基于太赫兹时域光谱的物质定性鉴别和定量分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹(THz)波是目前国际学术界公认的一个非常重要的前沿热点领域。由于THz波具有较强的光谱分辨本领以及良好的透视性和安全性,THz技术被认为在物质检测方面具有广阔的应用前景。太赫兹时域光谱(THz-TDS)技术是基于飞秒超快激光技术的THz波段光谱测量新技术,它是目前应用THz波研究物质的主要技术之一。本文对基于THz-TDS技术的物质定性鉴别和定量分析方法进行了系统研究,所取得的主要研究成果为:
     1.对THz-TDS技术在安全检查领域中的爆炸物探测和识别方法进行了研究。提出了一种基于模糊聚类分析的模糊模式识别方法,成功应用于爆炸物的THz光谱分类和识别中。通过对多种单质炸药和混合炸药及几种可能与它们混淆的物质的THz特征吸收光谱进行研究,提取它们在0.2~2.2THz频率范围内4个相对较强的特征吸收峰作为分类识别的特征参数。首先,用基于模糊等价关系的模糊聚类分析方法对这几种物质的THz特征吸收谱进行聚类训练,获得样品分类并形成标准THz吸收光谱模型库;然后,选用与训练样本主体成分相同的两种物品作为待识别对象,采用基于择近原则的模糊模式识别方法进行了成功识别。研究结果表明,基于模糊聚类分析的模糊模式识别方法对THz吸收谱具有较强的相似特征聚类功能和较高的识别率,为THz光谱技术用于爆炸物的检测和识别提供了一种有效的方法。
     2.对THz-TDS技术在无损检测和质量控制领域中的物质定性鉴别方法进行了研究。首次尝试将主成分分析(PCA)和模糊模式识别相结合的方法应用于生物分子的THz光谱识别中,并以一些典型氨基酸和糖类生物分子的THz透射谱作为实验样本证明了此方法的可行性。首先,应用主成分分析法对原始光谱变量进行降维处理,提取生物分子样品的THz光谱特征信息,获得样品分类并形成标准THz光谱模型库;然后,用选取的主成分得分矩阵代替原始光谱变量输入模糊模式识别模型中,采用基于择近原则的模糊识别方法对样品进行了成功识别。研究结果表明,以生物分子的THz光谱作为数据特征,采用主成分分析与模糊模式识别相结合的方法实现生物分子的识别和鉴定是可行的,为提高生物分子的THz光谱识别准确率和实现生物分子THz光谱的自动识别提供了一种新的有效的分析方法,在食品安全、药品安全及药物质量控制和成分分析等领域具有重要的现实意义和应用价值。
     3.对THz-TDS技术在无损检测和质量控制领域中的物质定量分析方法进行了研究。提出了一种应用THz-TDS技术结合化学计量学方法对多组分药物混合物中药物活性成分(API)和药用辅料的含量进行同时定量测定的方法,并以无水茶碱、乳糖一水合物和硬脂酸镁三元药物混合物75个样品及对乙酰氨基酚、乳糖一水合物、微晶纤维素和可溶性淀粉四元药物混合物100个样品作为实验介质验证了所提方法的可行性和有效性。实验采用THz-TDS系统测量了无水茶碱、乳糖一水合物和硬脂酸镁三元药物混合物及对乙酰氨基酚、乳糖一水合物、微晶纤维素和可溶性淀粉四元药物混合物的THz吸收光谱,并采用主成分回归(PCR)和偏最小二乘回归(PLS)两种多元校正方法分别建立了THz吸收谱与多元药物混合物各组分含量的定量回归模型,同时获得了混合物中药物活性成分和药用辅料的含量。PLS回归取得更好结果,其中三元混合物两组分含量的PLS定量模型校正及预测相关系数R均高于0.98,四元混合物中对乙酰氨基酚、乳糖一水合物、微晶纤维素和可溶性淀粉含量的PLS定量模型校正及预测相关系数R均分别高于0.93,0.98,0.63和0.86。研究结果表明,THz-TDS技术结合化学计量学方法建立定量分析模型能够实现对多元混合物成分含量的无损非破坏定量分析,在药物分析等领域将有广阔的应用价值。
     4.对多种特征谱区筛选算法进行了深入研究,并成功引入到多元混合物的THz光谱定量分析中,有效提高了多元混合物THz光谱定量分析模型的精度和降低了模型复杂度。实验利用THz-TDS系统测量了乳糖一水合物、对乙酰氨基酚、微晶纤维素和可溶性淀粉四元药物混合物的THz吸收光谱,并分别尝试采用常规区间偏最小二乘(iPLS)、向后区间偏最小二乘(biPLS)、联合区间偏最小二乘(siPLS)和移动窗口偏最小二乘(mwPLS)谱区筛选方法对多元混合物的THz吸收光谱进行特征子区间优选,建立了THz吸收谱与四元混合物中乳糖一水合物含量之间的定量回归模型。不同谱区筛选算法所得的结果表明,mwPLS谱区筛选模型得到的结果相对最优,其校正集和预测集相关系数R分别为0.9960和0.9951,交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.9803和1.1141。研究结果表明,采用特征谱区筛选方法可以有效选择多元混合物THz吸收光谱的特征区间,剔除多元混合物THz吸收光谱中不相关或非线性变量的信息,提高模型精度和降低模型复杂性,实现对多元混合物成分含量快速、高效、无损的定量检测,在生物、食品和药物分析等领域将有广阔的发展前景和应用价值。
In recent years, terahertz (THz) wave has become an extremely attractive researchfield. Since THz wave exhibits the properties of spectroscopy, good penetration andsafety, THz technology has promising applications for the detection and identification ofmaterials. Terahertz time-domain spectroscopy (THz-TDS) is a new technique thatapplied to spectroscopic measurement based on ultrafast femtosecond laser, and it iscurrently a key technique for the study of materials using THz radiation. Thisdissertation is focusd on developing new methods for qualitative and quantitativedetection of materials in the fields of security inspection, nondestructive testing (NDT)and quality control (QC) based on THz-TDS. The author’s major contributions areoutlined as follows:
     1. Methods for detection and identification of explosives in the field of securityinspection based on THz-TDS have been studied. An approach for automaticidentification of THz spectra of explosives is proposed based on fuzzy patternrecognition with fuzzy cluster analysis. On the basis of studying the absorption spectraof several pure explosives, mixed explosives and potential confusion materials,fourrelatively strong characteristic absorption peaks in the frequency range from0.2to2.2THz are extracted as the characteristic parameters of classification and recognition, andfuzzy pattern recognition is used to carry out the classification and recognition of theirTHz characteristic absorption spectra. Firstly, fuzzy cluster analysis method based onfuzzy equivalent matrix is used to cluster the THz absorption spectra of these materials,thus the sample clustering is obtained and the standard model library of THz absorptionspectra is formed. Secondly, two materials, which have the same main ingredient as thatof the training samples, are used as the objects to be identified; and the fuzzy patternrecognition method based on the principle of fuzzy closeness optimization is adopted toidentify the objects. Study results indicate that the fuzzy pattern recognition methodbased on fuzzy cluster analysis has strong similar character clustering function and highrecognition rate for THz absorption spectra, which provides an effective method in thedetection and identification of explosives using THz spectroscopy.
     2. Methods for qualitative detection of materials in the fields of nondestructivetesting and quality control based on THz-TDS have been studied. We report the first useof principal component analysis (PCA) combined with fuzzy pattern recognition toidentify the THz spectra of biomolecules in this dissertation, and THz transmittancespectra of some typical amino acid and saccharide biomolecular samples are investigated to prove its feasibility. Firstly, PCA is applied to reduce the dimensionalityof the original spectrum data and extract features of the data. Secondly, instead of theoriginal spectrum variables, the selected principal component scores matrix is fed intothe model of fuzzy pattern recognition, where a principle of fuzzy closeness basedoptimization is employed to identify those samples. Study results demonstrate that THzspectroscopy combined with PCA and fuzzy pattern recognition can be efficientlyutilized for automatic identification of biomolecules. The proposed approach provides anew effective method in the detection and identification of biomolecules using THzspectroscopy.
     3. Methods for quantitative determination of materials in the fields ofnondestructive testing and quality control based on THz-TDS have been studied. Anapproach for simultaneous quantitative determination of both active pharmaceuticalingredient (API) and excipient concentrations of multicomponent pharmaceuticalmixtures is proposed using THz-TDS with chemometrics, and75ternary mixturesformulated with anhydrous theophylline, lactose monohydrate, magnesium stearate and100quaternary mixtures composed of acetaminophen, lactose monohydrate,microcrystalline cellulose and soluble starch are investigated to prove its feasibility andefficiency. The THz spectra for ternary mixtures of anhydrous theophylline, lactosemonohydrate, magnesium stearate, and quaternary mixtures of acetaminophen, lactosemonohydrate, microcrystalline cellulose and soluble starch are measured usingTHz-TDS. Two multivariate calibration methods, principal component regression (PCR)and partial least squares (PLS) regression, are employed to correlate THz absorbancespectra with the pharmaceutical tablet concentrations. Both API and excipientconcentrations of mixtures are predicted simultaneously, and the PLS method providesbetter result than PCR method. The correlation coefficients of calibration (Rcal) andvalidation (Rval) for ternary mixtures’ components, anhydrous theophylline and lactosemonohydrate, are all more than0.98. The Rcaland Rvalfor quaternary mixtures’components, acetaminophen, lactose monohydrate, microcrystalline cellulose andsoluble starch, are all more than0.93,0.98,0.63and0.86, respectively. Experimentalresults show that THz-TDS combined with chemometrics is feasible in nondestructivequantitative analysis of multicomponent mixtures, and it can be widely applied in thefields of pharmaceutical analysis and others.
     4. Interval selection algorithms are investigated systematically in this dissertation,and THz-TDS coupled with these algorithms is used to perform quantitative analysis of component concentrations in multicomponent mixtures, which can effectively improvethe precision and reduce the complexity for the quantitative analysis models. The THzspectra of100quaternary pharmaceutical mixtures composed of lactose monohydrate,acetaminophen, microcrystalline cellulose and soluble starch are measured usingTHz-TDS system. Four spectral interval selection methods, including interval partialleast-squares regression (iPLS), backward interval PLS (biPLS), synergy interval PLS(siPLS) and moving window PLS (mwPLS), are employed to select spectral intervals ofTHz absorbance spectra of multicomponent mixtures and correlate THz absorbancespectra with the concentrations of lactose monohydrate. Compared to the other threeinterval selection methods and full-spectrum PLS, the mwPLS method yields the mostaccurate result. The optimal mwPLS model is obtained with higher correlationcoefficient for calibration (RC) of0.9960, higher correlation coefficient for prediction(RP) of0.9951, lower root mean square error of cross-validation (RMSECV) of0.9803,and lower root mean square error of prediction (RMSEP) of1.1141. Study resultsindicate that spectral interval selection combined with THz-TDS could be successfullyapplied as an accurate and rapid method to determine component concentrations inmulticomponent mixtures, and it has potential application in the fields of biology, food,pharmaceutical analysis and so on.
引文
采用以上7个子类建立标准模型库A1, A2, A3, A4, A5, A6,A7,如表4.5所示,其中分别表示以上所划分的7个子类构成的标准模型,B1~B4分别为待定样本P1~P4。采用与前一小节相同的识别方法对4个待定样本进行识别,所得识别结果如表4.6所示,可见4个待定样本同样被成功地识别。其中,L-丙氨酸(L-Alanine)被识别为丙氨酸类(C11);麦芽七糖(Maltoheptaose)被识别为麦芽低聚糖类(C21);海藻糖300K(Trehalose300K)被识别为海藻糖类(C22);G0.0代环三磷腈核PMMH树枝形聚合物(Cyclotriphosphazene CorePMMH Dendrimer G=0.0)被识别为环三磷腈核PMMH树枝形聚合物类(C32)。识别结果表明本文提出的主成分分析法与模糊模式识别方法相结合的方法能有效地对不同种类的氨基酸、糖类生物分子和非生物分子进行识别。
    由表6.5可见,全光谱PLS模型的精度不高,其校正及预测相关系数RC和RP分别为0.9406和0.9372,交互验证均方根误差RMSECV和预测均方根误差RMSEP分别为3.7554和4.3561,且模型显得较复杂,其采纳的主因子数为10。通过对区间划分数、区间联合数、最佳主因子数和区间选择等因素的优选建立的iPLS、biPLS、siPLS和mwPLS谱区筛选模型与之相比模型的精度都有了较大提高,且它们采纳的主因子数都少于全光谱PLS模型,模型也得到了简化。其中mwPLS建
    [1] Ferguson B,张希成.太赫兹科学与技术研究回顾.物理,2003,32(5):286-293.
    [2]刘盛纲.太赫兹科学技术的新发展.中国基础科学,2006,8(1):7-12.
    [3]姚建铨,路洋,张百钢,等. THz辐射的研究和应用新进展.光电子·激光,2005,16(4):503-510.
    [4] Huang G T, Gravitz L, Amato I, et al.10emerging technologies that will changeyour world. Technology Review,2004,107(1):32-50.
    [5] Wu Q, Zhang X C. Ultrafast electro-optic field sensors. Applied Physics Letters,1996,68(12):1604-1606.
    [6] Rudd J V, Johnson J, Mittleman D M. Quadruple radiation from terahertz dipoleantennas. Optics Letters,2000,25(20):1556-1558.
    [7] Parrotta E P J, Sun Y, Pickwell-MacPherson E. Terahertz spectroscopy: Its futurerole in medical diagnoses. Journal of Molecular Structure,2011,1006(1-3):66-76.
    [8] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for securityapplications-explosives, weapons and drugs. Semiconductor Science andTechnology,2005,20(7): S266-S280.
    [9] May R K, Evans M J, Zhong S, et al. Terahertz in-line sensor for direct coatingthickness measurement of individual tablets during film coating in real-time.Journal of Pharmaceutical Sciences,2011,100(4):1535-1544.
    [10] Shen Y C, Taday P F. Development and application of terahertz pulsed imagingfor nondestructive inspection of pharmaceutical tablet. IEEE Journal of SelectedTopics in Quantum Electronics,2008,14(2):407-415.
    [11] Caygill J S, Davis F, Higson S P J. Current trends in explosive detectiontechniques. Talanta,2012,88:14-29.
    [12] Singh S, Singh M. Explsives detection systems (EDS) for aviation security. SignalProcessing,2003,83(1):31-55.
    [13] Krug K D, Stein J A. Advanced dual energy X-ray for explosives detection.Proceedings of the First International Symposium on Explosive DetectionTechnology,1991, pp.282-284.
    [14] Macdonald R D R. Design and implementation of a dual-energy x-ray imagingsystem for organic material detection in an airport security application.Proceedings of SPIE,2001,4301:31-41.
    [15] Gozani T, Ryge P, Shea P, et al. Explosive detection system based on thermalneutron activation. IEEE Aerospace and Electronic Systems Magazine,1989,4(12):289-292.
    [16] Buffler A. Contraband detection with fast neutrons. Radiation Physics andChemistry,2004,71(3-4):853-861.
    [17] Beyerle A, Hurley J P, Tunnell L. Design of an associated particle imaging system.Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment,1990,299(1-3):458-462.
    [18] Itozaki H, Ota G. Nuclear quadrupole resonance for explosive detection.International Journal on Smart Sensing and Intelligent Systems,2008,1(3):705-715.
    [19] Anferov V P, Mozjoukhine G V, Fisher R. Pulsed spectrometer for nuclearquadrupole resonance for remote detection of nitrogen in explosives. Review ofScientific Instruments,2000,71(4):1656-1659.
    [20] Sinclair G N, Anderton R N, Appleby R. Passive millimeter-wave concealedweapon detection. Proceedings of SPIE,2001,4332:142-151.
    [21] Ewing R G, Atkinson D A, Eiceman G A, et al. A critical review of ion mobilityspectrometry for the detection of explosives and explosive related compounds.Talanta,2001,54(3):515-529.
    [22] Schmid E R. Chromatography and mass spectrometry-An overview.Chromatographia,1990,30(9-10):573-576.
    [23] Ferrer I, Garcia-Reyes J F, Fernandez-Alba A. Identification and quantitation ofpesticides in vegetables by liquid chromatography time-of-flight massspectrometry. Trends in Analytical Chemistry,2005,24(7):671-682.
    [24] Nunez O, Moyano E. LC–MS/MS analysis of organic toxics in food. Trends inAnalytical Chemistry,2005,24(7):683-703.
    [25] Martinez R C, Gonzalo E R, Moran M J A. Sensitive method for thedetermination of organophosphorus pesticides in fruits and surface waters byhigh-performance liquid chromatography with ultraviolet detection. Journal ofChromatography A,1992,607(1):37-45.
    [26] Dinc E, Ustundag O. Application of multivariate calibration techniques to HPLCdata for quantitative analysis of a binary mixture of hydrochlorathiazide andlosartan in tablets. Chromatographia,2005,61(5-6):237-244.
    [27] Williamson L N, Bartlett M G. Quantitative gas chromatography/time-of-flightmass spectrometry: a review. Biomedical Chromatography,2007,21(7):664-669.
    [28] Bonwick G A, Sun C, Abdul-Latif P, et al. Determination of permethrin andcyfluthrin in water and sediment by gas chromatography-mass spectrometryoperated in the negative chemical ionization mode. Journal of Chromatography A,1995,707(2):293-302.
    [29] Afkhami A, Bahram M. Mean centering of ratio spectra as a newspectrophotometric method for the analysis of binary and ternary mixtures.Talanta,2005,66(3):712-720.
    [30] Melgar L Z, Machado S A S. Determination of fenitrothion in commercialformulations by square wave voltammetry and UV-Vis spectroscopy. Journal ofthe Brazilian Chemical Society,2005,16(4):743-748.
    [31] Brouwer E R, Struys E A, Vreuls J J, et al. Automated determination of pyrethroidinsecticides in surface water by column liquid chromatography with diode arrayUV detection, using on-line micelle-mediated sample preparation. Fresenius'Journal of Analytical Chemistry,1994,350(7-9):487-495.
    [32] Stark E, Luchter K, Margoshes M. Near-infrared analysis (NIRA): a technologyfor quantitative and qualitative qnalysis. Applied Spectroscopy Reviews,1986,22(4):335-399.
    [33] Workman J J. Review of process and non-invasive near-infrared and infraredspectroscopy:1993-1999. Applied Spectroscopy Reviews,1999,34(1-2):1-89.
    [34] Adar F, Geiger R, Noonan J. Raman Spectroscopy for Process/Quality Control.Applied Spectroscopy Reviews,1997,32(1-2):45-101.
    [35] Auer M E, Griesser U J, Sawatzki J. Qualitative and quantitative study ofpolymorphic forms in drug formulations by near infrared FT-Raman spectroscopy.Journal of Molecular Structure,2003,661(1-2):307-317.
    [36] Armenta S, Garrigues S, de la Guardia M. Determination of iprodione inagrochemicals by infrared and Raman spectrometry. Analytical&BioanalyticalChemistry,2007,387(8):2887-2894.
    [37] Khanmohammadi M, Armenta S, Garrigues S, et al. Mid-and near-infrareddetermination of metribuzin in agrochemicals. Vibrational Spectroscopy,2008,46(2):82-88.
    [38] Armenta S, Quintas G, Garrigues S, et al. Mid-infrared and Raman spectrometryfor quality control of pesticide formulations. Trends in Analytical Chemistry,2005,24(8):772-781.
    [39] Raman C V, Krishnan K S. A new type of secondary radiation. Nature,1928,121(3048):501-502.
    [40] Raman C V. A change of wave-length in light scattering. Nature,1928,121(3051):619-619.
    [41] Ercegovich C D, Vallejo R P, Gettig R R, et al. Development of aradioimmunoassay for parathion. Journal of Agricultural and Food Chemistry,1981,29(3):559-563.
    [42] Schwalbe M, Dorn E, Beyermann K. Enzyme immunoassay andfluoroimmunoassay for herbicide diclofop-methyl. Journal of Agricultural andFood Chemistry,1984,32(4):734-741.
    [43] Mulchandani A, Chen W, Mulchandani P, et al. Biosensors for directdetermination of organophosphate pesticides. Biosensors and Bioelectronics,2001,16(4-5):225-230.
    [44] Lin T J, Huang K T, Liu C Y. Determination of organophosphorous pesticides by anovel biosensor based on localized surface plasmon resonance. Biosensors andBioelectronics,2006,22(4):513-518.
    [45] Campbell M B, Heilweil E J. Non-invasive detection of weapons of massdestruction using THz radiation. Proceedings of SPIE,2003,5070:38-43.
    [46] Huang F, Schulkin B, Altan H, et al. Terahertz study of1,3,5-trinitro-s-triazine bytime-domain and Fourier transform infrared spectroscopy. Applied Physics Letters,2004,85(23):5535-5537.
    [47] Yamamoto K, Yamaguchi M, Miyamaru F, et al. Noninvasive inspection of C-4explosive in mails by terahertz time-domain spectroscopy. Japanese Journal ofApplied Physics,2004,(43): L414-L417.
    [48] Cook D J, Decker B K, Maislin G, et al. Through container THz sensing:applications for explosives screening. Proceedings of SPIE,2004,5354:55-62.
    [49] Tribe W R, Newnham D A, Taday P F, et al. Hidden object detection: securityapplications of terahertz technology. Proceedings of SPIE,2004,5354:168-176.
    [50] Shen Y, Taday P F, Kemp M C, et al. Terahertz spectroscopy of explosivematerials. Proceedings of SPIE,2004,5619:82-89.
    [51] Huang F, Federici J. Gary D, et al. Noninvasive study of explosive materials bytime domain spectroscopy and FTIR. AIP Conference Proceedings CP760,2005,24:578-585.
    [52] Chen Y Q, Liu H B. Fitch M J, et al. THz diffuse reflectance spectra of selectedexplosives and related compounds. Proceedings of SPIE,2005,5790:19-24.
    [53] Fischer B, Hoffmann M, Helm H, et al. Chemical recognition in terahertztime-domain spectroscopy and imaging. Semiconductor Science and Technology,2005,20: S246-S253.
    [54] Sun J H, Shen J L, Liang L S, et al. Experimental investigation on terahertzspectra of amphetamine type stimulants. Chinese Physics Letters,2005,22(12):3176-3178.
    [55] Li N, Shen J L, Sun J H, et al. Study on the THz spectrum of methamphetamine.Optics Express,2005,13(18):6750-6754.
    [56] Liu H B, Chen Y Q, Bastiaans G J, et al. Detection and identification ofexplosives RDX by THz diffuse reflection spectroscopy. Optics Express,2006,14(1):415-423.
    [57] Allis D G, Prokhorova D A, Korter T M. Solid-state modeling of the terahertzspectrum of the high explosive HMX. The Journal of Physical Chemistry A,2006,110(5):1951-1959.
    [58] Allis D G, Korter T M. Theoretical Analysis of the Terahertz spectrum of the sighexplosive PETN. ChemPhysChem,2006,7(11):2398-2408.
    [59] Chen Y Q, Liu H B, Zhang X C. Experiment and density function theory study onTHz spectra of4-NT and2,6-DNT. International Journal of High SpeedElectronic and System,2007,17(2):283-291.
    [60] Zhong H, Redo-Sanchez A, Zhang X C. Standoff sensing and imaging ofexplosive related chemical and bio-chemical materials using THz-TDS.International Journal of High Speed Electronic and System,2007,17(2):239-249.
    [61] Leahy-Hoppa M R, Fitch M J, Zheng X, et al. Wideband terahertz spectroscopy ofexplosives. Chemical Physics Letters,2007,434:227-230.
    [62] Fitch M J, Leahy-Hoppa M R, Ott E W, et al. Molecular absorption cross-sectionand absolute absorptivity in the THz frequency range for the explosives TNT,RDX, HMX, and PETN. Chemical Physics Letters,2007,443:284-288.
    [63] Leahy-Hoppa M R, Fitch M J, Osiander R, et al. Terahertz spectroscopytechniques for explosives detection. Analytical and Bioanalytical Chemistry,2009,395(2):247-257.
    [64] Wang G Q, Shen J L, Jia Y. Vibrational spectra of ketamine hydrochloride and3,4-methylenedioxymethamphetamine in terahertz range. Journal of AppliedPhysics,2007,102(1):013106.
    [65] Allis D G, Zeitler J A, Taday P F, et al. Theoretical analysis of the solid-stateterahertz spectrum of the high explosive RDX. Chemical Physics Letters,2008,463(1-3):84-89.
    [66] Liu G F, Ma S H, Ji T, et al. Differentiation of illicit drugs with THz time-domainspectroscopy. Nuclear Science and Techniques,2010,21(4):209-213.
    [67] Slingerland E J, Jahngen E G E, Goyette T M, et al. Terahertz absorption spectraof nitromethane. Journal of Quantitative Spectroscopy&Radiative Transfer,2011,112(14):2323-2329.
    [68]曹丙花,侯迪波,颜志刚,等.基于太赫兹时域光谱技术的农药残留检测方法.红外与毫米波学报,2008,27(6):429-432.
    [69]颜志刚,侯迪波,曹丙花,等.吡虫啉的太赫兹(THz)光谱研究.光谱学与光谱分析,2008,28(8):1718-1721.
    [70]朱莉,张光新,曹丙花,等.苏丹红I号的太赫兹光谱研究.传感技术学报,2008,21(1):83-87.
    [71] Wang H L, Wang Q. Modeling the THz spectrum of the bentazon. Chinese OpticsLetters,2011,9(11):110011.
    [72] Wang Q, Wang H L. THz spectroscopic investigation of chlorotoluron bysolid-state density functional theory. Chemical Physics Letters,2012,534:72-76.
    [73] Wang X W, Wang Q. The vibrational spectra of bactericide molecules: terahertzspectroscopy and density functional theory calculations. Journal of Physics:Conference Series,2011,276(1):012224.
    [74] Wang X W, Wang Q. Study on terahertz spectra of benzimidazole molecular.2011Chinese Control and Decision Conference,2011, pp.2828-2832.
    [75] Strachan C J, Rades T, Newnham D A, et al. Using terahertz pulsed spectroscopyto study crystallinity of pharmaceutical materials. Chemical Physics Letters,2004,390(1-3):20-24.
    [76] Liu H B, Chen Y, Zhang X C. Characterization of anhydrous and hydratedpharmaceutical materials with THz time-domain spectroscopy. Journal ofPharmaceutical Sciences,2007,96(4):927-934.
    [77] Markelz A G, Roitberg A, Heilweil E J. Pulsed terahertz spectroscopy of DNA,bovine serum albumin and collagen between0.1and2.0THz. Chemical PhysicsLetters,2000,320(1-2):42-48.
    [78] Seber G A F, Lee A J. Linear Regression Analysis, second edition. John Wiley&Sons Inc., Hoboken, New Jersey,2003.
    [79] Hua Y F, Zhang H J. Qualitative and quantitative detection of pesticides withterahertz time-domain spectroscopy. IEEE Transactions on Microwave Theoryand Techniques,2010,58(7):2064-2070.
    [80] Hua Y F, Zhang H J, Zhou H L. Quantitative determination of cyfluthrin inn-hexane by terahertz time-domain spectroscopy with chemometrics methods.IEEE Transactions on Instrumentation and Measurement,2010,59(5):1414-1423.
    [81] Ueno Y, Rungsawang R, Tomita I, et al. Quantitative measurements of aminoacids by terahertz time-domain transmission spectroscopy. Analytical Chemistry,2006,78(15):5424-5428.
    [82]马晓菁,赵红卫,代斌,等.次黄嘌呤及其核苷的THz光谱.物理学报,2008,57(6):3429-3434.
    [83]马晓菁,赵红卫,刘桂锋,等.多种糖混合物的太赫兹时域光谱定性及定量分析研究.光谱学与光谱分析,2009,29(11):2885-2888.
    [84] Zhang Z Y, Yu X H, Zhao H W, et al. Component analysis to isomer mixture withTHz-TDS. Optics Communications,2007,277(2):273-276.
    [85] Zhang Z Y, Ji T, Yu X H, et al. A method for quantitative analysis of chemicalmixtures with THz time domain spectroscopy. Chinese Physics Letters,2006,23(8):2239-2242.
    [86] Liu G F, Zhang Z Y, Ma S H, et al. Quantitative measurement of mixtures byterahertz time-domain spectroscopy. Journal of Chemical Sciences,2009,121(4):515-520.
    [87] Wang Y X, Zhao Z R, Chen Z Q, et al. Terahertz absorbance spectrum fittingmethod for quantitative detection of concealed contraband. Journal of AppliedPhysics,2007,102(11):113108.
    [88] Xiong W, Shen J L, Pan R, et al. A further component analysis for illicit drugsmixtures with THz-TDS. Proceedings of SPIE,2009,7835:73850I.
    [89] Shumyatsky P, Alfano R R. Terahertz sources. Journal of Biomedical Optics,2011,16(3):033001.
    [90] Schmuttenmaer C A. Exploring dynamics in the far-infrared with terahertzspectroscopy. Chemical Reviews,2004,104(4):1759-1779.
    [91] Auston D H, Smith P R. Generation and detection of millimeter waves bypicosecond photoconductivity. Applied Physics Letters,1983,43(7):631.
    [92] Auston D H, Cheung K P. Coherent time-domain far-Infrared spectroscopy.Journal of the Optical Society of America B,1985,2(4):606-612.
    [93] Fattinger Ch, Grischkowsky D. THz beams. Applied Physics Letters,1989,54(6):490-492.
    [94] Hu B B, Zhang X C, Auston D H, et al. Free-space radiation from electro-opticcrystal. Applied Physics Letters,1990,56(6):506-508.
    [95] Xu L, Zhang X C, Auston D H. Terahertz beam generation by femtosecond andoptical pulses in electro-optic materials. Applied Physics Letters,1992,61(15):1784-1786.
    [96] Zhang X C, Ma X F, Jin Y, et al. Terahertz optical rectification from a nonlinearorganic crystal. Applied Physics Letters,1992,61(26):3080-3082.
    [97] Benicewicz P K, Roberts J P, Taylor A J. Scaling of terahertz radiation fromlarge-aperture biased photoconductors. Journal of the Optical Society of AmericaB,1994,11(12):2533-2546.
    [98] Benicewicz P K, Taylor A J. Scaling of terahertz radiation from large-aperturebiased InP photoconductors. Optics Letters,1993,18(16):1332-1334.
    [99] Reimann K. Table-top sources of ultrashort THz pulses. Reports on Progress inPhysics,2007,70(10):1597-1632.
    [100] Zhang X C, Xu J. Introduction to THz wave photonics. Springer, New York,2010.
    [101] Cai Y, Brener I, Lopata J, et al. Design and performance of singular electric fieldterahertz photoconducting antennas. Applied Physics Letters,1997,71(15):2076-2078.
    [102] Huber R, Brodschelm A, Tauser F, et al. Generation and field-resolved detectionof femtosecond electromagnetic pulses tunable up to41THz. Applied PhysicsLetters,2000,76(22):3191-3193.
    [103] Xie X, Dai J M, Zhang X C. Coherent control of THz wave generation inambient air. Physical Review Letters,2006,96(7):075005.
    [104] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectificationin air. Optics Letters,2000,25(16):1210-1212.
    [105] Carr G L, Martin M C, Mckinney W R, et al. High-power terahertz radiationfrom relativistic electrons. Nature,2002,420(14):153-156.
    [106] Karpowicz N, Zhong H, Zhang C L, et al. Compact continuous-wavesubterahertz system for inspection applications. Applied Physics Letters,2005,86(5):054105.
    [107] Dobroiu A, Yamashita M, Ohshima Y N, et al. Terahertz imaging system basedon a backward-wave oscillator. Applied Optics,2004,43(30):5637-5646.
    [108] Bhattacharjee S, Booske J H, Kory C L. Folded waveguide traveling-wave tubesources for terahertz radiation. IEEE Transactions on Plasma Sciences,2004,32(3):1002-1014.
    [109] Garcia-Garcia J, Martin F, Miles R E. Optimization of micromachined reflexklystrons for operation at terahertz frequencies. IEEE Transactions onMicrowave Theory and Techniques,2004,52(10):2366-2370.
    [110] Idehara T, Ogawa I, Mitsudo S, et al. Development of frequency tunable,medium power gyrotrons (gyrotron FU Series) as submillimeter wave radiationsources. IEEE Transactions on Plasma Sciences,1999,27(2):340-354.
    [111] Xu W, Zhang X. Generation of tunable hypersonic Phonons fromtwo-dimensional electron gases under free-electron laser radiations. EurophysicsLetters,1998,42(2):191-196.
    [112] Gornik E, Unterrainer K, Kremser C. Tunable far-infrared solid-state lasersbased on hot holes in germanium. Optical and Quantum Electronics,1991,23(2):S267-S286.
    [113] Kazarinov R F, Suris R A. Possibility of the amplification of electromagneticwaves in a semiconductor with a superlattice. Fizika i Technika Poluprovodnikov,1971,5(4):797-800.
    [114] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science,1994,264(5158):553-556.
    [115] K hler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature,2002,417(6885):156-159.
    [116] Herman G S. Far infrared spectra of nonlinear optical crystals. Proceedings ofSPIE,1995,2379:291-297.
    [117] Shi W, Ding Y J. Continuously tunable and coherent terahertz radiation by meansof phasematched difference-frequency generation in zinc germanium phosphide.Applied Physics Letters,2003,83(5):848-850.
    [118] Kawase K, Shikata J, Ito H. Terahertz wave parametric source. Journal ofPhysics D: Applied Physics,2002,35(3): R1-R14.
    [119] Cherednichenko S, Hammar A, Bevilacqua S, et al. A room temperaturebolometer for terahertz coherent and incoherent detection. IEEE Transactions onTerahertz Science and Technology,2011,1(2):395-402.
    [120] Yang J, Gong X J, Zhang Y D, et al. Research of an infrared pyroelectric sensorbased THz detector and its application in CW THz imaging. Proceedings of SPIE,2009,7385:738521.
    [121] Golay M J E. A pneumatic infra-red detector. Review of Scientific Instruments,1947,18(5):357-362.
    [122] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertziandipoles. Applied Physics Letters,1984,45(3):284-286.
    [123] Grischkowsky D R, Ketchen M B, Chi C C. Capacitance free generation anddetection of subpicosecond electrical pulses on coplanar transmission lines.IEEE Journal of Quantum Electronics,1988,24(2):221-225.
    [124] Jepsen P U, Keiding S R. Radiation patterns from lens-coupled terahertzantennas. Optics Letters,1995,20(8):807-809.
    [125] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams.Applied Physics Letters,1995,67(24):3523-3525.
    [126] Nahata A, Weling A S, Heinz T F. A wideband coherent terahertz spectroscopysystem using optical rectification and electro-optic sampling. Applied PhysicsLetters,1996,69(16):2321-2323.
    [127] Gallot G, Grischkowsky D. Electro-optic detection of terahertz radiation. Journalof the Optical Society of America B,1999,16(8):1204-1212.
    [128] Brener I, Dykaar D, Frommer A, et al. Terahertz emission from electric fieldsingularities in biased semiconductors. Optics Letters,1996,21(23):1924-1926.
    [129] Cai Y, Brener I, Lopata J, et al. Design and performance of singular electric fieldterahertz photoconducting antennas. Applied Physics Letters,1997,71(15):2076-2078.
    [130] Extert M V, Grischkowsky D. Characterization of an optoelectronic terahertzbeam system. IEEE Transactions on microwave theory and Techniques,1990,38(11):1684-1691.
    [131] Westlund M, Andrekson P A, Sunnerud H, et al. High-performanceoptical-fiber-nonlinearity-based optical waveform monitoring. Journal ofLightwave Technology,2005,23(6):2012-2022.
    [132] Grischkowsky D, Keiding S, van Exter M, et al. Far-infrared time-domainspectroscopy with terahertz beams of dielectrics and semiconductors. Journal ofthe Optical Society of America B,1990,7(10):2006-2015.
    [133] Wu Q, Zhang X C. Electrooptic sampling of freely propagating terahertz field.Optical and Quantum Electronics,1996,28(7):945-951.
    [134] Nahata A, Auston D H, Heinz T F, et al. Coherent detection of freely propagatingterahertz radiation by electro-optic sampling. Applied Physics Letters,1996,68(2):150-152.
    [135] Lee Y S. Principles of Terahertz Seience and Technology. Springer,2009.
    [136] Park S G, Melloch M R, Weiner A M. Analysis of terahertz waveforms measuredby photoconductive and electrooptic sampling. IEEE Journal of QuantumElectronics,1990,35(5):810-819.
    [137] Cai Y, Brener I, Lopata J, et al. Coherent terahertz radiation detection: directcomparison between free-space electro-optic sampling and antenna detection.Applied Physics Letters,1998,73(4):444-446.
    [138] Auston D H, Cheung K P, Valdmanis J A, et al. Cherenkov radiation fromfemtosecond optical pulses in electro-optic media. Physical Review Letters,1984,53(16):1555-1558.
    [139] Fattinger Ch, Grischkowsky D. Point source terahertz optics. Applied PhysicsLetters,1988,53(16):1480-1482.
    [140] Fattinger Ch, Grischkowsky D. Terahertz beams. Applied Physics Letters,1989,54(6):490-492.
    [141] Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation withterahertz time-domain spectroscopy. Journal of the Optical Society of America A,2001,18(7):1562-1571.
    [142] Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of materialparameters in terahertz time-domain spectroscopy. IEEE Journal of SelectedTopics in Quantum Electronics,1996,2(3):739-746.
    [143] Duvillaret L, Garet F, Coutaz J L. Highly precise determination of opticalconstants and sample thickness in terahertz time-domain spectroscopy. AppliedOptics,1999,38(2):409-415.
    [144]赵晶晶,葛庆平,张存林. LVQ聚类算法在爆炸物THz光谱识别中的应用.计算机工程与应用,2009,45(18):239-241.
    [145] Li W W, Zhong H, Zhang L L, et al. Identification of chemical materials usingreference-free terahertz transmission spectroscopy and artificial neural networks.Proceedings of SPIE,2009,71581:71581M.
    [146]翟爽,葛庆平.基于太赫兹光谱曲线识别的爆炸物识别方法研究.首都师范大学学报(自然科学版),2009,30(2):6-9.
    [147] Zadeh L A. Fuzzy sets. Information and Control,1965,(8):338-353.
    [148] Li D, Cheng C. New similarity measures of intuitionistic fuzzy sets andapplication to pattern recognitions. Pattern Recognition Letters.2002,23(1-3):221-225.
    [149] Li D F. Some measures of dissimilarity in intuitionistic fuzzy structures. Journalof Computer and System Sciences.2004,68(1):115–122.
    [150] Le K. Fuzzy relation compositions and pattern recognition. Information Sciences,1996,89(1-2):107-130.
    [151] Dunn J C. A graph theoretic analysis of pattern classification via Tamura's fuzzyrelation. IEEE Transactions on Systems, Man and Cybernetics,1974,4(3):310-313.
    [152]吴望名.弗晰图和弗晰树.数学的实践与认识,1980,(4):50-65.
    [153]高新波,谢维信.模糊聚类理论发展及应用的研究进展.科学通报,1999,44(21):2241-2251.
    [154] Zadeh L A. Fuzzy logic. Computer,1988,21(4):83-93.
    [155] Ruspini E H. A new approach to clustering. Information and Control,1969,15(1):22-32.
    [156] Duda R O, Hart P E. Pattern Classification and Scene Analysis. John Wiley&Sons, New York,1973.
    [157] Dunn J C. Well-separated clusters and the optimal fuzzy partitions. Journal ofCybernetics,1974,4(1):95-104.
    [158] Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms.Plenum Press, New York,1981.
    [159]王崇杰,周小波,孙丽媛,等.基于最大隶属原则的核磁共振波谱模糊识别.
    [160] Saadatpour M, Afshar A, Afshar M H. Fuzzy pattern recognition method forassessing soil erosion. Environmental Monitoring and Assessment,2011,180(1-4):385-397.
    [161]王书涛,张金敏,李圆圆,等.基于数学形态学和模糊聚类的旋转机械故障诊断.仪器仪表学报,2012,33(5):1055-1061.
    [162] Huang F, Schulkin B, Aitan H, et al. Terahertz study of1,3,5-trinitro-s-triazineby time-domain and Fourier transform infrared spectroscopy. Applied PhysicsLetters,2004,85(23):5535-5537.
    [163] Lo T, Gregory I S, Baker C, et al. The very far-infrared spectra of energeticmaterials and possible confusion materials using terahertz pulsed spectroscopy.Vibrational Spectroscopy,2006,(42):243-248.
    [164] Yamamoto K, Yamaguchi M, Miyamaru F, et al. Inspection of C-4mail bomb byterahertz spectroscopy. Conference on Lasers and Electro-Optics/InternationalQuantum Electronics Conference and Photonic Applications SystemsTechnologies,2004.
    [165] Fitch M J, Leahy-Hoppa M R, Ott E W, et al. Molecular absorption cross-sectionand absolute absorptivity in the THz frequency range for the explosives TNT,RDX, HMX, and PETN. Chemical Physics Letters.2007,(443):284-288.
    [166] Leahy-Hoppa M R, Fitch M J, Zheng X, et al. Wideband terahertz spectroscopyof explosives. Chemical Physics Letters,2007,(434):227-230.
    [167]王新柯.隐蔽爆炸物的太赫兹检测.北京:首都师范大学,2007.
    [168]何元磊,刘代志,易世华,等.面向目标探测的高光谱图像层次聚类波段选择.仪器仪表学报,2011,32(4):825-830.
    [169]杨宁,张荣标,赵雨琦,等.基于荧光显微拉曼光谱的细菌快速解耦检测方法.仪器仪表学报,2012,33(2):435-441.
    [170] Tribe W R, Newnham D A, Taday P F, et al. Hidden object detection: securityapplications of terahertz technology. Proceedings of SPIE,2004,5534:168-176.
    [171] Walther M, Plochocka P, Fischer B, et al. Collective vibrational modes inbiological molecules investigated by terahertz time-domain spectroscopy.Biospectroscopy,2002,67(4-5):310-313.
    [172] Xu L, Zhang C B, Xu N, et al. Analyses of microscopic mechanism on theinteraction of THz photon and biomolecule system. Chinese Journal of Lasers,2008,35(s2):361-365.
    [173] Yin X X, Ng B W H, Abbot D, et al. Application of auto regressive models ofwavelet sub-bands for classifying Terahertz pulse measurements. Journal ofBiological Systems,2007,15(4):551-571.
    [174]任玉林,邴春亭,逯家辉等.近红外漫反射光谱的主成分分析.光谱学与光谱分析,1996,16(6):31-35.
    [175] Shen Y C, Taday P F, Kemp M C, et al. Terahertz spectroscopy of explosivematerials. Proceedings of SPIE,2004,5619:82-89.
    [176] Burnett A D, Fan W H, Upadhya P C, et al. Broadband terahertz time-domainspectroscopy of drugs-of-abuse and the use of principal component analysis.Proceedings of SPIE,2009,134:1658-1668.
    [177] Rudd J V, Johnson J, Mittleman D M. Quadrupole radiation from tearhertz dipoleantennas. Optics Letters,2000,25(20):1556-1558.
    [178] Shen S C, Santo L, Genzel L. THz spectra for some bio-molecules. InternationalJournal of Infrared and Millimeter Waves,2007,28(8):595-610.
    [179] Globus T R, Woolard D L, Khromova T, et al. THz-spectroscopy of biologicalmolecules. Journal of Biological Physics,2003,29(2-3):89-100.
    [180] Yang L M, Weng S F, Ferraro J R, et al. Far infrared study of some mono-anddisaccharides. Vibrational Spectroscopy,2001,25(1):57-62.
    [181] Yamamoto K, Tominaga K, Sasakawa H, et al. Terahertz time-domainspectroscopy of amino acids and polypeptides. Biophysical Journal,2005,89(3):L22-L24.
    [182] Markelz A G, Roitberg A, Heilweil E J. Pulsed terahertz spectroscopy of DNA,bovine serum albumin and collagen between0.1and2.0THz. Chemical PhysicsLetters,2000,320(1-2):42-48.
    [183] Taday P F, Bradley I V, Arnone D D. Terahertz pulse spectroscopy of biologicalmaterials: L-glutamic acid. Journal of Biological Physics,2003,29(2-3):109-115.
    [184] Shi Y L, Wang L. Collective vibrational spectra of α-and γ-glycine studied byterahertz and Raman spectroscopy. Journal of Physics D: Applied Physics,2005,38(19):3741-3745.
    [185] Yamaguchi M, Miyamaru F, Yamamoto K, et al. Terahertz absorption spectra ofL-, D-, and DL-alanine and their application to determination of enantiometriccomposition. Applied Physics Letters,2005,86(5):053903.
    [186]郑盈盈,李元波,王卫宁. β-丙氨酸的THz时域光谱研究.化学学报,2007,65(1):72-76.
    [187] Walther M, Fischer B M, Jepsen P U. Noncovalent intermolecular forces inpolycrystalline and amorphous saccharides in the far infrared. Chemical Physics,2003,288(2-3):261-268.
    [188] Upadhya P C, Shen Y C, Davies A G. Far-infrared vibrational modes ofpolycrystalline saccharides. Vibrational Spectroscopy,2004,35(1-2):139-143.
    [189] Upadhya P C, Shen Y C, Davies A G, et al. Terahertz time-domain spectroscopyof glucose and uric acid. Journal of Biological Physics.2003,29(2-3):117-121.
    [190]张同军.基于太赫兹时域光谱的生物分子检测技术研究.杭州:浙江大学,2007.
    [191] Tera-phtonics Laboratory, RIKEN Sendai,“THz database2.0,” available athttp://www.riken.jp/THzdatabase/.
    [192] Terahertz Database: http://thzdb.org.
    [193] Fischer B, Hoffmann M, Helm H, et al. Chemical recognition in terahertztime-domain spectroscopy and imaging. Semiconductor Science and Technology.200520(7): S246-S253.
    [194] Lu M H, Shen J L, Li N, et al. Detection and identification of illicit drugs usingterahertz imaging. Journal of Applied Physics,2006,100(10):103104.
    [195] Shen Y C, Taday P F, Kemp M C, et al. Terahertz spectroscopy of explosivematerials. Proceedings of SPIE,2004,5619:82-89.
    [196] Shen Y C, Lo T, Taday P F, et al. Detection and identification of explosives usingterahertz pulsed spectroscopic imaging. Applied Physics Letters,2005,86(24):241116.
    [197] Shen J L, Jia Y, Liang M Y, et al. Identification of THz absorption spectra ofchemicals using neural networks. Proceedings of SPIE,2007,6695:66951F.
    [198] Liang M Y, Shen J L, Wang G Q. Identification of illicit drugs by using SOMneural networks. Journal of Physics D: Applied Physics,2008,41(13):135306.
    [199]李微微,冯瑞姝,周庆莉,等.人工神经网络对爆炸物太赫兹光谱的识别.光学学报,2009,29(s1):266-269.
    [200] Yin X X, Ng B W H, Fischer B M, et al. Support vector machine applications interahertz pulsed signals feature sets. IEEE Sensors Journal,2007,7(12):1597-1608.
    [201]赵树森,陈思嘉,沈京玲.用支持向量机识别毒品的太赫兹吸收光谱.中国激光,2009,36(3):752-757.
    [202]陈艳江,刘艳艳,赵国忠,等.基于支持向量机的中药太赫兹光谱鉴别.光谱学与光谱分析,2009,29(9):2346-2350.
    [203] Liu H H, Sang S X, Wang G G X, et al. Evaluation of the synergeticgas-enrichment and higher-permeability regions for coalbed methane recoverywith a fuzzy model. Energy,2012,39(1):426-439.
    [204]谢季坚,刘承平.模糊数学方法及其应用.武汉:华中科技大学出版社,2005:93-127.
    [205] Jain Y K, Bhandare S K. Min max normalization based data perturbation methodfor privacy protection. International Journal of Computer&communicationTechnology,2011,2(VIII):45-50.
    [206] Han J, Kamber M. Data Mining: Concepts and Techniques, Second ed., MorganKaufmann, USA,2006.
    [207] Li Y, Gao J P, Xu X. Simultaneous determination of baicalin, berberine and rheinby HPLC in traditional Chinese patent medicine Sanhuang tablets. Journal ofChinese Pharmaceutical Sciences,2005,14(2):110-114.
    [208]刘媛,谢孟峡,陈世忠.气相色谱定量分析中药有效成分.北京师范大学学报(自然科学版),2001,37(2):217-220.
    [209] Suryanarayanan R, Herman C S. Quantitative analysis of the active ingredient ina multi-component tablet formulation by powder X-ray diffractometry.International Journal of Pharmaceutics,1991,77(2-3):287-295.
    [210] Atef E, Chauhan H, Prasad D, et al. Quantifying solid-state mixtures ofcrystalline indomethacin by Raman spectroscopy comparison with thermalanalysis. ISRN Chromatography,2012,2012:1-6.
    [211] Jat R K, Sharma S, Chippa R C, et al. Quantitative estimation of telmisartan inbulk drug and tablets by UV Spectroscopy. International Journal of DrugResearch and Technology,2012,2(3):268-272.
    [212] Heinza A, Savolainen M, Rades T, et al. Quantifying ternary mixtures ofdifferent solid-state forms of indomethacin by Raman and near-infraredspectroscopy. European Journal of Pharmaceutical Sciences,2007,32(3):182-192.
    [213]杨玉平,董睿林,张振伟.六种生物药物分子的高分辨太赫兹光谱研究.光谱学与光谱分析,2012,32(11):3035-3039.
    [214] Shen Y C. Terahertz pulsed spectroscopy and imaging for pharmaceuticalapplications: A review. International Journal of Pharmaceutics,2011,417(1-2):48-60.
    [215] Brereton R G. Introduction to multivariate calibration in analytical chemistry.Analyst,2000,125(11):2125-2154.
    [216] Yu H Y, Niu X Y, Lin H J, et al. A feasibility study on on-line determination ofrice wine composition by Vis–NIR spectroscopy and least-squares support vectormachines. Food Chemistry.2009,113(1):291-296.
    [217] Ferguson B, Zhang X C. Materials for terahertz science and technology. NatureMaterials,2002,1(1):26-33.
    [218]王迎新,康克军,陈志强,等.利用太赫兹光谱定量分析固体混合物.清华大学学报(自然科学版),2009,49(2):161-164.
    [219] Zeitler J A, Kogermann K, Rantanen J, et al. Drug hydrate systems anddehydration processes studied by terahertz pulsed spectroscopy. InternationalJournal of Pharmaceutics,2006,334(1-2):78-84.
    [220] Brown E R, Bjarnason J E, Fedor A M, et al. On the strong and narrowabsorption signature in lactose at0.53THz. Applied Physics Letters,2007,90(6):061908.
    [221] Weakley A T, Warwick P C, Bitterwolf T E, et al. Multivariate analysis ofmicro-Raman spectra of thermoplastic polyurethane blends using principalcomponent analysis and principal component regression. Applied Spectroscopy,2012,66(11):1269-1278.
    [222]张旭,姚明印,刘木华.激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量.物理学报,2013,62(4):044211.
    [223] Croker D M, Hennigan M C, Maher A, et al. A comparative study of the use ofpowder X-ray diffraction, Raman and near infrared spectroscopy forquantification of binary polymorphic mixtures of piracetam. Journal ofPharmaceutical and Biomedical Analysis,2012,63:80-86.
    [224]季仁东,赵志敏,张林,等.苹果汁中吡虫啉农药残留荧光检测研究.光谱学与光谱分析,2013,33(3):668-671.
    [225] Salam R A A, Hadad G M, Hameed E A A. Simultaneous determination of twomulticomponent mixtures containing phenobarbitone and ephedrinehydrochloride using HPLC and chemometric assisted spectrophotometricmethods. Journal of Liquid Chromatography&Related Technologies,2013,36(3):384-405.
    [226] Ziémons E, Bourichi H, Mantanus J, et al. Determination of binary polymorphicmixtures of fluconazole using near infraredspectroscopy and X-ray powderdiffraction: A comparative study based on thepre-validation stage results. Journalof Pharmaceutical and Biomedical Analysis,2011,55:1208-1212.
    [227] Chen Y, Ma Y, Lu Z, et al. Quantitative analysis of terahertz spectra for illicitdrugs using adaptiverange micro-genetic algorithm. Journal of Applied Physics,2011,110(4):044902.
    [228] Wang Q, Ma Y H, Wang X W. Quantitative measurement of AMS and orangemixtures by terahertz time-domain spectroscopy. Proceedings of SPIE,2012,8366:83660U.
    [229] Li Z, Zhang Z H, Zhao X Y, et al. Quantitative measurement of a3-componentmixture based on THz spectra. Proceedings of SPIE,2012,8330:8333004.
    [230] Li Y N, Li J, Zeng Z M, et al. Terahertz spectroscopy for quantifying refined oilmixtures. Applied Optics,2012,51(24):5885-5889.
    [231] Zhao H, Zhao K, Tian L, et al. Quantitative determination of sulfur content indiesel using THz-TDS technology. Journal of Infrared and Millimeter Waves,2012,31(5):399-402.
    [232] N rgaard L, Saudland A, Wagner J, et al. Interval partial least-squares regression(iPLS): A comparative chemometric study with an example from near-infraredspectroscopy. Applied Spectroscopy,2000,54(3):413-419.
    [233] Leardi R, N rgaard L. Sequential application of backward interval partial leastsquares and genetic algorithms for the selection of relevant spectral regions.Journal of Chemometrics,2004,18(11):486-497.
    [234] Shi J Y, Zou X B, Zhao J W, et al. Determination of total flavonoids content infresh Ginkgo biloba leaf with different colors using near infrared spectroscopy.Spectrochim Acta A,2012,94:271-276.
    [235] Jiang J H, Berry R J, Siesler H W, et al. Wavelength interval selection inmulticomponent spectral analysis by moving window partial least-squaresregression with applications to mid-infrared and near-infrared spectroscopic data.Analytical Chemistry,2002,74(14):3555-3565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700