姜东,于振文,等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学, 2003, 36(5): 513-520.
    [17]马新明,李琳,赵鹏,等.土壤水分对强筋小麦‘豫麦34’氮素同化酶活性和籽粒品质的影响[J].植物生态学报, 2005, 29(1): 48-53.
    [18]王绍中,郑天存,郭天财.河南小麦育种栽培研究进展[M].北京:中国农业科学技术出版社, 2007: 8-9.
    [19]车永和,马晓岗.小麦蛋白质品质研究进展[J].青海农林科技, 2001, 4: 23-25.
    [20] Osborne T B.The proteins of the wheat kernal[J]. Carnegie Inst Washington Publ, 1907, 84: 119.
    [21]于振文.小麦产量与品质生理及栽培技术[M].北京:中国农业出版社, 2006, 12: 59-60.
    [22] Payne P. I, Corfield K. G, Blackman J. A. Identification of a high-molecular-weight Subunit of glutenin whose presence correlates with bread-making quality in wheats of related pedigree[J]. theor. appl. genet. 1979, 55: 153-159.
    [23] Bushuk W. Wheat cultivar identification by glindin elctrophore grams[J]. Can J Plant Sci, 1978, 58: 505-515.
    [24] B. S. Khatkar, Fido, R. J. , et al. Functional properties of wheat gliadins. I. Effect on mixing characteristics and bread making quality[J]. J. Cereal Sci., 2002, 35: 299-306.
    [25] Shewry, P. R. , Tatham, et al. Biotechnology of wheat quality[J]. J. Sci. Food Agric., 1997, 73: 397-406.
    [26]马传喜,徐凤,程国旺.高分子量麦谷蛋白亚基作为面包小麦品种烘烤品质评价指标的研究[J].安徽农业大学学报, 1995, 22(2): 117-122.
    [27]张勇,何中虎,王美芳,等.我国春麦区小麦品种品质性状分析[J].麦类作物学报, 2002, 22(1): 27-32.
    [28]马传喜,吴兆苏.我国主要冬小麦推广品种的高分子量亚基变异分析[J].安徽农业大学学报, 1993, 20(4): 298-302.
    [29]张学勇,董玉琛,游光侠,等.中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析[J].中国农业科学,2001,34(4):355-362.
    [30] Kolster P. , Krechting C F, Gelder W M J. Quantification of individual high molecular weight subunits of wheat glutenin using SDS-PAGE and scanning densitometry[J]. J Cereal Sci., 1992, 15: 49-61.
    [31] PAYNE P I. Allelic variation of glutenin subunits and gliadins and its effect on bread making quality in wheat : Analysis of F5 progeny from Chinese Spring×Chinese Spring (Hope 1A)[J].Journal of Cereal Science, I 987, 6: 103-118.
    [32] Hou G, N g P K W. Quantification of glutenin subunits by sequence acetone precipitation and by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) coupled with densitometry using a known quality of glutenins as a standard[J].Cereal Chem.,1995, 72(6): 545-551.
    [33] Pechanek U, Karger A, Groger S. Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and breadmak-ing quality of wheat[J] . Cereal Chem., 1997, 74: 800-805.
    [34] Lopez-Bellido L, Fuentes M, Castillo J E. Effects of tillage, crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean condition[J]. Field Crop Research, 1998, 57: 265-276.
    [35]王月福,于振文,李尚霞,等.施氮量对小麦子粒蛋白质组分含量及加工品质的影响[J].中国农业科学, 2002, 35(9): 1071-1078.
    [36]刘敬阳,王有庆,马辉,等.青海高原地区春小麦子粒蛋白质组分动态变化[J].麦类作物学报, 1997(6): 1-7.
    [37]张翼涛,李硕碧.不同栽培条件与小麦籽粒品质的关系[J].干旱地区农业研究, 1991, (2): 16- 21.
    [38]彭永欣,姜学忠,郭文善,等.氮素营养对小麦籽粒产量与品质调节效应的研究[M].小麦栽培与生理,南京:东南大学出版社, 1992: 127-144.
    [39]张宝军,蒋纪芸.施氮时期对小麦不同子粒蛋白质品质的影响[J].西北农业大学学报, 1996, 24(1): 33-35.
    [40]刘尊英,郭天财,朱云集,等.氮素供应对小麦子粒蛋白质组分及积累动态的影响[J].河南农业大学学报, 1999, 33 (4):317-320.
    [41]石书兵,马林,石庆华,等.不同施氮时期对冬小麦子粒蛋白质组分及其动态变化的影响[J].植物营养与肥料学报, 2005, 11(4): 456-460.
    [42]邹铁祥,戴廷波,姜东,等.钾素水平对小麦氮素积累和运转及籽粒蛋白质形成的影响[J].中国农业科学, 2006, 39 (4): 686-692.
    [43]赵广才.根外追肥对小麦籽粒产量和品质的影响[J].北京农业科学, 1986, (6): 17-19.
    [44]张国平.钾素对小麦氮素代谢与产量的影响[J].浙江农业大学学报, 1985, 11: 463-472.
    [45]林作楫.食品加工与品质改良[M].北京:中国农业出版社, 1994: 403-404.
    [46]王旭东,于振文,石玉,等.磷对小麦氮代谢有关酶活性和籽粒蛋白质含量的影响[J].作物学报, 2006, 32 (3):339-344.
    [47]沈学善,朱云集,李国强,等.施硫多不同筋力型品种小麦碳氮运转和产量的影响[J].水土保持学报, 2007, 21 (4):134-140.
    [48]赵首萍,胡尚连,李文雄,等.硫对春小麦不同品质类型籽粒蛋白质及储藏蛋白含量的效应[J].作物学报, 2003, 29 (6): 847-852.
    [49] Souza E J, Martin J M, Guttieri M J, et al. Influence of genotype, environment, and nitrogen management on spring wheat quality[J]. Crop Science, 2004, 44, 425-432.
    [50]马冬云,朱云集,郭天财,等.基因型和环境及其互作对河南省小麦品质的影响及品质稳定性分析[J].麦类作物学报, 2002, 22 (4), 13-18.
    [51]王晨阳,郭天财,马冬云,等.环境、基因型及其互作对小麦主要品质形状的影响[J].植物生态学报, 2008, 32 (6): 1397-1406.
    [52]张艳,何中虎,周桂英,等.基因型和环境对我国冬播麦区小麦品质形状的影响[J].中国粮油学报, 1999, 14 (5): 1-5.
    [53]荆奇,姜东,戴廷波,等.基因型与生态环境对小麦籽粒品质与蛋白质组分的影响[J].应用生态学报, 2003, 14 (10): 1649-1653.
    [54]廖建雄,王根轩. CO2和温度升高及干旱对小麦叶片化学成分的影响[J].植物生态学报, 2000, 24(6): 744-747.
    [55] Blumenthal C S, Bekes F, Batey I L, et al. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress[J]. Australian Journal of Agricultural Research, 1991, 42, 325-334.
    [56]李永庚,蒋高明,杨景成.温度对小麦碳氮代谢、产量和品质影响[J].植物生态学报. 2003, 27(2): 164-169.
    [57] Stone P J, Nicolas M E. Wheat cultivars vary widely in their response of grain yield and quality of short period of post anthesis heat stress[J]. Australian Journal of Plant Physiology, 1994, 21, 887-900.
    [58] Wrigley C W, Blumenthal C S , Gras P W, Barlow E W R . Temperature variation during grain filling and changes in wheat grain quality[J]. Australian Journal of Plant physiology, 1994, 21, 875-885.
    [59] Randall P J, Moss H J. Some effect of temperature regime during grain filling on wheat quality[J]. Australian Journal of Agricultural Research, 1990, 41, 602-617.
    [60] Corbellini M, Mazza L, Ciaffi M. Effects of heat shock during grain filling on protein composition and technological quality of wheat[J]. In: Proceedings of the 5th International Wheat Conference, 1997, 213-220.
    [61]李永庚,于振文,张秀杰等.小麦产量与品质对不同灌浆阶段高温胁迫的响应[J].植物生态学报. 2005, 29(3): 461-466.
    [62]赵辉,戴廷波,荆奇,等.灌浆期温度对两种类型小麦籽粒蛋白质组分及植株氨基酸含量的影响[J].作物学报. 2005, 31(11): 1466-1472.
    [63] Gupta R B, M asci S, L afiandra D, et al. Accumulation of protein subunits and their polymers in developing grains of hexap loid wheats[J]. J. Experi. Bot., 1996, 47: 1377-1385.
    [64] N aeem H A, Mac Ritchie F. Heat stress effects on wheat proteins during grain development [C]. Proceedings of 10th International Wheat Genetics Symposium. 1-6 September, Poestum, Italy. 2003. 455-458.
    [65] Corbellini M, M azza L, Ciaffi M, et al. Effect of heat shock during grain filling on protein composition and technological quality of wheats[J]. Euphytica, 1998, 100: 147-154.
    [66]孙宝启,郭天财,曹广才等.中国北方专用小麦[M].北京:气象出版社. 2004, 116-117.
    [67]刘玲,沙奕卓,白月明.中国主要农业气象灾害区域分布与减灾对策[J].自然灾害学报. 2003, 12 (2), 92-97.
    [68]姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报. 2004, 30(2): 175-182.
    [69]范雪梅,姜东,戴廷波,等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报. 2004, 28(5): 680-685.
    [70]兰涛,姜东,谢祝捷,等.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响[J].水土保持学报. 2004, 18(1): 193-196.
    [71] Akiko S , Miwako K, Shingo N , Mitsuru W. The effect oftiming of nitrogen dressing on the baking quality of winter wheat[J]. Japanese Journal of Crop Science, 1999, 68, 217-223.
    [72] Jenner C F, Ugalde T D, Aspinall D. The physiology ofstarch and protein deposition in the endosperm of wheat[J]. Australian Journal of Plant Physiology, 1999, 18, 211-226.
    [73]赵广才,常旭虹,刘利华,等.施氮量对不同强筋小麦产量和加工品质的影响[J].作物学报, 2006, 32 (5): 723-727.
    [74]常江,李金才.渍水对小麦氮磷钾营养效应的研究[J].土壤学报, 1999, 36(3): 423-427.
    [75]许振柱,于振文,王东,等.灌溉条件对小麦籽粒蛋白质组分积累及其品质的影响[J].作物学报, 2003, 29(5): 682-687.
    [76]范雪梅,姜东,戴廷波,等.花后干旱和渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报, 2006, 30(1): 71-77.
    [77]王晨阳,郭天财,阎耀礼,等.花后短期高温对小麦旗叶光合特性的影响[J].作物学报, 2004, 30(1): 111-114.
    [78]田良才,张明仪,李晋川.高温胁迫-小麦超高产的主要障碍[J].山西农业科学, 1995, 23(2): 14-18.
    [79] Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis andgrain-filling of wheat[J]. Plant and Soil. 2003, 257(1): 219-226.
    [80]孙宝启,郭天财,曹广才,等.中国北方专用小麦[M].北京:气象出版社. 2004, 116-117.
    [81]王绍中,章练红.环境生态条件对小麦品质的影响研究进展[J].华北农学报(增刊), 1994, 9: 141-144.
    [82]吴东兵,曹广才,强小林,等.春播小麦品质与生育进程和气候条件的关系[J].应用生态学报, 2003, 8 (14): 1296-1300.
    [83]郭天财.河南省优质小麦生产发展的现状、问题与建议[J].农业科技参考, 2001, 23: 1-3.
    [84]刘广田,李保云.小麦品质性状的遗传及其改良[J].农业生物技术学报, 2000, 8(4): 307-314.
    [85]戴廷波,赵辉,荆奇,等.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响[J].生态学报, 2006, 26, (11): 3670-3676.
    [86]王月福,于振文等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报, 2002, 28(6):743-748.
    [87] Larios, B., Aguera, E. The rate of CO2 assimilation controls the expression and activity of glutamine synthetase through sugar formation in sunflower (Helianthus annuus L.) leaves[J]. J. Exp. Bot., 2004, 55(394):69.
    [88]吴良欢,蒋式洪,陶勤南.植物转氨酶(GOT和GPT)活度比色测定方法及其应用[J].土壤通报, 1998, 29(3): 136-138.
    [89]苏佩,蒋纪云,王春虎.小麦蛋白组分的连续提取分离法及提取时间的选择[J].河南职业技术师范学院学报, 1993, 21(2): 1-4.
    [90] Weegel P L, van de Pijpekamp A M, Graveland A, et al. Depolymerisation and re-polymerisation of wheat glutenin during dough processing: Relationships between gluten in macropolymer concentration and quality parameters[J]. Cereal Sci, 1996, 23: 103-111.
    [91]孙辉,姚大年,李保云,等.普通小麦谷蛋白大聚合体的含量与烘培品质相关关系[J].中国粮油学报, 1998, 13(6): 13-16.
    [92]宋治军,纪重光.现代分析仪器与测试方法[M].西安:西北大学出版社, 1994: 172-178.
    [93]姜东,于振文,李永庚,等.氮素水平对叶片、茎节、籽粒蔗糖含量变化和同化物分配及籽粒淀粉积累的影响[J].中国农业科学, 2002, 35(2): 157-162.
    [94]张林生.小麦种子氨基酸的评价[J].国外农学—麦类作物, 1996, 11(3): 28-30.
    [95]张晓龙.小麦品种籽粒灌浆研究[J].作物学报, 1982, 8(2): 87- 93.
    [96] Paula M M, Ligia M L, Isabel M S, et al. Expression of the plastid-located glutamine synthase of Medicago truncatula.Accumulation of the precursor in root nodules reveals an in vivo control at the level of protein impo rt into plastids[J]. Plant Physiol, 2003, 132(1): 390-399.
    [97]王小燕,于振文.不同小麦品种主要品质性状及相关酶活性研究[J].中国农业科学, 2005, 38(10): 1980-1988.
    [98] Stone P J, Gras P W, Nicolas M E. The influence of recovery temperatureon the effects of a brief heat shock on wheat1Ⅲ, Grain protein composition and dough properties[J]. Journal of Cereal Science, 1997, 25: 129-141.
    [99] Wesley A S, Lukow O M, Mc Kenzie R I H, et al. Effect of multiple substitutions of glutenin and gliadin proteins on flour quality of Canada prairie springwheat[J]. Cereal Chemistry, 2001, 78(1): 69-73.
    [100] Jenner C F. The physiology of starch and protein deposition in the endosperm of wheat[J]. Aust J Plant Physiol, 1991, 18: 211-226.
    [101] Xie Z J, Jiang D, CaoW X, et al. Efects of post anthesis soil water status on the activities of key regulatory enzymes of starch an protein accumulation in wheat grains[J]. Plant Physiol Mol Biol, 2003, 29(4): 309-316.
    [102] Ozturk A, Aydin F. Effects of water stress at various growth stages on some quality characteristics of winter wheat[J]. Journal of Agronomy & Crop Science, 2004, 190: 93-99.
    [103] Graveland A, Bosveld P, Lichtendonk W J, Moonen J H E. Extraction and fractionation of wheat flour proteins[J]. J Sci Food Agric, 1982, 33: 1117-1128.
    [104] Graveland A, Moonen J H E eds. Proceedings of the 2nd International Gluten Workshop on Gluten Proteins[J]. Pudoc, Wageningen, 1984, 59-67.
    [105] Weegels P L, Hamer R J, Schofield J D. Depolymerisation and re-polymerisation of wheat glutenin during dough processing[J]. Changes in composition. J Cereal Sci, 1997, 25: 155-163.
    [106]岳鸿伟,谭维娜,姜东,等.花后干旱和渍水对小麦籽粒HMW-GS及GMP含量的影响[J].作物学报, 2007, 33(1): 1845-1849.
    [107] Vasil I K, Anderson O D, Genetic engineering of wheat gluten[J]. Trends Plant Sci, 1997, 2: 292-297.
    [108] Don C, Lookhart G, Naeem H, et al. Heat stress and genotype affect the glutenin particles of the glutenin macropolymer-gel fraction[J]. J Cereal Sci, 2005, 42: 69-80.
    [109]张林生,蒋纪云,张保军.小麦子籽粒发育过程中氨基酸的变化[J].作物学报, 1997, 23(3): 301-306.
    [110]郭凌汉,靳华芬.不同生态环境小麦籽粒氨基酸含量的变化[J].耕作与栽培, 1991, 04.
    [111]王绍中,李春喜,罗艳蕊,等.基因型和地域分布对小麦籽粒氨基酸含量影响的研究[J].西北植物学报, 2001, 21(3): 437-445.
    [112]金善宝.中国小麦学.北京:中国农业出版社. 1996.
    [113]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响[J].作物学报, 2000, 26(4): 399-405.
    [114]吴少辉,高海涛,王书子,等.干旱对冬小麦粒重形成的影响及灌浆特性分析[J].干旱地区农业研究, 2002, 20(2): 49-51,64.
    [115] Wardlaw I F. Interaction between drought and chronic high temperature during kernel filling in wheat in controlled environment[J]. Annals of Botany, 2002, 90(4): 469-476.
    [116]李世清,邵明安,李紫燕,等.小麦籽粒灌浆特征及影响因素的研究进展[J].西北植物学报, 2003, 23 (11): 2031–2039.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700