人工关节润滑技术与摩擦学测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工关节置换术,已成为治疗关节疾病的一种重要手段,其借助于人工材料所制成的植入性假体,即人工关节,用以替代病变或损伤的关节。在人工关节的研究和临床随访中发现,其长期可靠性以及功能性方面的问题与其生物摩擦学表现存在密切联系。因此,如何从生物摩擦学角度对人工关节进行有效润滑,以及开发科学的测试技术,对于提高关节置换者的生命质量、提升人工关节性能而言,具有重要的意义。
     本文主要从两个方面开展对人工关节生物摩擦学的研究。其一,从人工关节润滑技术角度出发,开发了仿生关节滑液(复合滑液),对其生物相容性、润滑性能、电化学性能进行了试验研究;此外,将表面织构技术引入人工关节的润滑中,考察了其对硬相人工关节材料的摩擦学与声学作用。其二,在人工关节生物摩擦学测试方面,分别针对人工关节成品与人工关节材料的摩擦学测试,开发了多功能髋关节模拟试验装置与复合运动销盘试验装置,并进行了相应测试方法研究;此外,研制了人工关节材料摩擦声学测试系统,用以研究硬相人工关节的摩擦异响问题。主要研究内容包括以下几个方面:
     针对仿生关节滑液(复合滑液),进行生物相容性的测试,证明了其具有良好的生物相容性;通过对UHMWPE与CoCrMo人工关节的磨损试验,发现复合滑液对该类摩擦副的润滑性能优于对比组中的滑液,并能在UHMWPE表面形成蛋白质薄膜润滑;作为治疗性成分的阿伦磷酸钠对UHMWPE磨粒大小有一定积极影响。此外,针对金属人工关节的润滑,试验研究了仿生关节滑液的电化学性能,并考察其对CoCrMo与CoCrMo摩擦副的润滑性,发现CoCrMo材料的摩擦磨损性能主要取决于复合滑液的机械及电化学性能。滑液中透明质酸钠通过其分子结构等因素决定了复合滑液的粘度,对CoCrMo摩擦副界面间的摩擦系数产生了较大的影响;白蛋白能够在CoCrMo摩擦副表面形成蛋白质沉积薄膜,起到减摩保护作用,但是由于电化学反应,会加重CoCrMo材料的腐蚀;阿伦磷酸钠对金属关节具有抗磨、抗腐蚀的积极作用。
     针对硬相人工关节摩擦异响问题,提出将表面织构应用于人工关节之上,改善其润滑情况。首先,针对表面织构的参数设计建立了弹性流体动力润滑模型,分析比较了织构的径深比、密度以及摩擦副材料、运动参数对润滑状态的影响。之后,在此基础上对硬相人工关节材料表面进行激光织构加工工艺的探索,采用激光填充一次成型加工方式,控制织构间距,改善了热效应区域等加工问题;最后,基于所开发的摩擦声学测试系统,开展了表面织构处理后陶瓷材料的摩擦声学测试,试验证实织构在陶瓷人工关节材料表面能够起到一定的减摩降噪的效果,且摩擦学结果与声学测量结果相吻合,初步证明了表面织构有利于降低了异响的发生率,在人工关节方面具有潜在的应用前景。
     针对人工关节成品、人工关节材料的摩擦学测试,以及人工关节摩擦声学问题的三方面内容,分别研制了多功能髋关节模拟试验装置、复合运动销盘试验装置、人工关节材料摩擦声学测试系统,并进行了测试方法探索。结果表明:(a)多功能髋关节模拟试验装置的运动形态、模拟步态、受力曲线均符合对人体髋关节的运动重现的要求,所产生的人工关节试验磨损率接近于近期临床结果,满足人工髋关节的成品摩擦学测试的要求,此外,通过部件的转换,能够支持普通的销盘摩擦学试验;(b)所开发的复合运动销盘试验装置为人工关节材料摩擦学测试提供了台架,基于该装置的人工关节材料测试结果比普通销盘试验与临床结果更为接近,该种测试方法满足人工关节材料的前道摩擦学测试要求;(c)人工关节材料摩擦声学测试系统,为人工关节摩擦学与声学研究的交叉研究提供了平台,基于该系统进行了试验初试及方法探索,试验结果证明了该系统及测试方法的可行性。
Joint replacement, is one of the most effective treatments to joint diseases, in which an arthritic or damaged joint is replaced by an artificial joint. Long term clinical results show that wear of artificial joints determines the lifetime of such implants. The biotribological performance of prostheses has significant impact on its reliability and functionality. Therefore, researches on artificial joint lubrication and tribological testing are required, in order to qualify the tribological property of the artificial joints and prolong the product duration.
     In this thesis, researches cover two main aspects, including lubrication technology investigation and development of tribological test apparatus in related to artificial joints. In artificial joint lubrication, biomimetic synovial fluids were developed; biocompatibility, rheology, electrochemical and tribological property were experimental studied. Moreover, surface texturing was applied in hard-on-hard artificial joint materials, tribo-acoustic performance were carried out for fundamental validation. In the second aspect, tribological test apparatus, such as multi-functional hip joint simulator, multi-directional pin on disk tribometer, were built up for wear tests of artificial products and materials. Furthermore, a tribo-acoustic test system was also established for the initial study on friction induced squeaking phenomenon in hard-on-hard artificial joints. Main research points and conclusions can be reached as below,
     In the study of biomimetic synovial fluids, by biocompatibility test, the results validated safety and non-toxicity of such fluids towards human body. Wear test were carried out on UHMWPE/CoCrMo artificial joints, results showed that biomimetic synovial fluids had the best lubrication performance among all the fluids in this study. And protein membrane could be observed on the surface of UHMWPE in biomimetic synovial fluids, which provided thin film lubrication towards the wear couples. As a therapeutic composition, alendronic acid sodium had positive impact on the UHMWPE wear debris. For metal-on-metal artificial joint lubrication, the electrochemical property of biomimetic synovial fluids has been investigated. In tribological test of CoCrMo on CoCrMo materials, friction and wear were mainly dominated by the mechanical and electrochemical performance of the biomimetic synovial fluids. By orthogonal analysis, results showed that hyaluronic acid dominated the viscosity of the fluids, thus directly affected the friction between CoCrMo balls. High albumin concentration would reduce friction, while increasing wear rate due to the electrochemical effect. Alendronic acid sodium was found to reduce the biocorrosion of CoCrMo as well as improving lubrication.
     Surface texturing technology has been introduced and applied on hard-on-hard artificial joints in regard to the friction induced squeaking and wear problems. An elastohydrodynamic (EHL) model was set up for surface texture designing reference. Then, laser surface texturing processes on hard artificial joint materials was studied and optimized. Finally, via a tribo-acoustic system, laser surface textured ceramic materials were tested. Results showed that surface texture helped to reduce the squeaking sound emission as well as the friction, consequently, verified the potential application of this technology in artificial joints.
     Concerned artificial joint product level, material level tribological tests and tribo-acoustic test, three test equipments, as one multi-functional hip joint simulator, one multi-directional pin on disk tribometer and a tribo-acoustic test system, were designed, built and validated. Moreover, test methods were also proposed and testified. Preliminary test results summarized, (a) the multi-functional hip joint simulator, generated by a hip joint simulator and a general pin on disk module, could support both artificial hip joint wear tests and common material tribological experiments. Motion configurations and wear factors observed in this simulator agreed well with those in clinics, and it offered a reliable test bench for artificial hip joint products. (b) The multi-directional pin on disk test methods provided a better solution for artificial joint material level wear tests. Compared with common pin on disk tests, experimental results in such test apparatus was more accurate referring to clinical issues. (c) Via the tribo-acoustic test system, both tribological and acoustic signal could be measured simultaneously, thus, providing a test platform and a feasible methodology for the fundamental understanding of friction induced squeaking phenomenon in hard-on-hard artificial joints and investigation of other potential solutions toward this problems.
引文
[1] Jost, H. Lubrication (tribology) education and research[R]. A report on the present position and the industry's needs, London, UK: Department of Education and Science, Her Majesty's Stationery Office (HMSO), 1966.
    [2] Dowson, D., Wright V. Bio-tribology[C]. The rheology of lubrication, 1973: 81–88.
    [3]王成焘等.人体生物摩擦学[M].科学出版社, 2008.
    [4] Learmonth, I.D. Artificial joints: a biotechnological revolution[J]. Surgeon, 2005 (3): 171–183.
    [5] Fifield, R. New live for painful hips[J]. New Scientist, 1987 (10): 35–40.
    [6] Charnley, J. Arthtoplasty of the hip[J]. A new operation.Lancet, 1961 (1): 1129–1132.
    [7] John N. Insall, MD, 1930–2000[J]. The Journal of Bone and Joint Surgery, 2001 (83): 635.
    [8] Pradhan, N., Gambhir, A., Porter, M. Survivorship analysis of 3234 primary knee arthroplasties implanted over a 26–year period:: A study of eight different implant designs[J]. The Knee, 2006 (1): 7–11.
    [9] Rand, J., Ilstrup, D. Survivorship analysis of total knee arthroplasty. Cumulative rates of survival of 9200 total knee arthroplasties[J]. The Journal of Bone and Joint Surgery [Am], 1991 (3): 397–409.
    [10] Berry, D.J., Harmsen, W.S., Cabanela, M.E., Morrey, B.F. Twenty–five–year survivorship of two thousand consecutive primary Charnley total hip replacements[J]. The Journal of Bone and Joint Surgery [Am], 2002 (84):171–177.
    [11] Dobbs, H.S. Survivorship of total hip replacements[J]. The Journal of Bone and Joint Surgery [Br] 1980 (62): 168–173.
    [12] http://www.skillbuildersrehab.com/index.html, 2010.
    [13]胡蕴玉.“骨与关节十年”与中国[J].国外医学, 2003 (2): 76–78.
    [14] Jin, Z.M., Stone, M., Ingham, E., Fisher, J. Biotribology[J]. Current Orthopaedics, 2006 (20): 32–40.
    [15] Unsworth, A., Recent developments in the tribology of artificial joints[J]. Tribology International, 1997 (28): 485–495.
    [16] Hall, R.M., Unsworth, A. Fricition in hip prostheses[J]. Biomaterials, 1997 (18): 1017–1028.
    [17] McGee, M.A., Howie, D.W., Costi, K., et.al. Implant retrieval studies of the wear and loosening of prosthetic joints: a review[J]. Wear, 2000 (241): 158–165.
    [18] McDonald, M., Bloebaum, R. Distinguishing wear and creep in clinically retrieved polyethylene inserts[J]. Journal of biomedical materials research, 1995 (1): 1–7.
    [19]徐林.人工关节置换手术学[M].上海第二军医大学出版社, 2009.
    [20]吕厚山.现代人工关节外科[M].人民卫生出版社, 2006.
    [21] http://anatomy.med.umich.edu/modules/joints_module/joints_12.html, 2011.
    [22]刘广建.超高分子量聚乙烯[M].化学工业出版社, 2001.
    [23] Li, S., Burstein, A.H. Ultra–high molecular weight polyethylene–The material and its use in total joint implants[J]. The Journal of Bone and Joint Surgery, 1994 (76): 1080–1090.
    [24] Ebramzadeh, E., Sangiorgio, S.N., Lattuada, F., et al. Accuracy of measurement of polyethylene wear with use of radiographs of total hip replacements[J]. The Journal of Bone and Joint Surgery, 2003 (85): 2378–2384.
    [25] Harris, W.H. The problem is osteolysis[J]. Clinical Orthopaedics & Related Research, 1995 (311): 46–53.
    [26] Amstutz, H.C, Campbell, P., et al. Mechanism and Clinical Significance of Wear Debris Induced Osteolysis[J]. Clinical Orthopaedics & Related Research, 1992 (276): 7–18.
    [27] McKellop, H.A., Campbell, P., Park, S.H., et al. The origin of submicron polyethylene wear debris in total hip arthroplasty[J]. Clinical Orthopaedics & Related Research, 1995 (311): 3–20.
    [28] Wang, A., Essner, A., Polineni, V.K. Lubrication and wear of UHMWPE in total joint replacements[J]. Tribology International, 1998 (31): 17–33.
    [29]杨敏,郑昌琼,冉均国等. UHMWPE与钛基—TiN–TiC系梯度薄膜材料对磨的生物摩擦磨损特性[J].生物医学工程学杂志, 2000 (17): 1–4.
    [30]王昌祥,郑昌琼,周馨等. UHMWPE–SiAlON陶瓷摩擦副的生物摩擦学特性及机理的研究[J].功能材料, 1999 (30): 332–333.
    [31] Jin, Z.M., Williams, S., Tipper, J., Ingham, E., Fisher, J. Tribology of hip joints from natural hip joints, cartilage substitution, artificial replacements to cartilage tissueengineering[J]. Journal of Biomechanical Science and Engineering, 2006 (1): 69–81.
    [32] Endo, M., Tipper, J.L., Barton, D.C., et al. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non–crosslinked polyethylene in hip prostheses[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2002 (216): 111–122.
    [33]王友,戴克戎.人工髋关节假体的磨损及其影响因素[J].中华外科杂志, 1998 (36): 436–438.
    [34] http://www.zimmer.nl/id/producten/, 2011.
    [35]王满宜.现代骨科疾病诊断与治疗[M].人民卫生, 2006.
    [36]陈治清.口腔材料学[M].人民卫生出版社, 1997.
    [37]张亚平,高家诚,王勇.人工关节材料的研究与展望[J].世界科技研究与发展, 2000 (22): 47–50.
    [38] Amstutz, H., Le Duff, M.J. Background of metal–on–metal resurfacing[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,2006 (220): 85–94.
    [39] Willmann, G. Improving bearing surfaces of artificial joint[J]. Advanced Engineering Materials, 2001 (3): 135–141.
    [40] Vassiliou, K., Elfick, A., Scholes, S., Unsworth, A. The effect of‘running–in’on the tribology and surface morphology of metal–on–metal BHR device in simulator studies[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006 (220): 269–77.
    [41] Jacobs, J.J., Hallab, N.J., Skipor, A.K., Urban, R.M. Metal degradation products: a cause for concern in metal metal bearings?[J]. Clinical Orthopaedics & Related Research, 2003 (417):139–147
    [42] Jacobs, J.J., Skipor, A.K., Campbell, P.A. Can metal levels be used to monitor metal–on–metal hip arthroplasties? [J]. The Journal of Arthroplasty, 2004 (19): 59–65
    [43] Urban, R.M., Jacobs, J.J., Tomlinson, M.J., et al. Dissemination of wear particles to liver, spleen and abdominal lymph nodes of patients with hip or knee replacement[J]. The Journal of Bone and Joint Surgery [Am], 2000 (82): 457–477.
    [44] Brodner, W., Grohs, J.G., Bitzan, P., Meisinger, V., Kovarik, J., Kotz, R. Serum cobaltand serum chromium level in 2 patients with chronic renal failure after total hip prosthesis implantation with metal–metal gliding contact[J]. Z Orthop Ihre Grenzgeb, 2000 (138): 425–429.
    [45] Yan, Y., Neville, A., Dowson, D. Tribo–corrosion properties of cobalt–based medical implant alloys in simulated biological environments[J]. Wear, 2007 (263): 1105–1111.
    [46] Yan, Y., Neville, A., Dowson, D. In Situ electrochemical study of the interaction of tribology and corrosion in artificial hip prosthesis simulators[C]. Corrosion 2009, Atlanta, U.S., 2009.
    [47] http://www.coringroup.com/, 2011.
    [48] Boutin, P. Arthroplatsie totale de hance par prosthes en alumina fritte[J]. Revue de Chirurgie Orthopédique, Vol. 58, 1972, pp. 229–246.
    [49] John, F., Todd, D.S., et al. Long–term wear of ceramic matrix composite materials for hip prostheses under severe swing phase microseparation[J]. Journal of Biomedical Materials Research, 2003 (66): 567–573.
    [50] Bizot, P., Nizard, R., Lerouge, S. Ceramic/ceramic total hip arthroplasty[J]. Journal of Orthopaedic Science, 2000 (5): 622–627.
    [51] Heck, D.A., Partridge, C.M., Reuben, J.D., et al. Prosthetic component failures in hip arthroplasty surgery[J]. Arthroplasty, 1995 (10): 575–80.
    [52] Lerouge, S., Huk, O., Yahia, L.H., et al. Characterization of in vivo wear debris from ceramic–ceramic total hip arthroplasties[J]. Journal of Biomedical Materials Research, 1996 (32): 627–33.
    [53] Riska, E.B. Ceramic endoprosthesis in total hip arthroplasty[J]. Clinical Orthopaedics & Related Research, 1993(297): 87–94.
    [54] Antonio, J., William, C., Manley, M., Bierbaum, B. New experience with Alumina on Alumina ceramic bearings for total hip arthroplasty[J]. The Journal of Arthroplasty, 2002 (17): 390–397.
    [55] Keurentjes, J.C., Kuipers, R.M., Wever, D.J., Schreurs, B.W. High incidence of squeaking in THAs with alumina ceramic–on–ceramic bearings[J]. Clinical Orthopaedics & Related Research, 2008 (466): 1438–1443.
    [56] Walter, L.W., Yeung, E., Esposito, C. A review of squeaking hips[J]. Journal of theAmerican Academy of Orthopaedic Surgeons, 2010 (18): 319–326.
    [57] Restrepo, C., Post, Z.D., Ka,i B., Hozack, W.J. The effect of stem design on the prevalence of squeaking following ceramic–on–ceramic bearing total hip arthroplasty[J]. The Journal of Bone and Joint Surgery [Am], 2010 (92): 550–557.
    [58] Taylor, S., Manley, M.T., Sutton, K. The role of stripe wear in causing acoustic emissions from alumina ceramic–onceramic bearings[J]. The Journal of Arthroplasty, 2007 (22): 47–51.
    [59] Walter, W.L., Insley, G.M., Walter, W.K., Tuke, M.A. Edge loading in third generation alumina ceramic–on–ceramic bearings: Stripe wear[J]. The Journal of Arthroplasty, 2004 (19): 402–413.
    [60] Walter, W.L., Waters, T.S., Gillies, M., et al. Squeaking hips[J]. The Journal of Bone and Joint Surgery [Am], 2008 (90):102–111.
    [61] Restrepo, C., Parvizi, J., Kurtz, S.M., Sharkey, P.F., Hozack, W.J., Rothman R.H. The noisy ceramic hip: Is component malpositioning the cause?[J]. The Journal of Arthroplasty, 2008 (23): 643–649.
    [62] Fumihiro,Y. The influence of the oscillation angle and the neck anteversion of the prosthesis on the cup safe–zone that fulfills the criteria for range of motion in total hip replacements[J]. Journal of Biomechanics, 2005 (38): 125–132.
    [63] Ebramzadeh, E., Sangiorgio, S.N., Lattuada, F., et al. Accuracy of measurement of polyethylene wear with use of radiographs of total hip replacements[J]. The Journal of Bone and Joint Surgery [Am], 2003 (85): 2378~2384.
    [64] McCollum, D.E., Gray, W.J. Dislocation after total hip arthroplasty Causes and prevention[J]. Clinical Orthopaedics & Related Research, 1990 (26): 159–70.
    [65] Herrlin, K., Selvik, G., Pettersson, H., Kesek, P., Onnerfalt, R., Ohlin, A. Position, orientation and component interaction in dislocation of the total hip prosthese[J]. Acta Radio, 1988 (29): 441–444.
    [66] Jin, Z.M., Dowson, D., Fisher, J. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1997 (211): 247–256.
    [67] Wang, F.C., Jin, Z.M. Microscopic asperity contact and deformation of UHMWPE bearingsurfaces[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2003 (217): 477–490.
    [68] Jagatia, M., Jin, Z.M. Elastohydrodynamic lubrication of metal–on–metal hip prosthesis under steady–state entraining motion[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2001 (215): 531–541.
    [69] Mak, M.M., Jin, Z.M. Analysis of contact mechanics in ceramic–on–ceramic hip joint replacements[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2002 (216): 231–236.
    [70] Liu, F., Jin, Z.M., Roberts, P., et al. Important of head diameter, clearance, and cup wall thickness in elastohydrodynamic lubrication analysis of metal–on–metal hip resurfacing prostheses[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006 (220): 695–704.
    [71] Su, Y.L., Fu, Z.L., Yang P.R., Wang, C.T. A full numerical analysis of elastohydrodynamic lubrication in knee prosthesis under walking condition[J]. Journal of Mechanics in Medicine and Biology, 2010 (0): 1–21.
    [72]苏永琳.人工膝关节弹性流体动力润滑分析及磨损研究[博士论文].上海交通大学, 2010.
    [73] Shaheen, A., Shepherd, D.E.T. Lubrication regimes in lumbar total disc arthroplasty[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2007 (221): 621–627.
    [74] Onishi, H., Kadoya, Y. Wear of high–dose gamma irradiated polyethylene in hip replacement[J]. Journal of Orthopaedic Science, 2000 (5): 233–238.
    [75] Ge, S.R., Wang, Q.L., Zhang, D.K., et al. The friction and wear of the nitrogen ion implanted UHMWPE against ZrO2 ceramic[J]. Wear, 2003 (255): 1069–1075.
    [76] Sze, J.Y., Tay, B.K. Carbon ion implantation of ultra–high molecular weight polyethylene using filtered cathodic vacuum arc with substrate pulse biasing[J]. Surface and Coating Technology, 2006 (20): 4104–4110.
    [77] Hashimoto, M., Takadama, H., Mizuno, M., et al. Titanium dioxide/ ultra high molecular weight polyethylene composite for bone repairing applications: Preparation and biocompatibility[J]. Bioceramics, 2003 (15): 415–418.
    [78] Xiong, D.S. Friction and wear properties of UHMWPE composite reinforced with carbon fiber[J]. Material Letters, 2003 (24): 1889–1896.
    [79] Clark, I.C. Wear of artificial joint materials IV: hip joint simulator studies[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1981 (10): 189–198.
    [80] Clarke, I.C., Good, A., Anissian, L., Gustafon, A. Charnley wear model for validation of hip simulators ball diameter versus polytetrafluoroethylene and polyethylene wear[J]. Clinical Orthopaedics & Related Research, 2000 (379): 34–40.
    [81] Clarke, I.C., Gustafon, A. Clinical and Hip simulator comparisons of Ceramic–on–Polyethylene and Metal–on–Polyethylene wear[J]. Clinical Orthopaedics & Related Research, 2000 (379): 34–40.
    [82] Saikko, V. A three–axis hip joint simulator for wear and friction studies on total hip prostheses[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1996 (210): 175–185.
    [83] Calonius, O., Saikko, V. Slide track analysis of eight contemporary hip simulator designs[J], Journal of Biomechanics, 2002 (35): 1439–1450.
    [84] Saikko V., Calonius O. Slide track analysis of the relative motion between femoral head and acetabular cup in walking and in hip simulators[J]. Journal of Biomechanics, 2002 (35): 455~464.
    [85]黄传辉.人工髋关节的磨损行为及磨粒形态研究[博士论文].中国矿业大学, 2004.
    [86]李峰.关节软骨的生物摩擦学研究[博士论文].上海交通大学, 2010.
    [87] Oka, M., Noguchi, T., et al. Development of an artificial articular cartilage[J]. Clinical Materials, 1990 (6): 361–381.
    [88] Gong, J.P., Osada, Y. Soft and wet materials: Polymer gels[J]. Advance Materials, 1998 (10): 827–837.
    [89] Gong, J.P., Kagata, G., Iwasaki, Y., et al. Surface friction of polymer els 1. Effect of interfacial interaction[J]. Wear, 2001 (251): 1183–1187.
    [90] Pan, Y.L., Xiong, D.S., Ma, R.Y. A study on the friction properties of poly (vinyl alcohol) hydrogel as articular cartilage against titanium alloy[J]. Wear, 2007 (262): 1021–1025.
    [91] Li, F., Su Y.L., Wang J.P., et al. Influence of dynamic load on friction behavior of humanarticular cartilage, stainless steel and polyvinyl alcohol hydrogel as artificial cartilage[J]. Journal of Materials Science: Materials in Medicine, 2010 (21): 147–154.
    [92]人工关节临床试验基本要求(草案),www.cmde.org.cn/images/1233701629601.doc, 2011.
    [93]华子恺,张建华.人工关节模拟实验机发展状况[C]. 2006全国摩擦学学术会议,哈尔滨, 2006: 73–76.
    [94] ISO 14242–1. Implants for surgery–– Wear of total hip–joint prostheses–– Part 1: Loading and displacement parameters for wear–testing machines and corresponding environmental conditions for test. 2002.
    [95] ISO 14242–2. Implants for surgery–– Wear of total hip–joint prostheses–– Part 2: Methods of measurement. 2000.
    [96] ISO 14242–3. Implants for surgery–– Wear of total hip–joint prostheses–– Part 3: Loading and displacement parameters for orbital bearing type wear testing machines and corresponding environmental conditions for test. 2009.
    [97] ISO 14243–1. Implants for surgery–– Wear of total knee–joint prostheses–– Part 1: Loading and displacement parameters for wear–testing machines with load control and corresponding environmental conditions for test. 2009.
    [98] ISO 14243–2. Implants for surgery–– Wear of total knee–joint prostheses–– Part 2: Methods of measurement. 2009.
    [99] ISO 14243–3. Implants for surgery–– Wear of total knee–joint prostheses–– Part 3: Loading and displacement parameters for wear–testing machines with displacement control and corresponding environmental conditions for test. 2004.
    [100] ISO 18192–1. Implants for surgery–– Wear of total intervertebral spinal disc prostheses–– Part 1: Loading and displacement parameters for wear testing and corresponding environmental conditions for test. 2008.
    [101] Johnston, R.C., Smidt, G.L. Measurement of hip–joint motion during walking–evaluation of an electrogoniometrec method[J]. The Journal of Bone and Joint Surgery, 1969 (51): 1083–1094.
    [102] Saikko, V., Calonius, O., Ker?nen, J. Effect of Extend of motion and type of load on the wear of polyethylene in biaxial hip simulator[J]. Journal of Biomedical Materials ResearchPart B: Applied Biomaterials, 2003 (65): 186–192.
    [103] Calonius, O., Saikko, V. Analysis of relative motion between femoral head and acetabular cup and advances in computation of the wear factor for the prosthetic hip joint[J]. Acta Polytechnica, 2003 (43): 43–54.
    [104] Wang, A., Sun, D.C., Yau, S.S., et al. Orientation softening in the deformation and wear of ultra–high molecular weight polyethylene[J]. Wear, 1997 (203): 230–241.
    [105] http://www.shorewestern.com/hip.html, 2011.
    [106] http://www.mts.com/en/Library/DEV_002168, 2011.
    [107] Barbour, P.S.M., Stone, M.H., Fisher, J. A hip joint simulator study using simplified loading and motion cycles generating physiological wear paths and rates[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1999 (213): 455–467
    [108] Saikko, V. A 12–station, anatomic hip joint simulator[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2005(219): 437–448.
    [109] Saikko,, V. A three–axis hip joint simulator for wear and friction studies on total hip prostheses[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1996 (210): 175–185.
    [110] Kaddick, C., Wimmer, M.A. Hip simulator wear testing according to the newly introduced standard ISO 14242[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2001 (215): 429~442.
    [111] Goldsmith, A.A J, Dowson, D. Development of a ten–station,multi–axis hip joint simulator[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1999 (213): 311–316.
    [112] http://qsysx.com/regulatory.htm, 2011.
    [113] http://www.imbe.leeds.ac.uk/facilities/Facilities_HipJointWear.shtml, 2011.
    [114] www.machina.hut.fi, 2011.
    [115] ASTM, G99–04a, Standard Test Method for Wear Testing with a Pin–on–Disk Apparatus.
    [116] Saikko, V. A hip wear simulator with 100 test stations[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2005 (219): 309–318.
    [117] Woytek, W., Osama, T., Hamzeh, N., et al. Friction–induced oscillations of a pin–on–diskslider: analytical and experimental studies[J]. Wear, 1999 (236): 9–23.
    [118] Saikko, V. Effect of contact pressure on wear and friction of ultra–high molecular weight polyethylene in multi–directional sliding[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006 (220): 723–731.
    [119] ASTM D5183– 05. Standard Test Method for Determination of the Coefficient of Friction of Lubricants Using the Four–Ball Wear Test Machine.
    [120] http://www.cetr.com/eng/products/tribometers/, 2011.
    [121] Balazs, E.A. The physical properties of synovial fluid and the special role of hyaluronic acid[M]. Disorders of the Knee, Helfet, 1974: 63–75.
    [122] Hogan, D.B., Pritzker K.P.H. Synovial fluid analysis: another look at the mucin clot test[J]. The Journal of Rheumatology, 1985 (12): 242–244.
    [123] http://meded.ucsd.edu/isp/1994/im–quiz/images/, 2010.
    [124] Ward, P. Interpretation of synovial fluid data[J]. Postgraduate Medical, 1980 (68): 175–184.
    [125] Bole, G.G. Synovial fluid lipids in normal individuals and patients with rheumatoid arthritis[J]. Arthritis & Rheumatism, 1962 (5): 589–601.
    [126] Dahl, L.B., Engstrom–Laurent, A., Granath, K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritisand other arthropaties[J]. Annals of the Rheumatic Diseases, 1985 (44): 817–822.
    [127] Ghosh, P., Hutadilok, N., Adam, N., Lentini, A. Interactions of hyaluronan (Hyaluronic acid) with phospholipidsas determined by gel permeation chromatography, multiangle laser–ligh–scattering photometry and 1H–NMR spectroscopy[J]. International Journal of Biological Macromolecules, 1994 (16): 237–244.
    [128] Frasher, J.R.E., et al. Hyaluronan: its nature, distribution, functions and turnover[J]. Journal of Internal Medicine, 1997 (242): 27–33.
    [129] Laurent, T.C., Fraser, J.R. Hyaluronan[J]. The Federation of American Societies for Experimental Biology Journal, 1992 (6): 2397–2404.
    [130] Tercic, D., Bozic, B. The basis of the synovial fluid analysis[J]. Clinical Chemistry and Laboratory Medicine, 2001 (39): 1221–1226.
    [131] Jacoboni, I., Valdre, U., Mori, G. Hyaluronic Acid by Atomic Force Microscopy[J].Journal of Structural Biology, 1999 (126): 52–58.
    [132]冯倩,蔡继业.原子力显微术对透明质酸自组装行为的研究[J].高分子材料与工程, 2004 (1): 146–148.
    [133]王昕,朱雪涛,施燕平.医用透明质酸钠的细胞毒性试验[J].食品与药品, 2006 (8): 31~33.
    [134] Goldberg, R.L., Huff, J.P., Lenz, M.E., Glickman, P. Elevated plasma levels of hyaluronate in patients with osteoarthritis and rheumatoid arthritis[J]. Arthritis & Rheumatism, 1991 (34): 799–807.
    [135] Guidolin, D.D., Ronchetti, I.P., Lini, E., Guerra, D., Frizziero, L. Morphological analysis of articular catilage biopsies from a randomized, clinical study comparing the effects of 500–730kDa sodium hyluronate (Hyalgan) and methylprednisolone acetate on primary osteoarthritis of the knee[J]. Osteoarthritis Cartilage, 2001 (9): 371–381.
    [136] Nakamura, M., Hikida, M., Nakano, T., et al. Characterization of water retentive properties of hyaluronan[J]. Cornea, 1993 (12): 433–436.
    [137] Necas, J., Bartosikova, L., Brauner, P., Kolar, J. Hyaluronic acid (hyaluronan): a review[J]. Veterinarni Medicina, 2008 (53): 397–411.
    [138] Volpi, N., Maccari, F. Purification and characteri zation of hyaluronic acid from the mollusk bivalve mytilus galloprovincialis[J]. Biochimie, 2003 (85): 619–625.
    [139] Forester, K.K., Schmid, K., Rovati, L.C., et a1. Efficacy of glucosamine sulfate in osteoarthritis of the lumbar spine: a placebocontrolled,randomized, doubl–blind study[J]. Arthritis & Rheumatism, 2000 (43): 335–342.
    [140] Houpt, J.B., McMillan, R., Wein, C., et al. Effect of glucosamine hydrochloride in the treatment of pain of osteoarthritis of the knee[J]. The Journal of Rheumatology, 1999 (26): 2423–2430.
    [141] Brief, A .A., Maurer, S.G., Di Cesare, P. E. Use of gulcosamine and chondroitin sulfate in the management of osteoarthritis[J]. Journal of the American Academy of Orthopaedic Surgeons, 2001 (9): 71–78.
    [142] Fenton, J.I., Chlebek–Brown, K.A., Peters, T.L., et al. Glucosamine HCl reduces equine articular cartilage degradation in explant culture[J]. Osteoarthritis Cartilage, 2000 (8): 258–265.
    [143]邱贵兴,翁习生,张克,周乙雄.盐酸/硫酸氨基葡萄糖治疗骨关节炎的平行对照临床研究[J].中华医学杂志, 2005 (85): 3067–3070.
    [144] Gaby, A.R. Natural treatments for osteoarthritis[J]. Alternative Medicine Review, 1999 (4): 330–334.
    [145]郑昱新,石印玉.氨基葡萄糖治疗骨关节炎的现状[J].中国中医骨伤科杂志, 2005 (13): 68–69.
    [146] Kazuyuki, S., Tadahisa, M., Toru, U., Souhei, M., et al. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate[J]. Current Opinion in Structural Biology, 2003 (13): 612–620.
    [147] Ronca, G. Anti–inflammatory activity of chondroitin sulfate[J]. Osteoarthritis Cartilage, 1998 (6): 14–21.
    [148] Takanishi, G.C., Borst, C.A. Glucosamine and chondroitin in the treatment of osteoarthritis[J]. Women’s Health Primary Care, 2001 (4): 61–64.
    [149] Andrew, A., Brief, M.D., Stephen, G., Maurer, M. D., Paul, E.,Di Cesare, M.D. Use of Glucosamine and Chondroitin Sulfate[J]. Management of Osteoarthritis, 2001 (9): 71–78.
    [150]徐庆阳,黎兴荣,石墨,陈宁.硫酸软骨素研究现状[J].生物技术通讯, 2004 (15): 633–635.
    [151]李福眷,刘景娟,何娜,徐炽红.施沛特治疗膝关节创伤性骨关节炎的疗效观察[J].临床军医杂志, 2004 (32): 73–74
    [152]魏九定,付廷军,夏亚一.施沛特在膝关节骨性关节炎治疗中的应用[J].中国矫形外科杂志, 2006 (14): 1351–1352.
    [153]席子明.施沛特关节内注射治疗膝骨性关节炎临床报告[J].河南大学学报(医学版), 2006 (25): 50–51.
    [154] McNabb, J. A practical guide to joint & soft tissue injection & aspiration. 2nd Ed. LWW, 2010.
    [155]张建华,陶德华等.新型人工关节仿生润滑系统设计及滑液摩擦学特性研究[J].摩擦学学报, 2004 (3): 500–504.
    [156] Etsion, I. State of the Art in Laser Surface Texturing[J]. Journal of Tribology, 2005 (127): 248–253.
    [157] Hamilton, D.B., Walowit, J.A., Allen, C.M. A Theory of Lubrication by Microasperities[J].Transactions of the ASME ; ser. D : Journal of Basic Engineering, 1966 (88): 177–185.
    [158] Willis, E. Surface Finish in Relation to Cylinder Liners[J]. Wear, 1986 (109): 351–366.
    [159] Saka, N., Tian, H., Suh, N. P. Boundary Lubrication of Undulated Metal Surfaces at Elevated Temperatures[J]. Tribology Transaction, 1989 (32): 389–385.
    [160] Suh, N. P., Mosleh, M., Howard, P. S. Control of Friction[J]. Wear, 1994 (175): 151–158.
    [161] Etsion, I., Kligerman, Y., Halperin, G.‘Analytical and Experimental Investigation of Laser–Textured Mechanical Seal Faces[J]. Tribology Transaction, 1999 (42): 511–516.
    [162] Etsion, I., Burstein, L. A Model for Mechanical Seals with Regular Microsurface Structure[J]. Tribology Transaction, 1996 (39): 677–683.
    [163] Ranjan, R., Lambeth, D. N., Tromel, M., Goglia, P., Li, Y. Laser Texturing for Low–Flying–Height Media[J]. Journal of Applied Physics, 1991 (69): 5745–5747.
    [164] Zhou, L., Kato, K., Vurens, G., Talke, F. E. The Effect of Slider Surface Texture on Flyability and Lubricant Migration under Near Contact Conditions[J]. Tribology International, 2003 (36): 269–277.
    [165] Komvopoulos, K. Adhesion and Friction Forces in Microelectromechanical Systems: Mechanisms, Measurement, Surface Modification Techniques and Adhesion Theory[J]. Journal of Adhesion Science and Technology, 2003 (17): 477–517.
    [166] Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I. The Effect of Laser Texturing of Steel Surfaces and Speed–Load Parameters on the Transition of Lubrication Regime from Boundary to Hydrodynamic[J]. Tribology Transaction, 2004 (47): 299–307.
    [167] Schneider, Y. G. Formation of Surfaces with Uniform Micropatterns on Precision Machine and Instrument Parts[J]. Precision Engineering, 1984 (6): 219–225.
    [168] Wang, X., Kato, K., Adachi, K. The Lubrication Effect of Micro–Pits on Parallel Sliding Faces of SiC in Water[J]. Tribology Transaction, 2002 (45): 294–301.
    [169] Wang, X., Kato, K. Improving The Anti–Seizure Ability of SiC Seal in Water with RIE Texturing[J]. Tribology Letters, 2003 (14): 275–280.
    [170] Wang, X., Kato, K., Adachi, K., Aizawa, K. Loads Carrying Capacity Map for The Surface Texture Design of SiC Thrust Bearing Sliding in Water[J]. Tribology International, 2003 (36): 189–197.
    [171] Wang, X., Kato, K., Adachi, K., Aizawa, K. The Effect of Laser Texturing of SiC Surfaceon the Critical Load for the Transition of Water Lubrication Mode from Hydrodynamic to Mixed[J]. Tribology International, 2001 (34): 703–711.
    [172] Stephens, L. S., Siripuram, R., Hyden, M., McCartt, B. Deterministic Micro Asperities on Bearings and Seals Using a Modified LIGA Process[J]. Journal of Engineering for Gas Turbines and Power, 2004 (126): 147–154.
    [173] Fang, H.W., Sua, Y.C., Huang, C.H., Yang, C.B. Influence of biological lubricant on the morphology of UHMWPE wear particles generated with microfabricated surface textures[J]. Materials Chemistry and Physics, 2006 (95): 280–288.
    [1] Im, G.I., Qureshi, S.A., Kenney, J., Rubash, H.E., Shanbhag, A.S. Osteoblast proliferation and maturation by bisphosphonates[J]. Biomaterials, 2004 (25): 4105-4115.
    [2] ISO 10993–5. Biological evaluation of medical devices–– Part 5: Tests for in vitro cytotoxicity. 2009.
    [3] GB/T 16886.医疗器械生物学评价. 1997.
    [4]张建华,苏世虎,陶德华.基于仿生人工关节的评价装置及磨损试验研究[J].摩擦学学报, 2006 (26): 32-35.
    [5] Costigan, P.A., Deluzio, K.J., Wyss, U.P. Knee and hip kinetics during normal stair climbing[J]. Gait and Posture, 2002 (16): 31-37.
    [6] Seireg, A., Arviter, R.J. The Prediction of Muscular Load Sharing and Joint Forces in the Lower Extremities During Walking[J]. Journal of Biomechanics, 1975 (8): 89-102.
    [7] Jalali-Vahid, D., Jagatia, M., Jin, Z.M., Dowson, D. Prediction of lubricating film thickness in UHMWPE hip joint replacements[J]. Journal of Biomechanics, 2001 (34): 261-266.
    [8] Wang, D. Elastohydrodynamic lubrication of point contacts for layers of &‘soft’solids and monolithic &‘hard’materials in the transient bouncing ball problem[Ph.D. Thesis]. University of Leeds, 1994.
    [9]雒建斌,张朝辉,温诗铸.薄膜润滑研究的回顾与展望[J].中国工程学, 2003 (5): 84-89.
    [10] Sawae, Y., Murakami, T., Chen, J. Effect of synovia constituents on friction and wear of ultra-high molecular polyethylene sliding against prosthetic joint materials[J]. Wear, 1998 (216): 213-219.
    [11] Shanbhag, A.S., Hasselman, C.T., Rubash, H.E., Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model[J]. Clinical Orthopaedics & Related Research, 1997 (344): 33-43.
    [12] Millett, P.J., Allen, M.J., Bostrom, M.P. Effects of alendronate on particle-induced osteolysis in a rat model[J]. The Journal of Bone and Joint Surgery [Am], 2002 (84): 236-249.
    [13] Venesmaa, P.K. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty: a prospective randomized study[J]. Journal of Bone and Mineral Research, 2001 (16): 2126-2131.
    [14] Smith, E.J., McEvoy, A., Little, D.G., Baldock, P.A., Eisman, J.A., Gardiner, E.M. Transient retention of endochondral cartilaginous matrix with bisphosphonate treatment in a longterm rabbit model of distraction osteogenesis[J]. Journal of Bone and Mineral Research, 2004 (19): 1698-1705.
    [15] Little, D.G., Smith, N.C., Williamsm P.R., Briody, J.N., Bilston, L.E., Smith E.J., Gardiner, E.M., Cowell, C.T. Zoledronic acid prevents osteopenia and increases bone strength in a rabbit model of distraction osteogenesis[J]. Journal of Bone and Mineral Research, 2003 (8): 1300-1307.
    [16] Saikko, V. Effect of Lubricant Protein Concentration on the Wear of Ultra-High Molecular Weight Polyethylene Sliding Against a CoCr Counterface[J]. ASME Journal of Tribology, 2003 (125): 638-642.
    [17] Haynes, C.A., Tamura, K., Korfer, H.R., Blanch, H.W., Prausnitz, J.M. Thermodynamic properties of aqueous alphachymotrypsin solutions from membrane osmometry measurements[J]. The Journal of Physical Chemistry, 1992 (96): 905-912.
    [18] Jin, L., Yu, Y.X., Gao, G.H. A molecular-thermodynamic model for the interactions between globular proteins in aqueous solutions: Applications to bovine serum albumin (BSA), lysozyme,α-chymotrypsin, and immuno-gamma-globulins (IgG) solutions[J]. The Journal of Colloid and Interface Science, 2006 (304): 77-83.
    [19]雒建斌,路新春,温诗铸.薄膜润滑研究的进展与问题[J].自然科学进展, 2000 (10): 1057-1065.
    [20] Toshio, K., Gerard, A.A., Van, C.M., Kadoya, Y., Yamano, Y. Constituents and pH changes in protein rich hyaluronan solution affect the biotribological properties of artificial articular joints[J]. Journal of Biomechanics, 2001 (34): 1031-1037.
    [1] Amstutz, H.C., Le Duff, M.J. Background of metal-on-metal resurfacing[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2006 (220): 85-94.
    [2] Yan Y., Neville A., Dowson D. Biotribocorrosion–an appraisal of the time dependence of wear and corrosion interactions: I. The role of corrosion[J]. Journal of Physics D: Applied Physics, 2006 (39): 3200-3205.
    [3] http://baike.baidu.com/view/2075408.htm. 2010.
    [4]姜同川.正交试验设计[M].山东科学技术出版社, 1985.
    [5]陈魁.试验设计与分析(第2版)[M].清华大学出版社, 2005.
    [6] Gispert, M.P., Serro, A.P., Colaco, R., Saramago, B. Friction and wear mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants[J]. Wear, 2006 (260): 149-158.
    [7] Roba, M., Naka, M., Gautier, E., Spencer, N.D., Crockett, R. The absorption and lubrication behavior of synovial fluid proteins and glycoproteins on the bearing-surface materials of hip replacement[J]. Biomaterials, 2009 (30): 2072-2078.
    [8] Yan, Y., Neville, A., Dowson, D. Biotribocorrosion of CoCrMo orthopaedic implant materials-Assessing the formation and effect of the biofilm[J]. Tribology International, 2007 (40): 1492-1499.
    [9] Yan, Y., Neville, A., Dowson, D., Williams, S. Tribocorrosion in implants—assessing high carbon and low carbon Co–Cr–Mo alloys by in situ electrochemical measurements[J]. Tribology International, 2006 (39): 1509-1517.
    [1] ASTM, G99–04a, Standard Test Method for Wear Testing with a Pin–on–Disk Apparatus.
    [2] Hamilton, M.A., Sucec, M.C., Fregly, B.J., Banks, S.A., Sawyer, W.G. Quantifying multidirectional sliding motions in total knee replacements[J]. ASME Journal of Tribology, 2005 (127): 280-286.
    [3] Kawanabe, K., Clark, I.C., Tamura, J., Aklagi, M., Good, V.D., et al. Effects of A-P translation and rotation on the wear of UHMWPE in a total knee joint simulator[J]. Journal of Biomedical Materials Research, 2001 (54): 400-406.
    [4] Villarraga, M.L., Kurtz, S.M., Herr, M.P., Edidin, A.A. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing[J]. Journal of Biomedical Materials Research, 2003 (66): 298-309.
    [5] Wang, A., Sun, D.C. et al. Orientation softening in the deformation and wear of ultra high molecular weight polyethylene[J]. Wear, 1997 (203): 230-241.
    [6] Charnley, J. The wear of plastics materials in the hip-joint[J]. Plastics Rubber, 1976 (1): 59-63.
    [7] Saikko, V. A Hip Wear Simulator with 100 Test Stations[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2005 (219): 309-318.
    [8] Suh, N.P.,谢友柏等译.公理设计[M].机械工业出版社, 2004.
    [9] Frey, D., Dym, C. Validation of design methods: lessons from medicine[J]. Research in Engineering Design, 2006 (17): 45-57.
    [10] Hall, R.M., Unsworth, A., Siney, P., Wroblewski, B.M. Wear in retrieved Charnley acetabular sockets[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1996 (210): 197–207.
    [11] Lewis, G. Polyethylene wear in total hip and knee arthroplasties[J]. Journal of Biomedical Materials Research, 1997 (38): 55-75.
    [12] Galvin, A.L., Williams, S., Hatto, P., Thompson, J., Isaac, G., et al. Comparison of wear of ultra high molecular weight polyethylene acetabular cups against alumina ceramic and chromium nitride coated femoral heads[J]. Wear, 2005 (259): 972-976.
    [13] Saikko, V., Calonius, O., Ker?nen, J. Wear of conventional and cross-linked ultra high molecular weight polyethylene accetabular cups against polished and roughened CoCr femoral heads in biaxial hip simulator[J]. Journal of Biomedical Materials Research, 2002 (63): 848-853.
    [14] McKellop, H.A., Campbell, P., Park, S.H., Schmalzried, T.P., Grigoris, P., Amstutz, H.C., Sarmiento, A. The origin of submicron polyethylene wear debris in total hip arthroplasty[J]. Clinical Orthopaedics & Related Research, 1995 (311): 3–20.
    [15] Tripper, J.L., Firkins, P.J., Besong, A.A., Barbour, P.S.M., Nevelos, J., Stone, M.H., Ingham, E., Fisher, J. Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator[J]. Wear, 2001 (250): 120-128.
    [16] Wang, A., Essner, A. Three-body wear of UHMWPE acetabular cups by PMMA particles against CoCr, alumina and zirconia heads in a hip joint simulator[J]. Wear, 2001 (250): 212-216.
    [17] Yamaoto, K., Imakiire, A., Masaoka, T., Shishido, T., Mizoue, T., Clark, I. C., Shoji, H., Kawanabe, K., Tamura, J. Wear mode and wear mechanism of retrieved acetabular cups[J]. International Orthopaedics, 2003 (27): 286-290.
    [1] Huiskes, R. Basic Orthopaedic Biomechanics, Van C. Mow and Wilson C. Hayes, Raven Press, Ltd., New York, 1991.
    [2] Calonius, O., Saikko, V. Analysis of relative motion between femoral head and acetabular cup and advances in computation of the wear factor for the prosthetic hip joint[J]. Acta Polytechnica, 2003 (43): 43–54.
    [3] Rowe, P.J., Myles C.M., Walker, C., Nutton, R. Knee joint kinematics in gait and other functional activities measured using flexible eletrogoniometry: how much knee motion is sufficient for normal daily life?[J]. Posture, 2000 (12): 143–155.
    [4] Calonius, O., Saikko, V., Force track analysis of contemporary hip simulators[J]. Journal of Biomechanics, 2003 (36): 1719–1726.
    [5] Dowson, D., Hardaker, C., Flett, M., Isaac, G.H. A hip joint simulator study of the performance of metal-on-metal joints: Part II: Design[J]. The Journal of Arthroplasty, 2004 (19): 124–130.
    [6] Saikko, V., Calonius, O., Slide track analysis of the relative motion between femoral head and acetabular cup in walking and in hip simulators[J]. Journal of Biomechanics, 2002 (35): 455–464.
    [7] Mckellop, H.A., Campell P., Amstutz H.C., Sarmiento A. The origin of submicron polyethylene wear debris in total hip arthroplasty[J]. Clinical Orthopaedics & Related Research, 1995 (311): 3–20.
    [8] Ingham, E., Fisher, J. The role of macrophages in osteolysis of total joint replacement[J], 2005 (26): 1271–1286.
    [9] Wang, A., et al. Mechanistic and morphological origins of Ultra high molecular weight polyethylene wear debris in total joint replacement prostheses[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1996 (210): l141–155.
    [10] Ahlroos, T., Saikko, V. Wear of prosthetic joint materials in various lubricants[J], Wear, 1997 (211): 113–119.
    [11]张建华,苏世虎,陶德华.基于仿生人工关节的评价装置及磨损试验研究[J].摩擦学学报, 2006 (26): 32–35.
    [12] Johnston, R.C., Smidt, G.L. Measurement of hip–joint motion during walking–evaluation of an electrogoniometrec method[J]. The Journal of Bone and Joint Surgery, 1969 (51): 1083–1094.
    [13]孙桓,陈作模.机械原理[M].高等教育出版社, 1996.
    [14] Müller, O., Martini, F., et al. Three-dimensional measurements of the pressure distribution in artificial joints with a capacitive sensor array[J]. Journal of Biomechanics, 2004 (37): 1623–1625.
    [15] Zhen, L., Harry, M., et al. Potential Thermal Artifacts in hip joint wear simulators[J]. Journal of Biomedical Materials Research, 1999 (48): 458–464.
    [16] Saikko, V. A three-axis hip joint simulator for wear and friction studies on total hip prostheses[J]. Journal of Engineering in Medicine, 1996 (210): 175–185.
    [17] Calonius, O., and Saikko, V. Slide Track Analysis of Eight Contemporary Hip Simulator Designs[J]. Journal of Biomechanics, 2002 (35): 1439–1450.
    [18] Reinisch, G., Jüdmann, K.P., Plitz, W., et al. Ein neuer, der ISO/FDIS 14242-1 entsprechender Huftsimulator: E-SIM[J]. Biomedizinische Technik, 2001 (46): 362–365.
    [19] Barbour, P.S.M., Stone, M.H., Fisher, J. A hip joint simulator study using simplified loading and motion cycles generating physiological wear paths and rates[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1999 (213): 455-467.
    [20] Hua, Z.K., Zhang J,H. A new simulator for bio-tribological study[J], Journal of Bionic Engineering, 2008 (5 Suppl.): 143-147.
    [21] Atkinson, J.R., Dowson, D., Isaac, G.H., et al. Laboratory wear tests and clinical observations of the penetration of femoral heads into acetabular cups in total replacement hip joints II: A microscopical study of the surfaces of charnley polyethylene acetabular sockets[J]. Wear, 1985 (104): 217–224.
    [22] Essner, A., Schmidig, G., Wang, A. The clinical relevance of hip joint simulator testing: In vitro and in vivio comparisons[J]. Wear, 2005 (259): 882–886.
    [1] Joseph, D., Hena, Z. Metal ion, Modern Hip Resurfacing[M]. Springer, 2009.
    [2] Esposito, C., Walter, W.L., Campbell, P., Roques A. Squeaking in Metal-on-Metal Hip Resurfacing Arthroplasties[J]. Clinical Orthopaedics & Related Research, 2010 (468): 2333~2339.
    [3]沈壕.声学测量[M].科学出版社, 1986.
    [4]陈克安,曾向阳,李海英.声学测量[M].科学出版社, 2005.
    [5]王佐民.噪声与振动测量[M].科学出版社, 2009.
    [6] ISO 3745-2003. Acoustics-Determination of sound power levels of noise sources using sound pressure-Precision methods for anechoic and hemi-anechoic rooms, 2003.
    [7]师汉民等.机械振动系统[M].华中理工大学出版社, 1992.
    [8]陈光雄,石心余.在有或无摩擦噪声状态下磨痕形貌的观察[J].中国表面工程, 2002 (2): 21-23.
    [9] Walter, W.L., Insley, G.M., Walter, W.K., Tuke, M.A. Edge Loading in Third Generation Alumina Ceramic-on-Ceramic Bearings[J]. The Journal of Arthroplasty, 2004 (19): 402~413.
    [10] Keurentjes, J.C., Kuipers, R.M., Wever, D.J., Schreurs, B.W. High incidence of squeaking in THAs with alumina ceramic-on-ceramic bearings[J]. Clinical Orthopaedics & Related Research, 2008 (466): 1438~1443.
    [11] Restrepo, C., Parvizi, J., Kurtz, S.M., Sharkey, P.F., Hozack, W.J., Rothman, R.H. The noisy ceramic hip: Is component malpositioning the cause?[J]. The Journal of Arthroplasty, 2008 (23): 643~649.
    [12] Walter, W.L., Gillies, R., Donohoo, S. Acoustic analysis of squeaking hips[C]. Read at the Australian Orthopaedic Association 67th Annual Scientific Meeting, Gold Coast, Australia. 2007, Paper HP21.
    [1] Walter, W.L., Yeung, E., Esposito, C. A review of squeaking hips[J]. Orthopaedic Advances, 2010 (18): 319-326.
    [2] Jin, Z.M. Elastohydrodynamic lubrication of a circular point contact for a compliant layered surface bonded to a rigid substrate. Part 2: numerical results[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2000 (214): 281-289.
    [3] Jalali-Vahid, D., Jagatia, M., Jin, Z.M., Dowson, D. Prediction of lubricating film thickness in UHMWPE hip joint replacements[J]. Journal of Biomechanics, 2001 (34): 261-266.
    [4] Keurentjes, J.C., Kuipers, R.M., Wever, D.J., Schreurs, B.W. High incidence of squeaking in THAs with alumina ceramic-on-ceramic bearings[J]. Clinical Orthopaedics & Related Research, 2008 (466): 1438-1443.
    [5] Jarrett, C.A., Ranawat, A.S., Bruzzone, M., Blum, Y.C., Rodriguez, J.A., Ranawat, C.S. The squeaking hip: A phenomenon of ceramic-on-ceramic total hip arthroplasty[J]. The Journal of Bone and Joint Surgery [Am], 2009 (91): 1344-1349. .
    [6] Walter, W.L., O’toole, G.C., Walter, W.K., Ellis, A., Zicat, B.A. Squeaking in ceramicon-ceramic hips: The importance of acetabular component orientation[J]. The Journal of Arthroplasty, 2007 (22): 496-503.
    [7] Restrepo, C., Parvizi, J., Kurtz, S.M., Sharkey, P.F., Hozack, W.J., Rothman, R.H. The noisy ceramic hip: Is component malpositioning the cause?[J]. The Journal of Arthroplasty, 2008 (23): 643-649.
    [8]王宏杰,郭文刚,董兆辉.激光刻蚀技术的应用[J].红外与激光工程, 2004 (33): 469-472.
    [9] Chevillotte, C., Trousdale, R.T., Chen, Q., Guyen, O. Hip Squeaking, A biomechanical study of ceramic-on-ceramic bearing surfaces[J]. Clinical Orthopaedics & Related Research, 2009 (468): 345-350.
    [10] Iarocivi, A., Onisoru, J. Noisy ceramic-on-ceramic hips, overview of the squeaqingphenomenon[C]. SISOM 2010 and Session of the Commission of Acoustics, Bucharest, 2010: 312-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700