聚合物叶片挤出机熔体正位移输送和混合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料成型加工是高能耗过程作业,目前普遍采用螺杆机械,如螺杆挤出机、螺杆注射机等,在螺杆机械中物料塑化输运主要是靠螺杆旋转时对物料的拖曳作用,固体输送为摩擦拖曳,熔体输送为粘性拖曳,物料的速度梯度与其流动和变形方向垂直,这种流动与变形受剪切应力支配,所以当前的高分子材料加工方法普遍存在物料塑化输运所经历的热机械历程长、能耗高、设备结构大、对物料特性依赖性强等缺陷。华南理工大学瞿金平教授创造性发明了拉伸流变控制的高分子材料塑化输运方法及设备(叶片挤出理论设备),使得物料在塑化输送过程中受拉伸应力支配,尝试从塑化输运机理上解决当前高分子材料成型加工过程中物料经历的热机械历程长、能耗高的问题。这一独特的加工方法深刻地影响了聚合物塑化挤出过程,使得聚合物的加工应用和理论都发生了巨大的变化。因此从理论和实验上深刻地揭示这种改变对聚合物产生的影响就具有重要的科学意义和现实意义。
     本文对基于拉伸流变的聚合物塑化输运设备和方法进行了原理分析,对聚合物熔体在叶片单元中的塑化输运过程进行了深入的分析讨论,首次提出了聚合物熔体在叶片挤出机输送过程相应的物理模型和数学模型,得出了叶片挤出机中熔体周向和轴向速度分布、压力分布、应力分布,分析聚合物在拉伸场支配的多物理场耦合作用下塑化输运过程参数与工艺条件、结构参数、材料特性参数之间的定量关系;首次对叶片塑化挤出过程中拉伸场的存在进行了定量描述,证实了聚合物熔体在叶片挤出机中的塑化输运过程受拉伸流变支配。并根据流场分析,讨论了周期性正应力场和拉伸场对聚合物微观结构、分子运动的影响,指出叶片挤出机中存在的拉伸流场和周期性正应力场对聚合物塑化输运能起到节能高效的效果。
     同时本文对叶片挤出机输送能力和制品测试进行了大量的实验研究。分别利用转子直径为? 40、长径比为10的叶片挤出机和螺杆直径为? 45,长径比为20的传统单螺杆挤出机进行HDPE、LDPE和PP输送特性实验研究,同时对叶片挤出和螺杆挤出LDPE、PP以及LDPE/纳米CaCO3和PP/纳米CaCO3在相同产量下的制品进行了力学性能、热性能、微观凝聚态结构测试。对叶片挤出设备的生产能力、挤出功耗与螺杆挤出设备进行了比较,同时对于叶片挤出制品与螺杆挤出制品的各项性能也进行了实验比较。
     试验研究表明:聚合物叶片挤出机具有良好的正位移输送特性,在输送物料具有高效、低耗、输送特性“硬”等优点的同时,还能保证挤出制品良好的制品质量。与螺杆挤出相比,叶片挤出机输送效率更高,对模头压力敏感性低,单产功耗更低,节能降耗效果更好;在制品性能测试中发现,与螺杆挤出片材相比,叶片挤出机挤出LDPE、PP以及纳米CaCO3填充LDPE和PP体系片材的力学性能明显好于螺杆挤出片材,并且在制品热性能和微观形态上也有一定改善,同时发现叶片挤出能将获得最佳填充体系力学性能填充比提高2%~3%。
     实验结果与理论推导和理论预测相吻合,证明了本文理论推导的正确性。叶片挤出理论和设备是一种全新的聚合物加工理论和设备,本文提出了叶片挤出熔体输运流变模型,为进一步研究叶片塑化挤出理论打下了良好的基础。这些研究为将来聚合物叶片塑化输运理论及设备的推广提供了重要的理论和实验依据。
Polymer processing is a high-energy process operation, and screw machinery is widespread applied to the polymer processing, such as screw extruders, screw injection molding machine and so on. The screw plasticating and conveying equipments based on shear rheology are generally adopted in polymer processing, in which materiels are dominated by shear stress. Therefore, there are some ubiquity disadvantages of the current methods of polymer materials processing, such as long thermo-mechanical, high energy consumption, too big equipment structure, and dependence on material properties. Jinping Qu, the professor of SCUT has put forward and invented a polymer vane plasticating and conveying method based on elongational rheology which is different from the one of the screw plasticating and conveying and it can make the flow and deformation of polymer dominated by elongational stress field. The method has many advantages over conventional plasticating method, such as shorting thermo-mechanical experience of plasticating and conveying, reducing the energy consumption of plasticating and conveying, and improving adaptability to diverse materials. Therefore, study of the impact on polymer by experiment and theory ways will bring out great science and realistic significance.
     The principle of polymer vane plasticating and conveying method based on elongational rheology was analyzed in this paper. The axial rectangular slot squeezing flow model and circumferential converging wedge channel flow model were established according to the basic structure and working principle of vane unit, and combined with the necessary assumption, the expressions of velocity distribution, pressure distribution, strain distribution of melt in the vane unit were analyzed and discussed. Elongational flow field of vane extruder was expressed quantificationally for the first time, and it proved that melt conveying in vane extruder was controlled by elongation field. Based on the analysis of flow filed, the influence of periodically normal stress field and elongational flow field to microstructure and molecule of polymer under vane extruder procesing were discussed, and affirmed that periodically normal stress field and elongational flow field were the key factors of energy saving and high effect to the transportation and plasticization of polymer.
     As opposed to screw extruder, the transmission capacity and product testing processed by vane extruder were studied through a large number of experiments in this paper. The vane extruder with rotator diameter ? 40 and aspect ratio 10, and the screw extruder with rotator diameter ? 45 and aspect ratio 20 were used to the conveying experimental studies by processing HDPE, LDEP and PP respectively. At the same time, the mechanical properties, thermal properties, micro-structure of the products of LDPE, PP, LDPE/na-no CaCO3, PP/na-no CaCO3 processed by vane extruder and screw extruder were tested.
     Results from theory analysis and experiment revealed that: comparing with screw extruder, vane extruder proved that the device is reliable, efficient with improved production quality and lower energy consuming. The mechanics properties of samples of LDPE, PP processed by vane extruder are better than the samples porceessed by screw extruder, and the thermal properties and micro-structure also improved. For the filling system of LDPE/na-no CaCO3, PP/na-no CaCO3, the samples processed by vane extruder can improve the best mechanics properties of fill ratio to 2%~3% compared with screw extruder samples.
     The comparison of the results coming from the theoretical calculation and the experiment reveals that these theory models are valid and useful. This study will serve as the theory and experiment basis for the optimum conditions of vane extruder design and processing polymer.
引文
[1]许政仓.我国塑料机械制造工业概况及展望[J].工程塑料应用. 2002, 30(7): 51-53.
    [2]吴大鸣,刘颖,李晓林等.精密挤出成型原理及技术[M].北京:化学工业出社, 2004
    [3] Chan I Chung. Plasticating single-screw extrusion theory[J]. Polymer. Eng. Sci., 1971, 11:93-98
    [4] Zhu Fuhua, Chen Liqin. Studies on the theory of single-screw plasticating extrusion[J]. Polymer. Eng. Sci., 1991, 31:1113-1116.
    [5] C.劳温代尔,陈文瑛等译.塑料挤出[M].北京:轻工业出版社, 1996.
    [6]瞿金平.聚合物电磁动态塑化挤出方法及设备.中国专利90101034.0,1990;美国专利5217302,1993;欧洲专利044306B1,1995
    [7]瞿金平.电磁式聚合物动态注射成型方法及装置.中国专利ZL96108387.5,1999;美国专利005951928A,1999;俄罗斯专利2145543,2000;欧洲专利0818298,2000;澳大利亚专利711248,2000
    [8]瞿金平.聚合物动态塑化成型加工理论与技术[M].北京:科学出版社, 2005.
    [9] Qu JP, Cai YH. Experimental Studies and Mathematical Modeling of Melt-Pulsed Conveying in Screw Extruders[J], Polymer-Plastics Technology and Engineering, 2006, Vol.45(No.10):1137-1142
    [10] Qu JP, Zeng GS,FengYH, Jing G, He HZ, Cao XW. Effect of Screw Axial Vibration on Polymer Melting Process in Single-Screw Extruders[J], Journal of Applied Polymer Science,2006,Vol.100(No.5):3860-3876
    [11] Qu JP, Shi BS, Feng YH, He HZ, Dependence of Solids Conveying on Screw Axial Vibration in Single Screw Extruders[J], Journal of Applied Polymer Science,2006,Vol.102(No.3):2998-3007
    [12] Qu JP, Feng YH, He HZ, Jin G, Cao XW. Effects of the Axial Vibration of Screw on Residence Time Distribution in Single-Screw Extruders[J]. Polymer Engineering and Science, 2006, 46(No.2): 198-204
    [13]瞿金平.聚合物塑化挤出新概念[J].华南理工大学学报, 1992, 20(4):1-8
    [14] Serafim Bakalis, Mukund V. Karwe. Velocity distributions and volume flow rates in the nip and translational regions of a co-rotating, self-wiping, twin-screw extruder[J]. Journal of Food Engineering. 2002, Vol.5(4): (273-282).
    [15]刘廷华.双螺杆挤出可视化实验与非充满固体输送及熔融理论研究[D].北京化工大学博士研究生学位论文,1995.
    [16] L.P.B.M.Jassen,耿孝正译.双螺杆挤出[M].北京:轻工业出版社, 1987.
    [17] R.P.Lagendijk, A.H.Hogt, A Buijtenhuijs, A.D.Gotsis. Peroxydicarbonate modific-ation of polypropylene and extensional flow properties[J]. Polymer, 2001, Vol.42(25): 10035-10043
    [18]李笑喃,刘鹏波.聚丙烯熔体拉伸流变行为的研究[J].塑料工业, 2007, 35(3): 45-47
    [19] Sabol, Baird. Morphology in blends of thermotropic liquid crystalline polymer and polypropylene[J]. International Polymer Processing X, 1995,Vol.2: 124-136.
    [20] Luker, Keith. Summary result of a novel single screw compounder[A]. Society of Plastics Engineers Annual Technical Conference: Plastics Encounter at ANTEC 2007, Conference Proceeding v1 2007.
    [21] C.Carrot, J.Guillet, J.F.May, J.P.Puaux. Molding of the conveying of Solid Polymer in the Feeding Zone of Intermeshing Co-rotating Twin Screw Extruder[J]. P.E.S, 1993, 33(11): (572-580)
    [22]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国专利申请号:200810026054.X, 2008
    [23] Tadmor Z., Gogos C. G.聚合物加工原理[M].北京:化学工业出版社, 1990.
    [24] R. F. Westover. Continiuous Flow Ram Type Extruder[J]. Mod. Plast., March 1963
    [25] W. Rose. Fluid-fluid interfaces in steady motion[J]. Nature, 1961,191: 242-243.
    [26] S. Bhattacharji, P. Savic. Real and apparent non-newtonian behavior in viscous pipe flow of suspensions driven by a fluid piston[J]. Proc. Heat Transfer Fluid Mech Inst., 1965(15):248
    [27] I. Williams. Plasticity of rubber and its measurements[J], Ind. Eng. Chem., 1924(16):362-364
    [28] P. J. Leider and R. B. Bird. Squeezing flow between parallel disks. I. Theoretical analysis[J]. Ind. Eng. Chem. Fundam., 1974(13):336-341
    [29] P. J. Leider. Squeezing flow between parallel disks.Ⅱ.experimental results[J]. Ind. Eng. Chem. Fundam., 1974(14):342-346
    [30]刘广建,魏晓峰.双柱塞超高分子量聚乙烯特殊挤出成型工艺研究[J].塑料, 2003, 32(6): 55
    [31] James L.W.螺杆挤出[M].何红等译.北京:化学工业出版社, 2005.
    [32]张禹飞,许德华,刘中文.加工UHMWPE的柱塞式挤出机[J].工程塑料应用. 1999, 27(11): 26-27
    [33]刘中文,刘英俊,王泽生等.超高分子质量聚乙烯管材加工技术与应用进展[J].中国塑料. 1999, 13(8):2-4.
    [34]李建立,刘继红,王伟明.柱塞挤出机的应用和发展[J].工程塑料应用. 2005, 33(8):63-67.
    [35] Fisher E G.塑料挤出[M].北京:轻工业出版社, 1989.
    [36] Westover. R.E. Mod Plastics[J]. March, 1963.
    [37] Sakai, T. Intermeshing twin-screw extruder. In Mixing and Compounding of Polymer: Theory and Practice[M]. Hanser Publishers: Munich, 1994: 707-733.
    [38] Ishikawa T, Amano T, Kihara S, Funatsu K. Flow Pattems and mixing mechanisms in the screw mixing element of a co-rotating twin-screw extruder[J]. polym. Eng. Sci.,2002, 42: 925-933
    [39] Carrot, C., Guillet, J., J. F. May, J. P. Puaux. Molding of the conveying of Solid Polymer in the Feeding Zone of Intermeshing Co-rotating Twin Screw Extruder[J]. P.E.S., 1993, 33(11).
    [40] White J L, Coran A Y, Moet A. Polymer Mixing Technology and Engineering[M]. Hanser Publishers: Munich, 2001: 23-60
    [41] Rauwendaal C. Polymer Mixing-A Self-Study Guide[M]. Hanser Publishers: Munich, 1998: 43-71
    [42]余全平.同向啮合双螺杆挤出过程可视化动态研究及理论研究[D].北京化工大学硕士研究生学位论文, 1994.
    [43]李鹏.啮合同向双螺杆挤出机捏合块流道流场分析[D],北京化工人学硕士论文, 2000
    [44]刘廷华,朱复华.啮合型同向旋转双螺杆挤塑螺槽非充满的固体输送的理论研究[J].中国塑料, 1996, 10(5): 81-85.
    [45]冯连勋,荣遒珊,董力群.锥形双螺杆挤出机螺杆设计[J].中国塑料,1995, 9(2)
    [46] Bur A J, Gallant F N. Fluorescence monitoring of twin screw extrusion [J]. Polym. Eng. Sci., 1991, 31:1365-1371
    [47] Galaktionov O S, Anderson P D, Kruijt P G M, Peters G W M, Meijer H E H. A mapping approach for three-dimensional distributive mixing analysis [J]. Comput. Fluids, 2001, 30:271-281
    [48] L.P.B.M.Janssen, L.P.H.R.M.Mulders and J.M.Smith, Plastics&Polymers, 1975
    [49] J.A.Speur, H.Haridis, J.Lachopoulos, and L.P.B.M Janssen, Advances in Polymer Technology, 1987
    [50] Matthew H. Time to get smart about gear pumps[J]. Plastics Technoloy, 1985
    [51]李亮,吴大鸣.精密挤出—挤出成型研究的新动向[J].塑料. 2002, 1(31): 30-34.
    [52]李国豪,杨立先.影响熔体泵运行寿命的因素分析[J].聚酯工业. 2003,13(1): 57-60.
    [53]李庆春,鲁春萌.熔体泵的特性及其在聚合物加工中的应用[J].塑料.2000, 6(29):50-53
    [54]李庆春,董磊.单螺杆挤出机—熔体泵串联挤出系统的性能与应用[J].中国塑料, 2003,17(6).
    [55]朱锡成,周兴业,赵恒枫.齿轮螺杆式液压泵及马达[M].机械工业出版社.1988
    [56]翼京.齿轮泵在挤出机中的应用[J].塑料科技, 1996, 6: 36-38
    [57]傅志红,李小东,胡爱武.熔体泵的研究及其在塑料成型中应用[J].轻工机械. 2003, 4:65-67.
    [58]洪宗跃.熔体泵—单螺杆排气挤出系统研究[D].北京化工大学硕士论文. 2003.
    [59] James M Mckelvey. How gear pumps and screw pumps perform in polymer processing application[J]. Chemical Engineering, 1976, 9(12).
    [60] James M Mckelvey. Performance of gear pumps in polymer processing[J]. Polymer Engineering and Science, 1984, 4(15).
    [61] James M Mckelvey, Gear pumps assisted plasticating extrusion: part1- laboratory studies[J] . Adv Poly Tech, 1982
    [62] Robert A Malloy. Closed loop inlet pressure control for melt pumps extrusion[A].ANTEC'84
    [63] R.Stehr, P.Andersen. Controlling a gear pump assisted degassing extruder via dual pressure sensing[A]. ANTEC'92:416-420
    [64] William M. Murphy, James M. McKelvey. Specifying a polymer reactor discharge pump[J]. IFJ, Feb, 1995: 64-70
    [65] Cogswell FN. Converging flow of polymer melts in extrusiondies [J]. Polym Eng Sci, 1972, 1: 64~72.
    [66]鲍格达诺夫.聚合物混合工艺原理[M].北京:轻工业出版社, 1989.
    [67]米德尔曼.聚合物加工基础[M].北京:科学出版社, 1984.
    [68]日本高分子学会.塑料加工原理及实用技术[M].北京:中国轻工业出版社, 1991:174-179.
    [69]昊其哗,巫静安.高分子材料流变学[M].北京:高等教育出版社, 2002: 339-351.
    [70]耿孝正,张沛.塑料混合及设备[M].北京:中国轻工业出版社, 1992: 37-52.
    [71]耿孝正,聚合物加工中固相的分散及填充改性混合设备的选用[J].中国塑料, 2002,16(9): 1-6.
    [72]郭建明.在复合外场下获取高性能聚烯烃片材及其形态结构与性能的研究[D].四川大学博士研究生学位论文,2003.
    [73]邵雷霆,剪切取向下粘性聚合物系中团聚体分散的研究[D].浙江大学硕士学位论文,2005.
    [74] Bolen, W. R., and Cowell, R. E. Intensive mixing. SPE Journal, 1958, 14(8), 24-28.
    [75] Syang-Peng Rwei, Manas-Zloczower I, Feke D L. Observation of carbon black agglomerates dispersion in simple shear flow[J]. Polymer Engineering Science. 1990, 30(12): 701-706.
    [76] Syang-Peng Rwei, Manas-Zloczower I, Feke D L. Characterization of agglome-rate dispersion by erosion in simple shear flows[J]. Polymer Engineering Science, 1991, 31(8): 558-562.
    [77] Syang-Peng Rwei, Manas-Zloczower I, Feke D L. Analysis of dispersion of carbon black in polymeric melts and its effect on compound properties[J]. Polymer Engng Sci, 1992, 32(2): 130-135.
    [78] Powell, R. L., Mason, S. G. Dispersion by laminar flow[J]. AIChE Journal, 1982, (28): 286-293.
    [79] Kao S V, Manson S G. Dispersion of particle by shear[J]. Nature, 1975, 253(5493): 619-621.
    [80] Grace, H. P. Dispersion Phenomena in High Viscosity Immiscible Fluid Systems and Application of Static Mixers as Dispersive Devices in Such System [J]. Chemical Engineering Communication, 1982, 14:225.
    [81] C. E. Scott, C. W. Macosko. Morphology Development during the Initial Stages of Polymer-polymer Blending [J]. Polymer, 1995, 36(3): 461-470.
    [82] J. M. H. Janssen, H. E. H. Mejijer. Droplet Breakup Mechanisms: Stepwise Equilibrium Versus Transient Dispersion [J]. J. Rheol, 1993, 37(4): 597-608.
    [83] J. Kong, T. G. Simth., Study of Breakup Mechanisms in Cavity Flow [J]. AIChE J, 1996, 42(3):649-659.
    [84] C. E. Scott, C. W. Macosko. Model Experiments Concerning Morphology Development during the Initial Stages of Polymer Blending[J]. Polymer Bulletin, 1991, 26:341-348.
    [85]何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社, 2001. 294 -307.
    [86]黄磊.拉伸流场对聚烯烃纳米CaCO3填充体系的分散混合作用[D].四川大学硕士研究生学位论文,2007.
    [87] Manas-zloczower, I., Tadmor, Z. Dispersive mixing of solid additives[J]. Mixing and compounding of polymer-theory and practice, 1994, 23:55-84.
    [88] Manas-zloczower, I. Studies of mixing efficiency in batch and continuous mixers[J]. Rubber Chemistry and Technology. 1994, 67(4): 504-528.
    [89] Erwin, L. Theory of laminar mixing[J]. Polymer Engineering and Science. 1978, 18: 1044-1048.
    [90] David B. Todd.塑料混合工艺及设备[M].北京:化学工业出版社, 2002.
    [91] Nicholas P. Cheremisinoff. Polymer Mixing and Extrusion Technology [M]. New York: Marcel Dekker, Inc, 1987
    [92] J. A. Manson, L. H. Sperling. Polymer Blends and Composites [M]. New York: Plenum Press, 1976.
    [93]沃斯特罗克努托夫等著,周彦豪等译.生胶和混炼胶的加工—流变学基础工艺学设备[M].北京:化学工业出版社, 1985. 125-174.
    [94] M. delpilar. Noriega E., Chris. Rauwendaal.挤出过程的问题分析及解决方案[M].北京:化学工业出版社, 2003. 90-92.
    [95] C. Rauwendaal.塑料挤出[M].北京:中国轻工业出版社, 1996: 235-244.
    [96]吴大鸣,孟庆云,刘颖.原位气泡拉伸分散法研究[J].中国塑料,2004,18(4):59-63.
    [97] C D. Han.聚合物加工流变学[M].北京:科学出版社, 1985
    [98] P. J. Gramann, B. A. Davis, T. A. Osswald, C. Rauwenduaal. A New Dispersive and Distributive Static Mixer for the Compounding of Highly Viscous Materials [A]. ANTECConference, New York, 1999.
    [99] Y. Suzaka, Ooita. Mixing Device[P]. USP: 4334783, 1982-06-15.
    [100] Xuan Q. Ngnyen. bollard des Chmeaux, Lechoslaw A. Utracki, Pierrofonds. Extensional Flow Mixer[P]. USP: 5451106, 1995-09-19.
    [101] Liang J Z. Influence of die angles on pressure drop during extrusion of rubber compound [J]. J Appl Polym Sci, 2001, 80: 1150-1154.
    [102]梁基照.粘弹性流体的入口收敛流动[J].力学进展. 1993, 23 (2): 234-248.
    [103]杨攀, Lam Yee Cheong,朱克勤, Gan HiongYap.弹性湍流及其对微混合效率影响研究的若干进展[J].力学与实践, 2008, 30(5): 1-8.
    [104]黄汉雄,易玉华.聚合物熔体收敛流动的可视化实验与理论研究[J].合成树脂及塑料, 1998, 15(2): 24-27
    [105]刘廷华.聚合物加工成型机械[M].中国轻工出版社,2008:45-85
    [106] Marrucci G., Titomanlio G., Sarti G.C. Testing of a constitutive equation for entangled networks by elongational and shear data of polymer melts[J], Rheol.Acta, 1973(12): 269—275
    [107]曾广胜.聚合物振动诱导熔融塑化过程研究[D].华南理工大学博士学位论文, 2007
    [108] Ma CY, White JL, Weissert FC, Isayev AI, et al. Flow patters in elastomers and their carbon black compounds during extrusion through dies[J]. Rubber Chem Technol, 1985, 58: 815~829

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700