超高分子量聚乙烯的流变行为及其在材料加工中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的流变性质决定了其加工性能,研究UHMWPE的流变行为,对制备性能优良的UHMWPE材料具有指导意义。本文系统的研究了UHMWPE的稀溶液、浓溶液及本体的在全浓度范围内的流变行为,得到UHMWPE长链分子缠结形态、粘度与剪切速率、温度、聚合物浓度等之间的关系,探讨适用于常规双螺杆挤出机的UHMWPE加工条件,并在此基础上制备了具有生物活性的UHMWPE/OCP(磷酸八钙)复合材料。同时本文提出利用亚稳性现象加工UHMWPE的新方法,并研究其加工工艺,实现在低温低压下加工制得高性能UHMWPE制品,为解决UHMWPE加工困难问题开辟了新的思路。
     本文采用粘度法表征了UHMWPE液体石蜡稀溶液中临界缠结浓度与聚合度之间的关系,得到方程式。UHMWPE液体石蜡溶液凝胶中,UHMWPE分子链为单链多晶形态,随着溶液凝胶浓度的降低,凝胶中UHMWPE片晶晶粒更细小。UHMWPE液体石蜡凝胶凝胶点温度随着浓度的升高而升高,凝胶点温度Cc rNC cr? N1/2 =94Tg el与凝胶质量浓度C m之间的关系式为:Tg el = 0.32C m+ 110.4(0.8%≤≤8%) ;(10%≤≤40%);CmTg el = 31.9 Cm+ 115.1C mTg el = 24.5 Cm+ 113.2( Cm≥45%)。
     UHMWPE液体石蜡凝胶是假塑性凝胶,在165℃时充分熔融,凝胶中UHMWPE分子链形成熔融充分的呈高斯分布的线团,具有较高的弹性模量和较低的损耗模量。温度在165℃时以上,剪切速率-粘度曲线在低剪切速率区域出现一个平台,然后随剪切速率的增加而下降,且温度高的凝胶的粘度平台区更宽。液体石蜡的溶胀作用可以有效地减小UHMWPE的粘度,不同浓度下的UHMWPE液体石蜡凝胶的粘度与剪切频率之间为幂律方程关系。凝胶粘度对温度及对浓度的敏感性均比其对剪切速率的敏感性更为显著。
     UHMWPE本体的粘度-剪切速率关系符合幂律方程,可以用方程式η= kγα来描述。UHMWPE分子量在250万-600万之间时,分子量对UHMWPE的流变行为影响不大,但分子量高的UHMWPE比分子量低的UHMWPE的粘度随剪切频率的增加而下降的幅度要大,其流变行为对温度更为敏感。当温度升高至185℃时,UHMWPE分子链内部的结晶消失,相互贯穿的分子链到达网络缠结点密度的最高点,分子形态呈无规线团状。当温度升高到225℃以上时,分子链间缠绕与解缠绕达到动态平衡,粘度基本不再变化。粘均分子量为3.5×106g/mol的UHMWPE柱塞挤出过程中,在154℃-157℃的“温度窗口”中,出现亚稳性现象,表现为挤出压力出现突降并稳定下来,挤出棒材表面光滑,不出现熔体破裂现象。实现了低温低压下柱塞挤出成型加工UHMWPE,使得不需改进设备,采用传统的柱塞挤出机挤出成型UHMWPE成为现实,且显著降低了生产中所需能耗。
     控制螺杆转速40N/min;温度165℃,可在常规双螺杆挤出机上实现50%的UHMWPE液体石蜡凝胶的顺利挤出。通过UHMWPE和OCP纤维在双螺杆挤出机上溶胀共混挤出制备的UHMWPE/OCP复合材料在OCP纤维质量分数为25%时具有较为优异的力学性能,该复合材料在仿生条件下可诱发表面类骨磷灰石层的生成。UHMWPE经丙烯酸改性后,表面含有大量活性基团,可用于原位化学合成UHMWPE/CaCO3复合材料。原位化学合成法制备的UHMWPE/CaCO3复合材料比纯UHMWPE以及机械共混法制备的复合材料具有更佳的拉伸强度和耐热变形温度。用该法制得的CaCO3含量为9.5%的UHMWPE/CaCO3复合材料的拉伸强度可达到43.8MPa,耐热变形温度可高达106℃。
Polymer processability depends on its rheological behavior. To improve the processability of ultrahigh molecular weight (UHMWPE), the rheological behaviors of UHMWPE, including dilute solution, concentrated solution, gel, and melt, were studied. The relationships of the entanglement state of UHMWPE long chains, viscosity, shear rate, temperature, polymer concentrations were obtained. The suitable processing parameters for ram extrusion of UHMWPE rod and twin screw extrusion of UHMWPE/octacalcium phosphate composite were explored using the theoretical results. A metastable phenomenon was observed during the ram extrusion of UHMWPE, and a low temperature and low pressure processing method was developed to solve the difficulties in processing UHMWPE. A bioactive UHMWPE/OCP composite was processed using twin screw extrusion of the UHMWPE gel. A heat resistant and high strength composite of UHMWPE and calcium carbonate was processed by in situ synthesis.
     The relationship between the critical entanglement concentration (Ccr) of UHMWPE dilute solution in paraffin oil and the degree of polymerization (N) was obtained by measuring the viscosity, . UHMWPE gel in the paraffin oil exhibits a single chain with polycrystalline forms. The UHMWPE lamellar crystal size becomes smaller with the decrease of the gel concentration. The UHMWPE/paraffin oil gel point (TC cr? N1/2 =94gel) increases with the mass concentration of UHMWPE (Cm), Tg el = 0.32C m+ 110.4(0.8%≤≤8%), (10%≤≤40%), CmTg el = 31.9 Cm+ 115.1C mTg el = 24.5 Cm+ 113.2( Cm≥45%).
     UHMWPE/paraffin oil gel is a pseudoplastic gel. When the gel melts sufficiently at 165℃, UHMWPE chains in the melt state exhibit as Gaussian distributed coils with higher storage modulus and lower loss modulus. At temperature above 165℃, a plateau appears in the low shear rate region of the viscosity curve, and the plateau decreases with the increase of shear rate. Higher temperature broadens the viscosity plateau. The swelling effects of paraffin oil can reduce the viscosity of UHMWPE, and the viscosity of gels with different UHMWPE concentration has a power law relation with the shear rate. The gel viscosity is more sensitive to temperature and UHMWPE concentration than to shear rate.
     The viscosity (η) of UHMWPE melt has a power law relation with the shear rate (γ),η= kγα. In the molecular weight range of 2.5 million to 6.0 million (g/mol), molecular has little effect on the rheological behavior of UHMWPE, but the shear thinning behavior and the temperature sensitivity become more severe with the increase of molecular weight. When the temperature rises to 185℃, the intramolecular crystal structure disappears completely and the density of entanglement network is maximum, and the molecules exhibit a random coil conformation. When the temperature rises to 225℃, the entangling and disentangling of chains reach a dynamic equilibrium, so the viscosity keeps constant.
     A metastable phenomenon was observed during the rheological behavior study of UHMWPE (viscosity average molecular weight 3.5 million g/mol) in a“temperature window”of 154-157℃using a capillary rheometer. The extrusion pressure decreased abruptly and then became stable, and the rods surface was smooth without melt fracture. A low temperature and low pressure extrusion method was developed to process UHMWPE using a traditional ram extruder, which can significantly decrease the energy consumption.
     UHMWPE gel with a UHMWPE concentration of 50% in paraffin oil was successfully extruded using a twin-screw extruder at 165℃and screw speed of 40 N/min. When octacalcium phosphate (OCP) fiber weight 25%, the UHMWPE/OCP composite prepared by swell mix extrude through common twin-screw extruder have more excellent mechanical performance, and this composite can induce bone-like apatite layer generate at its surface. There will be many polar functional groups on the surface of UHMWPE powder after acrylic acid modification, which attracted Ca2+ and CO32- ions to grow nano-CaCO3 particles in-situ for prepare UHMWPE/CaCO3 composite by in-situ chemical synthesis. The as-prepared composite exhibited an improved tensile strength and heat distortion temperature compared to mechanical blended composite. When the load rate of CaCO3 is 9.5%, the tensile strength and heat distortion temperature of composite prepared by in-situ chemical synthesis are 43.8MPa and 106℃respectively.
引文
[1]刘英,刘萍,陈成泗等.超高分子量聚乙烯的特性及应用进展[J].国外塑料.2005,23(11):36-40
    [2]陈战,王家序,秦大同.超高分子量聚乙烯基本性能及改性与应用研究[J].润滑与密封,2001,(5):54-56
    [3]刘广建.超高分子量聚乙烯[M].北京:化学工业出版社,2001:10-11
    [4]王文广,田雁晨,吕通建.塑料材料的选用[M].化学工业出版社.2001年2月第一版.
    [5]Kurtz S.M. Chapter 1 A Primer on UHMWPE. In: Kurtz SM, editor. The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement[J]. London: Academic Press, 2004.7
    [6]石安福,龚云表.工程塑料手册[M].上海科学技术出版社.2003.3.
    [7]蒋启柏等.超高分子量聚乙烯复合材料的发展[J].工程塑料应用,2000年,第3期
    [8]尹岩青,刘法谦,陈桂兰等.超高相对分子质量聚乙烯的加工技术[J].现代塑料加工应用.2002,14(5):34-37.
    [9]刘广建.填料对超高分子量聚乙烯的改性及其在矿山的应用[J].现代塑料加工应用.1998,20(4):45-48.
    [10]许中义.超高分子量聚乙烯成型工艺及在化工领域中的应用[J].炼油与化工.2004,15(1):8-10.
    [11]何继敏,薛平,何亚东等.超高分子量聚乙烯单螺杆挤出的输送机理研究[J].高分子材料科学与工程.2001,17(1):72-74.
    [12]叶素娟,黄承亚,禹权.超高分子量聚乙烯的成型工艺及改性研究进展[J].合成材料老化与应用.2006,35(2):43-49.
    [13]Smith P., Chanzy H.D., Rotzinger B.P.. Drawing of virgin ultrahigh-molecular-weight polyethylene: an alternative route to high strength fibers[J]. Polymer Communications, 1985, 26(9): 258-260.
    [14]Kanamoto T., Ohama T., Tanaka K., etal. Two-stage drawing of ultra-high molecular weight polyethylene reactor powder [J]. Polymer, 1987, 28(9): 1517-1520.
    [15]Gregory D.J.M., Pawlikowski T., Porter Roger S.. Coextrusion drawing of reactor powder of ultrahigh molecular weight polyethylene [J]. Journal of Polymer Science Part B: Polymer Physics, 1988, 26(9): 1865-1870.
    [16]王庆昭,廖先玲.超高分子量聚乙烯管材的单螺杆挤出工艺[J].工程塑料应用,1997,25(3):17
    [17]蒋启柏.UHMWPE复合材料的结构性能与挤出过程的研究[D].北京化工大学硕士学位论文.1997.
    [18]刘功德.超高分子量聚乙烯的加工与高性能化研究[D].博士学位论文.2003
    [19]于妍,张长春,李世辉等.超声场致作用对UHMWPE流变及拉伸性能的影响[J].高分子材料科学与工程.2004,20(6):117-119.
    [20]李晓颖.超高分子量聚乙烯的超声熔融挤出成型研究[D].中北大学博士学位论文.2006.
    [21]Liang R H, Mackley M R. The Gas-Assisted Extrusion of Molten Polyethylene[J]. Journal of Rheology.2001,45(1):211-226.
    [22]孙阳,黄锐坤,刘廷华.UHMWPE气辅挤出成型模具的设计开发[J].模具工业.2006,32(2):49-52.
    [23]金日光,汪晓东,武德珍等.超高分子量聚乙烯增强聚丙烯共混体系的力学性能、亚微相态和增韧机理的研究进展[J].高分子通报.2005.(4):100-109.
    [24]黄学祥,韩勇,严为群.UHMWPE的近熔点挤出技术及制品性能与应用[J].工程塑料应用.2006,34(11):45-49.
    [25]明艳,贾润礼.超高分子量聚乙烯成型加工及改性[J].合成树脂及塑料,2002,19(4):68
    [26]徐定宇,李跃进,刘长维.UHMWPE的流动改性[J].高分子材料科学与工程,1992,12(1):68
    [27]刘玉凤,庄苏等.超高分子量聚乙烯的高压高速注射成型工艺研究[J].塑料,1991,20(5):16
    [28]何继敏,陈卫红,丁玉梅.超高分子量聚乙烯注射成型技术的研制及应用[J].塑料.2000,6(29):18-22.
    [29]Kanamoto T, Porter RS. In: Kleintjens LA, Lemstra PJ, editors. Integration of fundamental polymer science and technology[C], vol. 3. London and New York: Elsevier Applied Science; 1989.
    [30]Kanamoto T, Porter R.S. A review on the tensile strength of polyethylene fibers[J]. Polymer Engineering and Science., 1994, 34(4):266-268
    [31]刘海, et al.,凝胶纺丝法制备超高分子量聚乙烯纤维延伸性能的研究[J].胶体与聚合物, 2008. 26(1).
    [32]陈成泗,胡开波,陈建锋等.大成高强聚乙烯纤维的产业化及其复合材料研究[J].化工新型材料,2006,34(12):5-6
    [33]尹延国,朱元吉.润滑挤出成型技术[J].现代塑料加工应用.1996,8(2):37
    [34]孙振国,薛平,蒋启柏等.超高分子量聚乙烯的改性[J].化学建材.2000(8):4-7
    [35]白木武,等.超高分子量聚乙烯共聚物[P].JP昭60240748,1985.
    [36]刘法谦,李荣勋,等.超高分子量聚乙烯流动改性进展[J].塑料,2002,6(31)
    [37]Scheetzetal. [P]. USP4,281,070.1981.
    [38]Mirabella, F. M., Ford, E. A.. Characterization of linear low-density polyethylene-cross-fractionation according to copolymer composition and molecular-weight[J]. Journal of polymer science part B, 1987,25(4):777-790.
    [39]薛俊.填料改性超高分子量聚乙烯复合材料的研制及其磨擦学行为研究[D].硕士学位论文.2002.
    [40]袁辉,刘廷华,刘云湘等.流动改性剂对UHMWPE流动及磨损性能的影响研究[J].工程塑料应用,2004,32(5):21
    [41]唐黎明,齐东超,邱义鹏等.超支化聚(酯酰胺)改善超高分子量聚乙烯的流动机理[J].清华大学学报(自然科学版).2006,46(6):833-835.
    [42]谢美菊,刘小龙,刘功德等.PEG及其复合加工助剂对UHMWPE/PP共混物流变性能的影响[J].高分子材料科学与工程.2005,21(1):210-213.
    [43]李跃进.超高分子量聚乙烯(UHMWPE)共混物的加工、流变、形态及力学性能的研究[D].北京化工学院硕士论文,1991.
    [44]P Vadhar ,Theinkyu. Effects of mixing on morphology ,theology and mechanical properties of blends of ultrahigh molecular weight polyethylene with linear low density polyethylene[J] . Polym Eng Sci ,1987,27(3):202-210.
    [45]励杭泉,汪晓东,金日光等.PP/UHMWPE合金的亚微相态与流变性质[J].高分子材料科学与工程.1994(1):113-117.
    [46]李炳海,陈勇,段凯生等.UHMWPE/HDPE共混物的流动性及力学性能的研究[J].塑料工业,2003,31(9):9.
    [47]赵安赤,陈民,王映强.超高分子量聚乙烯加工的高新技术[J].塑料科技.1997(6)
    [48]孙振国,薛平,蒋启柏等.超高分子量聚乙烯的改性[J].化学建材.2000(8):4-7.
    [49]尹德荟,李炳海,赵光发等.润滑剂改性UHMWPE加工性能的研究[J].塑料.2000(1)
    [50]雷华,胡平,周明波.超高分子量聚乙烯流动改性剂研究进展[J].现代塑料加工应用.1998(4):50-52.
    [51]张炜,张玉梅,汪九山等.UHMWPE/流动改性剂共混物的流动性能与冲击性能研究[J].工程塑料应用.2004,32(6):14-16
    [52]Joris F Herten, Bernard D Louies. Composition and method to process polymers including ultra high molecular weight polyethylene[P]. USP: 4853 427.1989.
    [53]原添博文,山中隆志.超高分子量聚乙烯改性物的制造方法[P].JP平:1-272603,1989.
    [54]王庆昭.UHMWPE/蒙脱土纳米复合材料结构与流动性的关系[J].工程塑料应用.2003,31(10):46-49.
    [55]王新,王许云,吴其晔等.超高分子量聚乙烯复合材料的流变行为[J].复合材料学报.2004,21(1):124-127.
    [56]周彦豪.聚合物加工流变学基础[M].西安:西安交通大学出版社.1988.
    [57]Ferry, J. D.. Viscoelastic Properties of Polymers[M], 3rd ed.1980.
    [58]Doi, M., Edwards, S. F.. The Theory of Polymer Dynamics[M].1986.
    [59]Gao, P., M.R. Mackley, Effect of presolvent loading on the ultimate drawability of ultrahigh-molecular-weight polyethylene[J]. Polymer, 1991. 32(17):3136-3139.
    [60]Yang, M.C., W.C. Chen, Viscous behavior of ultrahigh molecular weight polyethylene solution[J]. Journal of Applied Polymer Science, 1997. 65(2): 89-293.
    [61]Larson, R.G., et al., Definitions of entanglement spacing and time constants in the tube model[J]. J. Rheol. (N. Y., NY, U. S.), 2003. 47(3):809-818.
    [62]Smith, P., P.J. Lemstra, Ultra-drawing of high molecular weight polyethylene cast from solution[J]. Colloid Polym. Sci., 1980. 258(7):891-894.
    [63]Kalb, B., A.J. Pennings, Hot drawing of porous high molecular weight polyethylene[J]. Polymer, 1980. 21(1):3-4.
    [64]Kavesh, S., D.C. Prevorsek, Ultrahigh-strength, high-modulus polyethylene Spectra fibers and composites[J]. Int. J. Polym. Mater., 1995. 30(1-2):15-56.
    [65]Jen, H. K., Chen, W. L., Chang,Y.M.. etal. Gelation behaviour of UHMWPE/Camphene[J]. Journal of materials science, 1997,32(13):3607-3611.
    [66] Wang, X. Y., Salovey, R.. Melting of ultrahigh molecular weight polyethylene[J]. Journal of Applied Polymer Science, 1987,34(2):593-599. [67]Chung, B., A.E. Zachariades, Viscoelastic behavior of ultrahigh-molecular-weight polyethylene pseudogels[J]. ACS Symp. Ser., 1987. 350(Reversible Polym. Gels Relat. Syst.):22-32.
    [68]Jen, H.K., et al., Gelation behaviour of UHMWPE/camphene[J]. JOURNAL OF MATERIALS SCIENCE, 1997. 32(13):3607-3611.
    [69]Jian, T., et al., Spinning and drawing properties of ultrahigh-molecular-weightpolyethylene fibers prepared at varying concentrations and temperatures[J]. Polym. Eng. Sci., 2003. 43(11):1765-1777.
    [70]Chiu, H., J. Wang, Characterization of the rheological behavior of UHMWPE gels using parallel plate rheometry[J]. J. Appl. Polym. Sci., 1998. 70(5):1009-1016.
    [71]Chiu, H., J. Wang, Characterization of UHMWPE sol-gel transition by parallel plate rheometer and pulsed NMR[J]. Polymer, 1999. 40(24):6859-6864.
    [72]Ohta, Y., et al., Non-Newtonian rheological behavior of semi-dilute ultra-high molecular weight polyethylene solution in gel-spinning process. Part 1. Concentration effect on the fundamental rheological properties[J]. Polym. Eng. Sci., 2000. 40(11):2414-2422.
    [73]Zhang, A., et al., Rheological behavior of ultrahigh-molecular-weight polyethylene semidilute solutions. I. Solvent effect[J]. J. Appl. Polym. Sci., 1989. 38(7):1369-1375.
    [74]Vega, J.F., et al., Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt[J]. Journal of Rheology, 2004. 48(3):663-678.
    [75]Mierczynska, A., et al., Segregated network polymer/carbon nanotubes composites[J]. Central European Journal of Chemistry, 2004. 2(2):363-370.
    [76]Lisunova, M.O., et al., Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites[J]. European Polymer Journal, 2007. 43(3):949-958.
    [77]Bin, Y.Z., et al., Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions[J]. Macromolecules, 2003. 36(16):6213-6219.
    [78]Chen, Q.Y., Y.Z. Bin, and M. Matsuo, Characteristics of ethylene-methyl methacrylate copolymer and ultrahigh molecular weight polyethylene composite filled with multiwall carbon nanotubes prepared by gelation/crystallization from solutions[J]. Macromolecules, 2006. 39(19):6528-6536.
    [79]Xue, Y., et al., Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes[J]. Polymer Testing, 2006. 25(2):221-229.
    [80]Wei, Z., et al., A study of the tribological behavior of carbon-nanotube-reinforced ultrahigh molecular weight polyethylene composites[J]. Surface and Interface Analysis, 2006. 38(4):883-886.
    [81]Zoo, Y.S., et al., Effect of carbon nanotube addition on tribological behavior of UHMWPE[J]. Tribology Letters, 2004. 16(4):305-309.
    [82]Xiong, D.S., Friction and wear properties of UHMWPE composites reinforced with carbon fiber[J]. Materials Letters, 2005. 59(2-3):175-179.
    [83]Saha, D., et al., Production and biocompatibility evaluation of carbon fiber reinforced polyethylene composite for acetabular cup[J]. Science and Engineering of Composite Materials, 2007. 14(1):47-55.
    [84]Chen, X.M., et al., In-situ X-ray scattering studies of a unique toughening mechanism in surface-modified carbon nanofiber/UHMWPE nanocomposite films[J]. Macromolecules, 2005. 38(9):3883-3893.
    [85]Clark, A.C., S.P. Ho, and M. LaBerge, Conductive composite of UHMWPE and CB as a dynamic contact analysis sensor[J]. Tribology International, 2006. 39(11):1327-1335.
    [86]Samyn, P., et al., Large-scale tests on friction and wear of engineering polymers for material selection in highly loaded sliding systems[J]. Materials & Design, 2006. 27(7):535-555.
    [87]Yu, J.R., et al., Preparation and studies on the structure and properties of ultrahigh molecular weight polyethylene/nano-SiO2 composite febers[J]. Acta Polymerica Sinica, 2005(5):764-768.
    [88]Tang, C.Y., et al., Nanotribological properties of UHMWPE/quartz composites, in Current Research in Advanced Materials and Processes[J]. 2005, Trans Tech Publications Ltd: Zurich-Uetikon.469-474.
    [89]Gong, G.F., H.Y. Yang, and X. Fu, Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding[J]. Wear, 2004. 256(1-2):88-94.
    [90]Ki, N., et al., Effect of mixing process on the wear properties of UHMWPE/kaolin composite[J]. Polymer-Korea, 2002. 26(6):803-811.
    [91]Wang, X., Q.Y. Wu, and Z.N. Qi, Unusual rheology behaviour of ultra high molecular weight polyethylene/kaolin composites prepared via polymerization-filling[J]. Polymer International, 2003. 52(7):1078-1082.
    [92]Wu, Q.Y., et al., Unusual rheological behaviors of linear PE and PE/kaolin composite. Journal of Applied Polymer Science[J], 2001. 80(12):2154-2161.
    [93]Shapovalov, V.V., et al., Nanocrystals of montmorillonite in composites of ultrahigh-molecular weight polyethylene[J]. Molecular Crystals and Liquid Crystals, 2005. 427:513-518.
    [94]Saha, D., et al., Analysis and characterization of alumina particles reinforced ultra high molecular weight polyethylene composite for acetabular cup[J]. International Journal of Artificial Organs, 2007. 30(2):144-152.
    [95]Park, H.J., S.Y. Kwak, and S. Kwak, Wear-resistant ultra high molecular weight polyethylene/zirconia composites prepared by in situ Ziegler-Natta polymerization[J].Macromolecular Chemistry and Physics, 2005. 206(9):945-950.
    [96]Piconi, C. and G. Maccauro, Zirconia as a ceramic biomaterial[J]. Biomaterials, 1999. 20(1):1-25.
    [97]Tong, J., et al., Free abrasive wear behavior of UHMWPE composites filled with wollastonite fibers[J]. Composites Part a-Applied Science and Manufacturing, 2006. 37(1):38-45.
    [98]Lee, M.H., et al., Wear behaviors of UHMWPE against LTD-free zirconia/alumina composites[C], in Bioceramics 17. 2005, Trans Tech Publications Ltd: Zurich-Uetikon.1011-1014.
    [99]Hashimoto, M., et al., Titanium dioxide/ultra high molecular weight polyethylene composite for bone-repairing applications: Preparation and biocompatibility[C], in Bioceramics 15. 2003, Trans Tech Publications Ltd: Zurich-Uetikon.415-418.
    [100]Takadama, H., et al., Mechanical property of bioactive polyethylene-titania composite prepared by hot pressing[C], in Bioceramics 15. 2003, Trans Tech Publications Ltd: Zurich-Uetikon.951-954.
    [101]Fang, L. M. Leng, Y. Gao, P. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications[J]. Biomaterials. 2005,26(17):3471-3478.
    [102]Zhou, J.S. and F.Y. Yan, Effect of polyethylene-graft-maleic anhydride as a compatibilizer on the mechanical and tribological behaviors of ultrahigh-molecular-weight polyethylene/copper composites[J]. Journal of Applied Polymer Science, 2004. 93(2):948-955.
    [103]Krezhov, K., K. Velitchkova, and S. Balabanov, Transport properties of selenium implanted polymer composites[J]. Vacuum, 2002. 69(1-3):113-118.
    [104]Anderson, B.C., et al., Al-Cu-Fe quasicrystal/ultra-high molecular weight polyethylene composites as biomaterials for acetabular cup prosthetics[J]. Biomaterials, 2002. 23(8):1761-1768.
    [105]Torregrosa, F., L. Barrallier, and L. Roux, Phase-Analysis, Microhardness and Tribological Behavior of Ti-6al-4v after Ion-Implantation of Nitrogen in Connection with Its Application for Hip-Joint Prosthesis[J]. Thin Solid Films, 1995. 266(2):245-253.
    [106]Park, H.S., et al., Ultra-drawing of gel films of ultra high molecular weight polyethylene/low molecular weight polymer blends containing BaTiO3 nanoparticles[J]. Macromolecular Research, 2006. 14(4):430-437.
    [107]Rein, D.M., L. Vaykhansky, and Y. Cohen, Towards advanced circuit board materials:Adhesion of copper foil to ultra-high molecular weight polyethylene composite[J]. Polymers for Advanced Technologies, 2002. 13(6):428-435.
    [108]Li, J., et al., Tribological characteristics of UHMWPE composite and relationship with its compressive behavior[J]. Science in China Series G-Physics Mechanics & Astronomy, 2004. 47:79-87.
    [109]Grinev, V.G., et al., Dielectric and mechanical properties of heat-conducting polymerization-filled composite materials based on polyolefins and aluminum[J]. Polymer Science Series A, 2004. 46(6):645-650.
    [110]Balabanov, S., K. Velitchkova, and K. Krezhov, Photoluminescence of carbon-implanted ultra-high molecular weight polyethylene composite and its modification by gamma irradiation[J]. Vacuum, 2002. 69(1-3):107-112.
    [111]Zamfirova, G., J. Jeliazkov, and E. Nedkov, mechanical and morphological investigations of UHMWPE/PE composites[J]. Colloid and Polymer Science, 1991. 269(2):105-111.
    [112]Aydinli, B., L. Toppare, and T. Tincer, A conducting composite of polypyrrole with ultrahigh molecular weight polyethylene foam[J]. Journal of Applied Polymer Science, 1999. 72(14):1843-1850.
    [113]Deng, M. and S.W. Shalaby, Properties of self-reinforced ultra-high-molecular-weight polyethylene composites[J]. Biomaterials, 1997. 18(9):645-655.
    [114]Khorasani, M.T., M. Zaghiyan, and H. Mirzadeh, Ultra high molecular weight polyethylene and polydimethylsiloxane blend as acetabular cup material[J]. Colloids and Surfaces B-Biointerfaces, 2005. 41(2-3):169-174.
    [115]Valenciano, G.R., A.E. Job, and L.H.C. Mattoso, Improved conductivity of films of ultra high molecular weight polyethylene and polyaniline blends prepared from an m-cresol/decaline mixture[J]. Polymer, 2000. 41(12):4757-4760.
    [116]Hofste, J.M., et al., Short aramid-fiber reinforced ultra-high molecular weight polyethylene[J]. Polymer Bulletin, 1996. 36(2):213-220.
    [117]Zhou, J.S. and F.Y. Yan, Improvement of the tribological behavior of ultra-high-molecular-weight polyethylene by incorporation of poly (phenyl p-hydroxyzoate)[J]. Journal of Applied Polymer Science, 2005. 96(6):2336-2343.
    [118]Zhou, J.S. and F.Y. Yan, Mechanical and tribological behavior of compatibilized ultra-high-molecular-weight polyethylene/liquid crystalline polymer composites[J]. Polymer Testing, 2004. 23(7):827-833.
    [119]Mascia, L. and M. Kinsella, Thermoplastics composites with ductile fiber coatings basedon UHMWPE - a study on short fiber GR nylon-6[J]. Polymer Composites, 1993. 14(2):94-100.
    [120]Byett, J.H. and C. Allen, Dry Sliding Wear Behavior of Polyamide-66 and Polycarbonate Composites[J]. Tribology International, 1992. 25(4):237-246.
    [121]Silverstein, M.S. and J. Breitner, A Polytetrafluoroethylene Filled Ultra-High-Molecular-Weight Polyethylene Composite - Mechanical and Wear Property Relationships[J]. Polymer Engineering and Science, 1995. 35(22):1785-1794.
    [122]许元泽.高分子结构流变学[M].成都:四川教育出版社,1988,125
    [123]Fang, L. M. Leng, Y. Gao, P. Processing and mechanical properties of HA/UHMWPE nanocomposites[J]. Biomaterials. 2006,27(20):3701-3707.
    [124]de Gennes, P.G.. Scaling Concepts in Polymer Physics[M]. Cornell University Press,1979
    [125]Krivoglaz, M. A., Moss, S. C..Theory of X-ray and thermal-neutron scattering by real crystals[J]. osti.gov.
    [126]Ballard, D., Longman, G. W., Crowley, T. L..et.al. Neutron scattering studies of semicrystalline polymers in the solid state: The structure of isotropic polyolefins[J].Eur. Polymer J., 1973,9:965-970.
    [127]Kirste, R. G., Kruse, K.. Determination of the conformation of polymers in the amorphrphous solid state and in concentrated solution by neutron diffraction[J]. Polymer, 1975,(16):120-125.
    [128] Boue, F., Daoud, M., Nierlich, M.. et.al. A convenient neutron scattering method for studying monomer correlations in homopolymer melts[J]. Neutron Inelastic Scattering, 1977,(1):563-568.
    [129]Intern, Atomic Energy Agency[], Vienna, 1978
    [130]Fetters, L. J., Lohse, D.J.,Graessely,W.W.. etal. Packing length influence in linear polymer melts on the entangment, cirtical and reptation molecular weights[J]. Marcromolecular, 1999 ACS Publications.
    [131]Van Krevelen, D.W.,聚合物的性质[M].北京:科学出版社,1981, 255
    [132]Lodge, A. S., Elastic Liquids[M]. Acad.Press, New York,1964
    [133]Thien, N.P., Tanner, R.I. A new constitutive equation derived from network theory[J]. Journal of non-newtonian Fluid Mechanics, 1977
    [134]Bird, R. B.et.al. Use of simple molecular models in the study of the mechanical behavior of solutions of flexible macromolecules[J]. Journal of Non-Newtonian Fluid Mechanics.1979:2
    [135]Treloar,L.R.G..,橡胶弹性物理学(第三版),化学工业出版社, 1982
    [136] Edwards, S.F., Proc.Phys.Soc.Lon., 1967,9:92-95.
    [137]Liu, C., et al., Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight[J]. Polymer, 2006. 47(13):4461-4479.
    [138]贾广霞,安树林,张宇峰,等.超高分子量聚乙烯溶液稳定性的探讨[J].天津纺织科技,1992(2):21-23.
    [139]De Gennes P. G... Dynamics of entangled polymer solutions. I. The Rouse mode l[J]. Macromolecules, 1976, 9: 587-598.
    [140]Zachariades A. E. Viscoelastic Behavior of Ultra High Molecular Weight Polyethylene Pseudogels [J]. Journal of Applied Polymer Science, 1988, 35: 1265-1281.
    [141]庞文明,吴伟泰,王雨松等.超高分子量聚乙烯在溶液中的链缠结雨粘度的关系[J].高分子材料科学与工程, 2005, 21: 122-124.
    [142]Fan Zhongyong, Wang Yiren, Ni Na, et al. Melting behavior and morphology of freeze-dried ultra-high molarmass polyethylene[J]. J Macromole Sci Part B-Phys,2003,42(1):127-137.
    [143]H.T.Chiu, J.H.Wang. Characterization of UHMWPE sol-gel transition by parallel plate rheometer and pulsed NMR[J]. Pplymer,1999,40:6859-6864.
    [144]Hoffman J D, Miller R L. Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: Theory and experiment[J]. Polymer, 1997, 38(13): 3151-3212.
    [145]乐征宇,于瀛,范仲勇.超高分子量聚乙烯的稀溶液结晶与形态[J].复旦学报(自然科学版),2004,43(4):663-667.
    [146]刘红斌,任延,王宇新,等.动态凝胶网络中的溶质扩散[J].物理化学学报(Acta Physico-chimica Sinica).1999,15(3):210-215.
    [147]Crank J.. The Mathematics of Diffusion[R], Oxford: Clarendon Press, 1975.
    [148]雷华.聚合物系反常扩散想象及扩散过程可视化研究[D].杭州:浙江大学化工系,2002.
    [149]Reinecke N., Petritsch G., Schmitz D., et al. Tomographic measurement techniques-visualization of multiphase flows[J]. Chem. Eng. Technol., 1998(21):7-18.
    [150]Gao P., Mackley M. R.. A general model for the diffusion and swelling of polymers and its application to ultra high molecular mass polyethylene[J]. Mathematical and PhysicalSciences, 1994, 444 (1921):267-285.
    [151]王一任,范仲勇,于瀛等.初生态超高分子量聚乙烯凝聚态研究[J].复旦学报(自然科学版),2003,41(4):365-369.
    [152]K. Nizomiya and J. D. Ferry, J. Polym. Sci., PartA-2, 5, 195 (1967).
    [153]王佳.扫描频率对UHMWPP/UHMWPE冻胶体系动态流变行为的影响[J].合成技术及应用, 2008,23(2).34-39.
    [154]Liu C. Y., He J. S., Evelyne van R., etal. Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight[J]. Polymer, 2006,47:4461-4479.
    [155]周持兴.聚合物流变实验与应用[M]. 2003,上海:上海交通大学出版社. 58-60.
    [156]Vega.J.F., Rastogi S., Peters G. W. M., etal. Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt[J]. The society of rheology, 2004,48(3):663-678
    [157]Fan Zhongyong, Wang Yiren, Bu Haishan. Influence of inttermolecular entanglements on crystallization behavior of ultra-high molarmass polyethylene[J]. Polymer engineering and science,2003,43(3):608-115.
    [158]吴其晔.高分子凝聚态物理及其进展[M].上海:华东理工大学出版社,2006.
    [159]Keller A., Cheng S.Z.D.. The role of metastability in polymer phase transitions [J]. Polymer, 1998, 39(19): 4461-4487.
    [160]Cheng S.Z.D., Keller A.. The Role of Metastable States in Polymer Phase Transitions: Concepts, Principles, and Experimental Observations [J]. Annual Review of Materials Science, 1998, 28(1): 533-562.
    [161]Bassett D C, Turner B. ON The Phenomenology of Chain-extended Crystallization in Polyethylene[J].Phil Mag, 1974, 29: 925-955.
    [162]Wunderlich B, Melillo L. Morphology and growth of extended chain crystals of polyethylene[J]. Makromol Chem. 1968, 118: 250-264.
    [163]Bassett D C, Black S, Pierrmarini G. A high-pressure phase of polyethylene and chain-extended growth[J]. J. Appi. Phys, 1974, 45: 4146-4150.
    [164]Hikosaka M, Rastogi S, Keller A, Kawabata H. Investigations on the crystallization of polyethylene under high pressure: Role of mobile phases, lamellar thickening growth, phase transformations, and morphology[J].Macromol Sci Phys, 1992, B31: 87.
    [165]Rastogi S, Hikosaka M, Kawabata H, Keller A. Role of mobile phases in the crystallization of polyethylene. Part 1. Metastability and lateral growth[J].Macromolecules, 1991, 24: 6384-6391.
    [166]Bassett, D. C., Khalifa, A., Turner, B. Nature (London), 1972, 106
    [167]Hikosaka M. Unified theory of nucleation of folded-chain crystals and extended-chain crystals of linear-chain polymers[J]. Polymer, 1990, 31: 458
    [168]Hikosaka M, Okada H, Toda A, Rastogi S, Keller A. Dependence of the lamellar thickness of an extended-chain single crystal of polyethylene on the degree of supercooling and the pressure[J]. Chem Soc, Faraday Discuss, 1995, 31: 2573-2579
    [169]Bassett, D. C., Khalifa, A., Turner, B. Nature (London), 1972, 240:146
    [170]Rastogi S.. Chain Mobility in Polymer Systems: On the Borderline between Solid and Melt. 2. Crystal Size Influence in Phase Transition and Sintering of Ultrahigh Molecular Weight Polyethylene via the Mobile Hexagonal Phase[J]. Macromolecules, 1998, 31(15): 5022-5031
    [171]Waddon A.K. A. J.. A temperature window of extrudability and reduced flow resistance in high-molecular weight polyethylene; interpretation in terms of flow-induced mobile hexagonal phase [J]. Journal of Polymer Science Part B: Polymer Physics, 1990, 28(7): 1063-1073.
    [172]Waddon A.K. A. J.. The temperature window of minimum flow resistance in melt flow of polyethylene. Further studies on the effect of strain rate and branching [J]. Journal of Polymer Science Part B: Polymer Physics, 1992, 30(8): 923-929.
    [173]Narh K.A., Keller A.. Phase transition in high molecular weight polyethylene during capillary extrusion: the reversibility of the temperature window [J]. Polymer, 1991, 32(14): 2512-2518.
    [174]Narh KA, Keller A. Differences in melt extrusion behaviour between ultra-high-molecular-weight polyethylene powder and a dried gel[J]. Mater. Sci. Lett. 1991, 10(22): 1301-1303.
    [175]Kolnaar J.W.H., Keller A.. A singularity in the melt flow of polyethylene with wider implications for polymer melt flow rheology [J]. Journal of Non-Newtonian Fluid Mechanics, 1997, 69(1): 71-98.
    [176]Kolnaar J.W.H., Keller A.. A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology: 1. The basic effect and principal parameters [J]. Polymer, 1994, 35(18): 3863-3874.
    [177]Kolnaar J.W.H., Keller A. A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology. 3. Implication for flow instabilities and extrudate distortion[J]. Polymer, 1997, 38(8):1817-1833.
    [178]Kolnaar J.W.H., Keller A. A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology. 2. Rheological investigation in the extrusion window[J]. Polymer, 1995, 36(4):821-836.
    [179]Kolnaar J.W.H., Keller A. A singularity in the melt flow of polyethylene with wider implications for polymer melt flow rheology[J]. Non-Newton Fluid Mech, 1996, Nov, 67:213-240
    [180]Rastogi S, Terry AE. Morphological implications of the interphase bridging crystalline and amorphous regions in semi-crystalline polymers. in Interphases and mesophases in polymer crystallization[J]. Berlin: Springer-Verlag, 2005, 180: 161-194
    [181]Cheng SZD. Materials science: Polymer crystals downsized[M]. Nature, 2007, 448(7157):1006-1007
    [182]Keller A, Cheng SZD. The role of metastability in polymer phase transitions[J]. Polymer, 1998 Sep, 39(19):4461-4487
    [183]Narh KA, Keller A. Differences in melt extrusion behaviour between ultra-high-molecular weight polyethylene powder and a dried gel[J]. Mater Sci Lett, 1991 Nov, 10(22):1301-1303
    [184]Rastogi S, Kurelec L, Lemstra PJ. Chain mobility in polymer systems: On the borderline between solid and melt. 2. Crystal size influence in phase transition and sintering of ultrahigh molecular weight polyethylene via the mobile hexagonal phase[J]. Macromolecules, 1998 Jul, 31(15):5022-5031
    [185]晓媛,王港,黄锐.毛细管中聚合物熔体不稳定流动的研究进展[J].工程塑料应用,2003,31(3):58-61
    [186]Suchanek W, Yaashima M, Kakihana M, et al Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: Mechanical properties and microstructural evolution[J]. J. Am. Chem. Soc. 1997, 80(11):2805-2813.
    [187]Thomson R C, Yaszemski M J, Powers J M, et al Fabrication of biodegradable polymer scaffolds to engineer trabecular bone[J]. Journal of biomaterials science-polymer edition, 1995, 7(1):23-38.
    [188]Kamakura S, Sasano Y, Shimizu T, et al Implanted octacalcium phosphate is more resorbable than b- tricalcium phosphate and hydroxyapatite[J]. J Biomed Mater Res,2002, 59: 29-34.
    [189]Habibovic P, van der Valk C M, van Blitterswijk C A, et al Influence of octacalcium phosphate coating on osteoinductive properties of biomaterials[J]. J Mater Sci Ma terMed, 2004, 15: 373-380.
    [190]Barrere F, van derValk C M, Dalmeijer R A, et al Osteogenecity of octacalcium phosphate coatings app lied on porous metal implants[J]. J Biomed Mater Res, 2003,66A: 779-788.
    [191]Aizawaa M, Porter A E, Bestb S M, et al Ultrastructural observation of single-crystal apatite fibers[J]. Biomaterials, 2005, 26: 3427-3433.
    [192]Aizawaa M, Patel N, Porte A E, et al Syntheses of silicon-containing apatite fibers by a homogeneous precipitation method and their characterization [J]. Key Engineering Materials, 2006, 309-311:1129-1132.
    [193]Aizawaa M, Ueno H, Itatani K, et al Syntheses of calcium-deficient apatite fibers by a homogeneous precipitation method and their characterization [J].Journal of the European Ceramic Society, 2006, 26:501-507.
    [194]Neira I S, Kolen'ko Y V, Lebedev O I, et al An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis [J]. Crystal Growth & Design. 2009,9(1): 466-474.
    [195]王英波,鲁雄,汪建新,等纤维状磷酸八钙单晶体的合成方法及形成机理[J].功能材料与器件学报, 2007,13(5):409-414.
    [196]Elliott J C. Structure and chemistry of the apatite and other calcium orthophosphates. [J] Amsterdam: Elsevier, 1994.
    [197]Kokubo T, Kushitani H, Sakka S, et al. Solutions able toreproduce in vivo surface-structure changes in bioactive glass-ceramic[J]. Biomed Mater Res, 1990,(24): 721–734.
    [198]王秀红,卢晓英,姜法兴等.生物陶瓷及其复合材料表面诱导类骨磷灰石层形成的研究[J].功能材料.2008,39(4):647-650-112.
    [199]成亮,钱春.生物矿化碳酸钙机理研究进展[J].硅酸盐通报.2006,25(6):108-112.
    [200]笪有仙,孙慕瑾.增强材料的表面处理(一)[J].玻璃钢/复合材料,1999,(5):23-28.
    [201]Lee K.W., McCarthy T.J.. Synthesis of a polymer surface containing covalently attached triethoxysilane functionality: adhesion to glass [J]. Macromolecules, 1988,21:2318-2324.
    [202]Franchina N.L., McCarthy T.J.. Surface modifications of poly (ether ether ketone) [J]. Macromolecules. 1191, 24:3045-3049.
    [203]Bandopadhay D., Panda A.B., Pramanik. Impact of the first SNO results on neutrino mass and mixing[J]. J. Appl. Polym. Sci.. 2001,82:406-411.
    [204]王珍萍,黄苏萍,周科朝.原位矿化法制备羟基磷灰石/高密度聚乙烯复合材料[J].粉末冶金材料科学与工程.2006,11(6):363-366.
    [205]陶瓷用化工原料详解[J].江苏陶瓷,1999,32(1):39-42.
    [206]Lochhead M J,Letellier S R,Vogel V. Assessing the role of interfacial electrostatics in oriented mineral nucleation at charged monolayers[J]. Journal of Physical Chemistry B,1997,101(50):10821-10827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700