国内外小麦种质资源麦谷蛋白亚基组成及其对品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦谷蛋白作为小麦中重要的胚乳贮藏蛋白,主要由高分子量谷蛋白亚基和低分子量谷蛋白亚基组成蛋白聚合体。优良亚基组成对小麦营养品质和加工品质具有重要作用。引进和利用国内外优良亚基资源,对改良中国小麦品质,丰富种质资源的多样性,具有重要意义。
     为了深入了解国内外小麦种质资源高低分子量麦谷蛋白亚基组成差异及其对品质的影响,采用SDS-PAGE电泳方法分析了国内外129份小麦种质资源Glu-1、GluA3和GluB3位点的谷蛋白亚基组成及变异,检测分析了籽粒蛋白质含量、出粉率、吸水率、面团形成时间、稳定时间、弱化度等6个品质参数,运用数理统计方法分析了Glu-1、GluA3和GluB3位点所编码的蛋白亚基对这6个加工品质性状的影响。主要结论如下:
     (1)HMW-GS变异具有丰富的多样性。在GluA1位点上以亚基1、N为主,GluB1位点上以7+8、7+9亚基为主,GluD1以5+10、2+12为主。中国品种与国外品种相比,Glu-A1位点上对品质贡献最少的N亚基出现的频率明显高于国外品种,Glu-D1位点上优质亚基5+10的频率明显低于国外品种。品质评分上,中国品种整体评分低于国外品种,尤其是评分为10分的品种所占得比例与国外品种相差幅度较大。在品质特性上,中国品种的面团形成时间和稳定时间均显著少于国外品种,而弱化度要高于国外品种。
     (2)LMW-GS变异具有丰富的多样性。Glu-A3位点上以亚基A3d、亚基A3a为主,Glu-B3位点上以1BL/1RS易位亚基B3j为主。中国品种与国外品种相比,对品质贡献最少的A3a亚基和B3j亚基的频率均高于国外材料。品质评分上,中国品种整体评分低于国外品种,并且评分高的品种比例低于国外品种,而评分低的品种比例要高于国外品种。
     (3)Glu-1位点单个亚基对品质特性的影响为:Glu-A1位点对面团形成时间、稳定时间的影响具有极显著差异,表现为正向效应的亚基:2*>1>N;对弱化度表现为负向效应:N>1>2*;Glu-B1位点对面团吸水率表现为正向效应:14+15>6+8、7+9、7+8、17+18>7、13+16,对面团稳定时间表现为正向效应:17+18>7+8、7+9>13+16>14+15>7、6+8;Glu-D1位点对面团稳定时间具有正向效应:5+10>2+12>4+12,对弱化度表现为负向效应。Glu-1位点亚基组合对面团稳定时间和弱化度的影响具有极显著性差异。亚基组合类型为(1,17+18,5+10)品种与组合类型为(N,7+9,2+12)的品种比较,二者之间对面团稳定时间的影响达到极显著差异,组合(1,17+18,5+10)的稳定时间显著高于组合(N,7+9,2+12)。亚基组合类型为(N,7+9,2+12)品种的弱化度显著高于除(1,14+15,2+12)外的其它亚基组合类型的品种。
     (4)Glu-3位点单个亚基对品质特性的影响为:GluA3位点对面团稳定时间的影响具有极显著性差异,表现为正向效应:GluA3c、GluA3f > GluA3b、GluA3d> GluA3a;Glu-B3位点对面团稳定时间表现为正向效应:GluB3b> GluB3f、GluB3g >GluB3h、GluB3j,对弱化度的影响表现为负向效应:GluB3b>GluB3f=GluB3g> GluB3j。Glu-3位点亚基组合对面团稳定时间的影响表现为极显著差异。亚基组合类型为GluA3f/GluB3b、GluA3c/GluB3g品种的面团稳定时间显著长于亚基组合类型为GluA3f/GluB3j、GluA3a/GluB3d、GluA3d/GluB3h、GluA3c/GluB3d、GluA3a/GluB3j、GluA3a/GluB3h的品种。亚基组合类型为GluA3f/GluB3j品种的弱化度显著高于亚基组合类型为GluA3a/GluB3f、GluA3fGlu/B3b、GluA3c/GluB3g的品种。
     (5)品质特性间进行相关性分析,籽粒蛋白含量同面粉吸水率存在显著正相关,面团形成时间和稳定时间存在极显著正相关,面团形成时间、稳定时间与弱化度间存在极显著负相关。
Composed by HMW-GS and LMW-GS as Glutenin polymeric protein, glutenin was an important part of the endoserm storage proteins. It was obvious that good composition subunits had great influence on the wheat processing qualities. Therefore, that introducing and utilizing good subunits from China and abroad was advantageous to rich the genetic diversity of germplasm resources of China and had important significance to create germplasm resources with good quality and excellent traits.
     129 cultivars from both domestic and abroad as test material was used to study wheat germplasm resources in China and abroad, and the index of namely protein content, flour yield, water absorption, dough development time, stability time and degree of softening was measured, and HMW-GS and LMW-GS compositions encoded by Glu-1 and Glu-3 by SDS-PAGE, and also the effects of protein subunits encoded by Glu-A1, Glu-B1 and Glu-D1 on these quality parameters by using mathematical statistics method were analyzed. The main conclusions were as follows:
     (1). The results showed that the variation of HMW-GS diversification is rich .The main subunits were 1,N on GluA1 locus, and 7+8,7+9 on GluB1 locus and 5+10, 2+12 on GluD1 locus. Compared to other subunits the contribution of subunit N on GluA1 to quality was the lowest, and its frequency of Chinese varieties was significantly lower than abroad. Subunit 5+10 in Chinese varieties was significantly lower than foreign varieties. The quality score of china varieties was lower than abroad and the frequency of 10 score varieties had a big differences between china and abroad. The dough development time of china varieties was significantly longer than foreign varieties, and the degrees of softening was significantly different between china and abroad varieties.
     (2). The LMW-GS variation was rich. The main subunit were d,a on GluA3d, and 1BL/1RS on Glu-B3. The frequency of subunit GluA3a and GluB3j in Chinese varieties was lower than foreign varieties and the quality score was lower. The frequency of the highest score was lower than foreign varieties; Just the opposite for the frequency of the lowest score.
     (3). The influence of Glu-1 subunit on quality characters wre summarized as bellows: Subunits on Glu-A1 locus had a very significant difference on the dough development time and stability time: 2*>1>N, effect on the degrees of softening is N>1>2*. Glu-B1 locus positive effect on dough water absorption performance was: 14+15>6+8,7+9,7+8,7+18>7, 3+16; The positive effect on Dough stability time was 17+18>7+8,7+9>13+16>14+15>7, 7+8. Subunit on Glu-D1 locus on the dough development time was: 5+10>2+12>4+12; Just the opposite for Degrees of softening performance.The composition of the subunit on Glu-1 had a significant difference on the dough stability time and degrees of softening. There was a significant difference on the dough stability time between the composition (1,17+18,5+10) and (N,7+9,2+12). The stability time of composition (1, 17+18, 5+10) was significant longer than (N, 7+9, 2+12). The composition of (N,7+9,2+12) had a significant difference with others on the degrees of softening except (1,17+18,5+10).
     (4). The influence of Glu-3 subunit on quality characters were summarized as bellows: Subunit on GluA3 locus had a very positive significant difference effect on the dough stability time: GluA3c, GluA3f > GluA3b, GluA3d> GluA3a; GluB3 locus had a positive effect performance on the dough stability time: GluB3b> GluB3f, GluB3g >GluB3h, GluB3j, and performance positive effect on degrees of softening: GluB3b>GluB3f=GluB3g> GluB3j. Subunits composition On Glu-3 locus had a very significant difference on the dough stability time. The dough stability time of composition GluA3f/GluB3b and GluA3c/GluB3g were significant longer than GluA3f/GluB3j, GluA3a/GluB3d, GluA3d/GluB3h, GluA3c/GluB3d, GluA3a/GluB3j and GluA3a/GluB3h. The degrees of softening of GluA3f/GluB3j varieties were significant higher than GluA3a/GluB3f, GluA3fGlu/B3b and GluA3c/GluB3g.
     (5). Relativity between the quality traits was analyzed. It was showed that there was a significant positive relativity between the content of grain protein and the flour water absorption, and the same positive relativity between dough development time and stability time. Dough development time and stability time had a significant negative relativity with the degrees of softening.
引文
[1].Morris C F,Rose S P. In Henery R J, Kettlewell P S, eds.Cereal Quality. Chapman Hall, London, 1996, pp 3-54.
    [2].赵新,王步军.面包质量与面包小麦品质指标关系的分析[J].麦类作物学报,2008,28(5):780-785.
    [3].唐建卫,刘建军,张平平等.济麦20面团流变学特性和面包加工品质稳定性及与蛋白质组分的关系分析[J].作物学报,2007,33(11):1788-1793.
    [4].胡琳,盖钧镒,许为钢.小麦品质特性的分类及相对重要性分析[J].麦类作物学报,2006 ,26(5) :60-64.
    [5].李宗智.冬小麦若干品质性状遗传及相关性研究[J].作物学报,1990,23(1):8-9.
    [6].Cornec M., Popineau Y. Lefebvre J. Characterisation of gluten sub-fractions by SE-HPLC and dynamic rheological analysis in shear. J.Cereal Sci,1994,19:131-139.
    [7].林作揖.食品加工与小麦品质改良[M].北京:中国农业出版社,1994.5-34.
    [8].Johansson E,Svensson G,Tsegaye S. Genotype and environment effects on bread-making quality of Swedish-grown wheat cultivars containing high molecular weight gluten in subunits 2+12 or 5+10.Soil and Plant Science, 1999,49(4):225-233.
    [9].Zhu J,Huang S,Khan K. Relationship of protein quantity,quality and dough properties with Chinese steamed bread quality.Journal of Cereal Science, 2001,33(2):205-212.
    [10].王光瑞,周桂英,王瑞.烘烤品质与面团形成和稳定时间相关分析[J].中国粮油学报,1997,12(3):1-6.
    [11].张艳.基因型和环境对我国冬播麦区小麦品质性状的影响[D].中国农业科学院研究生院,1997,硕士论文.
    [12].Campbell K G., Finney P L.Bergman C J. Quantitative Trait Loci associated with milling and baking quality in a soft-hard wheat cross.Crop Science, 2001,41:1275-1285.
    [13].Singh.J., Skerritt.J.H. Chromosomal control of albumins and globulins in wheat grain assessed using different fractionation procedures. J.Cereal Sci,2001,33:163-181.
    [14].张艳,何中虎,周桂英等.基因和环境对我国冬播麦区小麦品质性状的影响[J].中国粮油学报,1999,14(5):1-5.
    [15].张彩英,李宗智.冬小麦若干加工品质性状遗传变异及相关性的研究[J].河北农业大学学报,1989,12(3):8-14.
    [16].Graybosch R A, Peterson C J, Hansen L E and Mattern P J. Relationships between protein solubility characteristics, 1BL/1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germplasm. Cereal Chem,1990,67:342-349.
    [17].Graybosch R A, Peterson C J, Hansen L E, Worrall D, Shelton D R and Lukaszewski A. Comparative flour quality and protein characteri- stics of 1BL/1RS and 1AL/1BS wheat-rye translocation. J Cereal Sci,1993,17: 95-106.
    [18].Lee J H, Graybosch R A and Peterson C J. Quality and biochemical effects of 1BL/1RS wheat-rye translocation in wheat. Theor Appl Genet,1995,90:105-112.
    [19].Graybosch R A. Quality effects of rye chromatin transfers to wheat. J Cereal Sci,2001,33:3-16.
    [20].Huang.W.N.,Hoseney.R.C. Isolation and identification of a wheat flour compound causing sticky dough. Cereal Chem., 1999,76(2):276-281.
    [21].Schwarzlaff S S,Uriyo M G,Johnson J M. Apparent dough stickiness of selected 1B/1R translocated soft wheat flours.Cereal Chem., 2001,78(1):93-96.
    [22].Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome Translocation on gluten protein composition and technological properties of Bread wheat. J Sci Food Agric,2000,80:1640-1647.
    [23].Dhaliwal A S,Mares D J,Marshall D R. Effect of 1B/1R chromosome translocation on milling and quality characteristics of bread wheat.Cereal Chem,1987,64:72-76.
    [24].赵春,李增嘉.生态环境对小麦品质的影响及小麦生产区域化研究[J].安徽农业科学,2008,36(18):7610-7611,7647.
    [25].于亚雄,杨延华,陈坤玲等.生态环境和栽培方式对小麦品质性状的影响[J].西南农业学报,2001,14(2):14-17.
    [26].BASSEIT L M.Genotype and environment interactions on white winter wheat quality.1989,(81):955-960.
    [27].王绍中,李春喜,罗艳蕊等.基因型和地域分布对小麦籽粒氨基酸含量影响的研究[J].西北植物学报,2001,21(3):437-445.
    [28].杨学举,周世宝.优质小麦品质性状的环境变异研究[J].麦类作物学报,2000,20(3):21-24.
    [29].靳华芬.小麦生态理论与应用[M].浙江科学技术出版社,1992.167-181.
    [30].章练红,王绍中.小麦品质生态研究概述与展望[J].国外农学.麦类作物,1994,6:42-44.
    [31].邢先贵,朱旭彤.优质小麦品种在不同栽培条件下的产量和品质表现[J].华中农业大学学报,1996,15(2):117-121.
    [32].朱新开,郭文善,周君良等.氮素对不同类型专用小麦营养和加工品质调控效应[J].中国农业科学,2003,36(6):640-645.
    [33].蔡大同,王义炳,茆泽圣等.不同生态条件下播期和氮肥对优质小麦产量和品质性状的影响[J].植物营养与肥料学报,1994,(1):74-83.
    [34].Zhao. F.J., Salmon. S.E., Withers. P.J.A. Variation in the breadmaking quality and rheological properties of wheat in relation to sulphur nutrition under field conditions.J.Cereal Sci,1999,30,19-31.
    [35].荆奇,姜东.基因型与生态环境对小麦籽粒品质与蛋白质组分的影响[J].应用生态学报,2003,14(10):1649-1653.
    [36].赵广才,万富世,常旭虹.强筋小麦产量和蛋白质含量的稳定性及其调控研究[J].中国农业科学,2007(5):895-901.
    [37].兰涛,姜东,王连臻等.不同类型小麦品种品质性状的生态变异[J].南京农业大学学报,2004,27(3):7-10.
    [38].潘洁,戴廷波,姜冬等.基于气候因子效应的冬小麦籽粒蛋白质含量预测模型[J].中国农业科学,2005a,38(4):684-691.
    [39].潘洁,姜冬,曹卫星.小麦穗粒数、单粒重及单粒蛋白质含量的小穗位及粒位效应[J].作物学报,2005b,31(4):431-437.
    [40].贵华,于林平,朱京立等.常温仓低温仓储存小麦品质变化规律研究[J].粮食储藏,2008,37(1): 29-31.
    [41].Osborne T B. The proteins of the wheat kernel. Carnegie Inst. Washington Publi,1907,84:119.
    [42].Chen C H. and Bushuk W. Nature of proteins in triticale and its parental species. I. Solubility characteristics and amino acid composition of endosperm proteins. Can. J. Plant Sci,1970,50:9-14.
    [43].McIntosh R A, Hart G E and Gale M D. Catalogue of gene symbols for wheat. Proceedings of the 8th IWGS, Li and Xin (Eds),1995,2:1375-1378,1386-1392.
    [44].Payne P I, Corfield K G and Blackman J A. Correlation between the inheritance of certain high-molecular-weight subunits of glutenin and bread-making quality in progenies of six crosses of bread wheat. J Sci Food Agric,1981,32:51-60.
    [45].Payne P I, Holt L M, Jarvis M G. Two-dimensional fractionation of the endosperm proteins of bread wheat(Triticum aestivum): Biochemical and genetic studies. Cereal Chem,1985,62:319-326.
    [46].Thompson S , Bishop D H L, Tatham A S. Exploring disulphide bond formation in a low molecular weight subunit of glutenin using a baculovius expression system,1994,pp 345-355.
    [47].Jackson E A., Holt L M., Payne P I. Characterisation of high molecular weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localisation of their controlling genes. Theor Appl Genet,1983,66:29-37.
    [48].Masci S, Lafiandra D, Porceddu E. D-glutenin subunits: N-terminal sequences and evidence for the presence of cysteine. Cereal Chem,1993,70:581-585.
    [49].Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW. Biochemical, genetic,and molecular characterization of wheat glutenin and its component subunits. Cereal Chem,2001,78(6):635-46.
    [50].Blackman J A and Payne P I. Grain quality. In: Wheat Breeding-its Scientific Basis. Lupton F G H(Eds), Chapman and Hall, London,1987,455-485.
    [51].Lawrence G J, MacRitchie F and Wrigley C W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1, Glu-B1 and Glu-D1 loci. Cereal Sci,1988,7:109-112.
    [52].Gupta R B, Singh N K, Shepherd K W.The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor Appl Genet, 1989b,77:57-64
    [53].Kolster P, Eeuwijk F A and Van Gelder W M J. Additive and epistatic effecfs of allelic variation at the high molecular weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica,1991,55:277-285.
    [54].马传喜,吴兆苏.胚乳蛋白质组分及高分量麦谷蛋白亚基与品质性状的关系[J].作物学报,1993,19(6):562-567.
    [55].赵和,卢少源,李宗智.小麦高分子量麦谷蛋白遗传变异及其与品质和其它农艺性状关系的研究[J].作物学报,1994,20(1):67-75.
    [56].马传喜,徐风,谭蕴之.在一对面包小麦杂交后代中Glu-B1控制的麦谷蛋白亚基17+18对品质性状的影响[J].作物学报,1995,21(1):90-94.
    [57].Khatkar B S, Bell A E,Schofield J D. A comparative study of the inter-relationships between mixograph parameter and bread making qualities of wheat flours and glutens. J. sci. food agric,1996,72: 71-85.
    [58].Gupta R B, Batey I L,MacRitchie F. Relationship between protein composition and functional properties of wheat flours. Cereal Chem,1992,69:125-131.
    [59].Shewry P R,Halford N G,Tatham A S. High molecular weight glutenin subunits of wheat glutenin.J .Creal Sci,1992,15:105-120.
    [60].Payne P I,Nightingale M A,Krattiger A F,et al. Relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties.Journal of the Science of Food and Agriculture,1987b,40:51-65.
    [61].Branlard G,Pierre J and Rousset M. Selection indices for quality evaluation in wheat breeding. Theo. Appl Genet,1992,84:57-64.
    [62].李保云,刘桂芳.小麦高分子量谷蛋白亚基的遗传规律研究[J].中国农业大学学报,2000,1:58-62.
    [63].Payne P I, Holt L M, Lawrence G J and Law C N. The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Qual Plant Food Hum Nutr,1982,31:229-241.
    [64].Lawrence G J and Shepherd K W. Inheritance of glutenin protein subunits of the high molecular wheat. Theor Appl Genet,1981,60:333-337.
    [65].刘广田,许明辉.普通小麦胚乳谷蛋白亚基的遗传研究[J].中国农业科学,1988,21(1):56-60.
    [66].Khelifi D and Branlard G. The effects of HMW and LMW subunits of glutenin and of gliadins on the technological quality of progeny from four crosses between poor breadmaking quality and strong wheat cultivars. J cereal Sci,1992,16:195-209.
    [67].Payne P I, Law C N and Mudd E E. Control by homoeologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet,1980,58:113-120.
    [68].Payne P I and Lawrence G J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1,and Glu-D1 which code for high molecular–weight subunits of glutenin in hexaploid wheat. Cereal Research Communications,1983,11:29-35.
    [69].Payne PI, Holt LM, Hutchinson J, Bennet MD. Development and characterization of a line of bread wheat. T. aestivum, which lacks the short arm satellite of chromosome IB and the Gli-B1 locus. Theor Appl Genet,1984a,68(4):327–34.
    [70].McIntosh R A, Hart G E, Gale M D. Catalogue of gene symbols for wheat (supplement). Ann. Wheat Genet,1994,40:362-375.
    [71].Payne P I. Genetics of wheat storage protein and the effect of allelic variation on bread making quality. Ann. New York Acad Sci,1987a,38:141-153.
    [72].Blechl A E and Anderson O D. Expression of a novel high molecular weight glutenin subunit gene in transgenic wheat. Nature Biotech,1996,14:875-879.
    [73].Payne P I, Jackson E A, Holt L M and Law C N. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat. Theor Appl Genet,1984b,67: 235-243.
    [74].Yang ZJ, Li GR, Feng J. Molecular cytogentic characterization and disease resistance observation of wheat-Dasypyrum brebiaristaum partial amphiploid and its derivatives. Hereditas,2005,142:80–5.
    [75].Sobko TA. Identification of a new locus which controls the synthesis of alcohol soluble protein in the endosperm of winter common wheat. J Agric Sci,1984,7:78–80.
    [76].Metakovsky EV, Akhmedov MG, Sozinov AA. Genetic analysis of gliadin-coding genes reveals gene clusters as well as single remote genes. Theor Appl Genet,1986,73:278–85.
    [77].Jackson EA, Holt LM, Payne PI. Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat (Triticum aestivum). Genet Res Cambridge,1985,47:11–17.
    [78].Metakovsky EV. Gliadin allele identification in common wheat II. Catalogue of gliadin alleles in common wheat. J Genet Breed,1991,45:325–44.
    [79].Singh NK, Shepherd KW. Linkage mapping of the genes controlling endosperm proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theor Appl Genet,1988,66:628–41.
    [80].Singh NK, Shepherd KW. The structure and genetic control of a new class of disulphide-linked proteins in wheat endosperm. Theor Appl Genet,1985,7:79–92.
    [81].Dubcovsky J, Echaide M, Giancola S, Rousset M, Luo MC, Joppa LR, Dvorak J. 1997. Seed-storage -protein loci in RFLP maps of diploid, tetraploid, and hexaploid wheat.Theo. Appl Genet 95: 1169-1180.
    [82].Waines J G., Payne P I. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor. Appl. Genet,1987,74:71-76.
    [83].Johansson E, Henriksson P, Svensson G. Detection of chromosomal location and evaluation of the functional value of a novel high Mr glutenin subunit found in Swedish wheats. J. Cereal Sci.,1993,17: 237-245.
    [84].Margiotta B, Urbano M, Colaprico G. Detection of y-type subunit at the Glu-A1 locus insome Swedish bread wheat lines. J. Cereal Sci,1996,23:203-211.
    [85].Bietz J A, Wall J S.(1975)The effect of various extractants on the subunit composition and association of wheat glutenin. Cereal Chem,52:145-155.
    [86].Masci S, D’Ovidio R, Lafiandra DCharacterization of a low-molecular-weight glutenin subunit gene from bread wheat and the corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiology,1998,118:1147–1158.
    [87].Marchylo, B. A., Lukow, O. M., and Kruger, J. E. Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats. J. Cereal Sci,1992b,15:29-37.
    [88].Lukow, O. M., Forsyth, S. A., and Payne, P. I. Over-production of HMW glutenin subunits coded on chromosome 1B in common wheat, Triticum aestivum. J. Genet. Breed,1992,46:187-192.
    [89].D’Ovidio R, Masci S.(Porceddu E.Duplication of the Bx7 high-molecular-weight glutenin subunit gene in bread wheat (Triticum aestivum L.) cultivar Red River 68. Plant Breed,1997a,116:525-531.
    [90].Shewry, P. R., Halford, N. G., and Tatham, A. S. The high molecular weight subunits of wheat, barley and rye: Genetics, molecular biology, chemistry and role in wheat gluten structure and functionality,1989,163-219.
    [91].Tataham A S, Miflin B J and Shewry P R. The beta-turn conformation in wheat gluten proteins: relationship to gluten elasticity. Cereal Chem,1985,62:405-422.
    [92].Tatham, A. S., and Shewry, P. R. The S-poor prolamins of wheat, barley and rye. J. Cereal Sci. 22:1-16.], The S-poor prolamins of wheat, barley and rye. J Cereal Sci,1995,22:1-16.
    [93].Anderson O D, Green F C, Yip R E. Nucleotide sequences of the two high-molecular-weight glutenin genes from the D-genome of a hexa-ploid bread wheat, Triticum aestivum L. cv Cheyenne. Nucleic Acids Res,1989,17:461-462.
    [94].MacRitchie, F. Physicochemical properties of wheat proteins inrelation to functionality. Adv Food Nutr Res,1992,36:1-87.
    [95].Wrigley, C. W. Giant proteins with flour power. Nature,1996,381:738-739.
    [96].Bernardin J E. A close look at what happens when water is added to wheat particles. ARS W Agric Res Serv US Dep Agric,1974,19: 81-83.
    [97].Bernardin J E. The rheology of concentrated gliadin solutions. Cereal Chem,1975,52(3):136-145.
    [98].Ewart J A D. A hypothesis for the structure and rheology of glutenin. J Sci Food Agric, 1968,19:617-623.
    [99].Ewart J A D. A modified hypothesis for the structure and rheology of glutenin. J Sci Food Agric, 1972,23:687-699.
    [100].Moonen J A E, Scheepstra A and Graveland A. The positive effects of the high molecular weight subunits. Cereal Chem,1983,32:735-742.
    [101].Shewry P R, Miflin B J and Kasarda D D. The structural and evolutionary relationships of the prolamin storage proteins of barley, rye ,and wheat. Phil Trans. R. Soc. Lond. Ser,1984,B: 297-304.
    [102].Belton P S, Colquhoun I J, Field J M, Grant A, Shewry P R and Tatham A S. 1H and 2H NMR relation studies of high Mr subunit of wheat glutenin and comparison with elastin. J Sci Food Agric, 1994,19:115-121.
    [103].Belton P S. On the elasticity of wheat gluten. J Sci Food Agric,1999,29:103-107.
    [104].Shewry R, Gilbert M, Savage J, Tatham S, Wan Y F, Belton S, Wellner N, D'Ovidio R, Bekes F and Halford G. Sequence and properties of HMW subunit 1Bx20 from pasta wheat ( Triticumdurum) which is associated with poor end use properties. Theor Appl Genet,2003,106(4):744-50.
    [105].Halford N G, Forde J,Anderson O D. The nucleotide and deduced amino acid sequences of an HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosomes 1A and 1D. Theor. Appl. Genet,1987,75: 117-126.
    [106].Sugiyama T, Rafalski A, Peterson D. A wheat HMW glutenin subunit gene reveals a highly repeated structure. Nucleic Acid Res,1985,13:8729-8737.
    [107].Thompson R D, Bartels D, Harberd N P. Nucleotide sequences of a gene from chromosome 1D of wheat encoding a HMW-glutenin subunit. Nucleic Acids Res,1985,13:6833-6846.
    [108].Halford N G. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl genet, 1992,83:373-381.
    [109].Reddy P and Apples R. Analysis of a genomic DNA segment carrying the wheat high-molecular-weight (HMW) glutenin Bx17 subunit and its use as an RFLP marker. Theor Appl Genet,1993,85:616-624.
    [110].D’Ovidio R, Tanzarella O A, Porceddu E. Rapid and efficient detection of genetic polymorph -ism in wheat through amplification by the polymerase chain reaction. Plant Mol. Biol,1990,15:169-171.
    [111].D’Ovidio R, Simeone M, Masci S. Nucleotide sequence of aγ-type glutenin gene from a durum wheat: Correlation with aγ-type glutenin subunit from the same biotype. Cereal Chem.,1995a, 72: 443-449.
    [112].D’Ovidio R, Masci S, Porceddu E. Development of a set of oligonucleotide primers specific for genes at the Glu-1 complex loci of wheat. Theor. Appl. Gene,1995b,91:189-194.
    [113].Oritiz J P, Reggiardo M I, Cervigni G D L, Spitteler M A and Vallejos R H. Hygromycin resistanceas an efficient selectable marker for wheat stable transformation. Plant Cell Report,1996,15:877-881.
    [114].Alvarez M L, Guelman S, Halford N G. Silencing of HMW-glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet,2000,100: 319-327
    [115].Barro F, Rooke L, Bekes F, Tatham A S, Fido R, Lazzeri P A, Shewry P R and Barcelo P. Transformation of wheat with high-molecular-weight subunit genes results in improved functional properties. Nature Biotech,1997,15:1295-1299.
    [116].Payne P I, Law C N and Mudd E E. Control by homoeologous group 1 chromosomes of the high-molercular-weight subunits of glutenin, a major protein of wheat endosperm. Theor Appl Genet,1980,58:113-120.
    [117].Lawrence G J, Shepherd K W. Variation in glutenin protein subunits of wheat. Aust. J. Biol Sci,1980,33:221-233.
    [118].Branlard G, Dardevet M. Diversity of grain protein and bread wheat quality. II. Correlation between high molecular subunits of glutenin and flour quality characteristics. J. Cereal Sci,1985,3: 345-354.
    [119].Lafferty J,T. Lelley. Introduction of high molecular weight glutenin subunits 5+10 for the improvement of the bread-making quality of hexaploid triticale. Plant Breeding,2001,120:33-37.
    [120].MacRitchie F, du Cros D L, Wrigley C W. Flour polypeptides related to wheat quality. Adv. Cereal Sci. Technol,1990,10:79-145.
    [121].Sutton K H. Qualitative and quantitative variation among high molecular weight subunits of glutenin detected by reversephase highperformance liquid chromatography. J Cereal Sci,1991, 14:25-34.
    [122].Cornish G B. Wheat proteins and end-product quality.,1995,Pages 546-549 in: Proc. 45th Australian Cereal Chemistry Conf. Y. A. Williams and C. W. Wrigley, eds. RACI: Melbourne, Australia.
    [123].Cornish, G. B., Panozzo, J. F., and Wrigley, C. W. Victorian wheat protein families. 1999,pp 183-188 in: Cereals 98. Proc. 48th Australian Cereal Chemistry Conf. L. O’Brien, A. B. Blakeney, A. S. Ross and C. W. Wrigley eds. RACI: Melbourne, Australia.
    [124].Gupta R B, MacRitchie F. Allelic variation at gluten subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats. II. Biochemical basis of the allelic effects on dough properties. Cereal Chem,1994,19:19–29.
    [125].Bekes, F., Gras, P. W., Gupta, R. B., Hickman, D. R., and Tatham, A. S. Effects of the high Mr glutenin subunit (1Bx20) on the dough mixing properties of wheat flour. J. Cereal Sci,1994a, 19:3-7.
    [126].Bekes, F., Anderson, O., Gras, P. W., Gupta, R. B., Tam, A., Wrigley, C.W., and Appels, R. The contribution to the mixing properties of 1D glutenin subunits expressed in a bacterial system. 1994b,pp 97-104 in:Proc. Improvement of Cereal Quality by Genetic Engineering. R. Henry and J. Ronalds, eds. Plenum Press: New York.
    [127].Bekes, F., Tamas, L., Gras, P. W., Shewry, P. R., Anderson, Appels,R. Functional domain within the glutenin subunits of wheat. 1998,pp 136-138 in: Proc. 9th Int. Wheat Genetics Symposium, Vol. 4. Grain Quality.A. E. Slinkard, ed. University of Saskatchewan: Saskatoon, Canada.
    [128].Sissons, M. J., Bekes, F., and Skerritt, J. H. Isolation and functionality testing of low molecular weight glutenin subunits. Cereal Chem,1998,75:30-36.
    [129].Lee, Y.-K., Bekes, F., Gras, P., Ciaffi, M., Morell, M. K., and Appels, R.The low-molecular-weight glutenin subunit proteins of primitive wheats. IV. Functional properties of products from individual genes.Theor. Appl. Genet,1999a,98:149-155.
    [130].Buonocore, F., Bertini, L., Ronchi, C., Bekes, F., Caporale, C., Lafiandra,D., Gras, P., Tatham, A.
    [158].Pitts E G, Rafalski J A, Hedgcoth C. Nucleotide sequence and encoded amino acid sequence of a genomic gene region for a low molecular weight glutenin. Nucleic Acids Res,1988,16:11376.
    [159].Colot V,Bartels D,Thompson R, Molecular characterization of an active wheat LMW gluten gene and its relation to other wheat and barley prolamin genes.Mol Gen Genet,1989,216:81-90.
    [160].D’Ovidio R, Tanzarella O A, Porceddu E. Molecular analysis of gliadin and glutenin genes in T. durum cv. Lira. A model system to analyse the molecular bases of quality differences in durum wheat cultivars. J.Cereal Sci,1992,16:165–172.
    [161].Van Campenhout S, Stappen J V, Sagi L and Volckaert G. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theor Appl Genet, 1995,91:313-319.
    [162].D’ovidio R, Simeone M, Masci S and Porceddu E. Molecular charac- terization of a LMW-GS gene located on chromosome 1B and the development of primers specific for the Glu-B3 complex locus in durum wheat. Theor Appl Genet,1997b,95:1119-1126.
    [163].Benmoussa M, Vezina L, Page M, Yelle S and Laberge S. Genetic polymorphism in low-Molecular-weight glutenin genes from Triticum aestivum. Theor Appl Genet,2000, 100: 789-793.
    [164].D’Ovidio R. Single-seed PCR of LMW glutenin genes to distinguish between durum wheat cultivars with good and poor technological properties. Plant Molecular Biology,1993,22: 1173–1176.
    [165].Payne P I, Jackson E A, Holt L M. The association betweenγ-gliadin 45 and gluten strength in durum wheat varieties. A direct causaleffect on the result of genetic linkage. J.Cereal Sci,1984,2:73–81.
    [166].Zhang W, Gianibelli MC, Ma W. Identification of SNPs and development of AS-PCR markers for g-gliadin alleles in Triticum aestivum. Theor Appl Genet,2003,107:130–138.
    [167].Brett G M, Mills E N C, Tatham A S, Fido R J, Shewry P R and Morgan M R A. Immunchemical identification of LMW subunits of glutenin associated with bread-making quality of wheat flours. Theor Appl Genet,1993,86:442-448.
    [168].Sontag-Strohm T. Effect of allelic variation of glutenin subunits and gliadins on baking quality in the progeny of two biotypes of breed wheat cv.Ulla. J Cereal Sci,1996,24(2):115-124.
    [169].赵会贤,薛秀庄,Mares D,冯军礼.麦谷蛋白亚基Glu-1和Glu-3位点基因等位变异对小麦品质特性的影响[J].作物学报,1997,23(6):646-654.
    [170].Cornish G B, Burridge P M, Palmer G A and Wrigley C W. Mapping the origins of some HMW and LMEW glutenin subunit alleles in Australian germplasm. Proc 42nd Aust Cereal Chem Conf, Sydney, 1993,pp 255-260.
    [171].Payne P I, Holt L M, Jackson E A and Law C N. Wheat storage proteins: their potential formanipulation by plant breeding. Pholos Trans R Soc Lond. B,1984a,304:359-371.
    [172].Pogna N E, Austran J C, Lafiandra D, Feillet P. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat:genetics and relationship to gluten strength. J.Cereal Sci,1990,11:15-34.
    [173].Ruiz M and Carrillo J M. Relationships between different prolamin proteins and some quality properties between different prolamin proteins and some quality properties in durum wheat. Plant Breeding,1995,114:40-44.
    [174].韩彬,Shepherd K W.低分子量谷蛋白亚基与醇溶蛋白的关系及其对品质性状的影响[J].中国农业科学,1991,24(4):19-25.
    [175].朱金宝,刘广田,张树榛,孙辉.小麦籽粒高、低分子量麦谷蛋白亚基及其与品质关系的研究[J].中国农业科学,1996,29(1):34-39.
    [176].王宪泽,张玲.部分山东小麦品种低分子量谷蛋白亚基构成及其与品质关系的研究[J].中国粮油学报,2000,15(1)1-3.
    [177].葛淑俊,谢令琴,王静华,卢少源,张荣芝,周树新.普通小麦低分子量麦谷蛋白亚基与农艺性状和品质性状关系的研究[J].西南农业学报,2002,25(3):6-9.
    [178].Brandlard G, Felix I. Part of the HMW glutenin subunits and omega gliadin allelic variants in the explanation of the quality parameters. In: Proceeding International Meeting–Wheat Kernel Proteins: Molecular and Functional Aspects, S. Martinal al Cimino, Viterbo,Italy,1994,249-251.
    [179].Luo C, Branlard G, Griffin W B. The effect of nitrogen and sulphur fertilization and their interaction with genotype on wheat glutenins and quality parameters.J.Cereal Sci,2000,31:185-194.
    [180].Cornish G B, Bekes F, Allen H M. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Australian Journal of Agricultural Research,2001,52:1339-1348.
    [181].Luo C, Giffin W B, Branlard G. Comparison of low and high molecular-weight wheat glutenin allele effects on flour quality. Theor. Appl.Genet,2001,102:1088–1098.
    [182].Va`zquez J F, Ruiz M, Nieto-Taladriz M T. Effects on gluten strength of low Mr glutenin subunits coded by alleles at the Glu-A3 and Glu-B3 loci in durum wheat. J.Cereal Sci,1996,24:125–130.
    [183]. Gupta R B, Shepherd K W. LMW-GS in wheat: their variation, inheritance, and association with bread-making quality.In: Proc 7th Int Wheat Genet Symp, Cambridge,UK,1988,pp 943–949
    [184].Gupta R B, Bekes F, Wrigley C W. Predicting values of LMW glutenin alleles for dough quality of bread wheat. In: Bushuk W, Tkachuk R (eds) Gluten Proteins 1990a. American Association of Cereal Chemists, St. Paul, Minnesota, USA,1990a,pp 615–621.
    [185].Gupta R B, Bekes F, Wrigley C W. Prediction of wheat dough quality in breeding on the basis of LMW and HMW glutenin subunit composition. In: Proc 6 Aust Wheat Breeders Soc Assembly, Tamworth, Australia,1990b,pp 217–225.
    [186].Wieser H, Kieffer R. Correlation of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. J.Cereal Sci,2001,34:19–27.
    [187].Benedettelli S, Margiotta B, et al. Effects of the lack of proteins controlled by genes at the Gli-D1/Glu-D3 loci on the breadmaking quality of wheat. J.Cereal Sci,1992,16:69–79.
    [188].Lindsay M P and Skerritt J H. Immunocytochemical localization of gluten proteins uncovers structural organization of glutenin macropolymer. J Cereal Chem,2000,77(3):360-369.
    [189].赵会贤,胡胜武,吉万全,薛秀庄,郭蔼光, Mares D.小麦谷蛋白聚合体粒度分布与面粉揉面特性关系的研究[J].中国农业科学,2001,34(5):475-479.
    [190].孙辉,姚大年,李宝云,刘广田,张树榛.小麦谷蛋白大聚合体含量的影响因素[J].麦类作物学报,2000,20(2):23-27.
    [191].Gupta R B, Shepherd K W. Production of multiple wheat-rye 1RS translocation stocks and genetic analysis of LMW subunits of glutenin and gliadins in wheat using these stocks. Theor. Appl. Genet,1993,85:719-728.
    [192].梁荣奇,张义荣,尤明山,毛善锋,宋建民,刘广田.小麦谷蛋白聚合体的MS-SDS-PAGE及其与面包烘烤品质的关系[J].作物学报,2002,28(5):609-614.
    [193].马传喜,陆燕.麦谷蛋白亚基组成与及GMP含量与品质性状的关系.中国小麦育种研究进展,2002:249-253.
    [194].Moonen J A E, Scheepstra A and Graveland A. Use of the SDS-sedimentation test and SDS-PAGE for screening breeder’s samples of wheat for bread-making quality. Euphyteca,1982,31:677-690.
    [195].孙辉,姚大年,李宝云,刘广田,张树榛.普通小麦谷蛋白大聚合体的含量与烘焙品质相关关系[J].中国粮油学报,1998,13:13-16.
    [196].P.L.Weegels, A.M.van de Pijpekamp, A.Gravelan, R.J. Hamer, J.D.Schofield. Depolymerisation and repolymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameters, Journal of Cereal Science,1996,23,103-111.
    [197].Cauvain, Stanley P. & Cauvain P. Cauvain. Bread Making. CRC Press,2003,pp 540.
    [198].Palmer, John J. How to Brew. Defenestrative Pub Co,2001,pp 233. ISBN 0-9710579-0-7.
    [199].Neill, Richard. Booze: The Drinks Bible for the 21st Century. Octopus Publishing Group - Cassell Illustrated,2002,pp 112.
    [200].Department of Agriculture Appropriations for 1957: Hearings ... 84th Congress. 2d Session. United States. Congress. House. Appropriations,1956,pp 242.
    [201].Smith, Albert E. Handbook of Weed Management Systems. Marcel Dekker,1995,pp 411. ISBN 0-8247-9547-4.
    [202].Bridgwater, W. & Beatrice Aldrich. The Columbia-Viking Desk Encyclopedia. Columbia University,1966, pp 1959.
    [203].He Zhonghu. Wheat production and quality requirements in China. Review of China Agricultural Science and Technology,2000,2(3):62-68.
    [204].昝香存,周桂英,吴丽娜等.我国小麦品质现状分析[J].麦类作物学报,2006,26(6):46-49.
    [205].黄兴峰,马传喜,司红起等.小麦品种高分子量谷蛋白亚基的组成分析[J].安徽农业大学学报,2003,30(4):377-381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700