用户名: 密码: 验证码:
酿酒酵母β-D-葡聚糖制备、构象及免疫功效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β-D-葡聚糖存在于许多细菌、真菌和高等植物中,它的一个重要来源是酿酒酵母(Saccharomyces cerevisiae)细胞壁。大量研究表明酵母β-D-葡聚糖可以通过激活巨噬细胞以起到抗肿瘤、抗菌、愈合伤口、抗氧化和降血脂等功效。此外,酵母β-D-葡聚糖在食品工业中被广泛用作于增稠剂、乳化稳定剂和脂肪替代品。
     目前国际上还没有酵母β-D-葡聚糖的标准测定方法。常规酵母β-D-葡聚糖的测定一般采用苯酚-硫酸法,测定结果误差较大。在此,本研究建立了一个酵母β-D-葡聚糖测定的新方法:首先利用涡流微珠破壁法对酵母细胞进行破壁,酵母细胞破壁率可达到95.28%;接着采用高浓度酸预处理结合常规酸水解方法对酵母β-D-葡聚糖进行酸水解,酵母β-D-葡聚糖的酸解回收率高达98.76%;在此基础上,由GOPOD法测定出β-D-葡聚糖的含量。新方法的相对标准差和加样回收率分别为0.46%和99.96%。
     采用新方法对不同酿酒酵母菌种的β-D-葡聚糖含量进行了分析对比,结果表明酵母中β-D-葡聚糖含量随其菌种不同而有明显差异(P≤0.05),占细胞壁干重比率的最大差异为138.10%,而占细胞干重比率的最大差异高达189.52%。
     接下来对酿酒酵母的发酵条件进行了优化。首先进行了单因素实验的研究,并在此基础上,以二次正交旋转组合设计试验,得到培养基模型方程为: Y = 106.89+3.74X_1-8.85X_1~2-5.72X_2~2-7.96X_3~2-7.52X_4~2,经二次多项式逐步回归分析确定了最佳培养基(/100ml)为:葡萄糖3.27 g、蛋白胨(2)1.89 g、酵母膏1.57 g和甘油1.04 g。经过培养基的优化后,酵母β-D-葡聚糖产量由原来的65.80 mg/100ml提高到109.33 mg/100ml。然后,采用正交优化方法进行发酵条件优化,确定主次影响因素依次为:装液量>温度>起始pH>接种量,最适培养条件为:pH5.0、接种量5ml/100ml、温度32℃、装液量60 ml/瓶,经试验验证β-D-葡聚糖量达到128.30 mg/100ml,较发酵条件优化前提高了17.35%。在发酵条件优化基础上,以Logistic、BoxLucas1和SRichards2三种模型对酵母菌生物量和β-D-葡聚糖生成量进行非线性拟合,确定生物量模型以Logistic模型拟合效果最佳,拟合方程:相关系数可以达到0.975,而在β-D-葡聚糖生成模型拟合中,以SRichards2模型最佳,拟合方程:相关系数为0.996;在对基质(葡萄糖)的消耗拟合中,采用Exponemtial ExpDec1模型,拟合方程:相关系数为0.977。
     传统酵母β-D-葡聚糖的制备主要采用酸碱法,这易使β-D-葡聚糖发生氧化降解,致使得率偏低,并且会对β-D-葡聚糖的天然构象部分地破坏而使其生理活性受到严重的影响。基于此,本文建立一个由酿酒酵母中分离提取β-D-葡聚糖的新方法,此方法是在较为温和的条件下进行的,包括酵母的诱导自溶、高温和有机溶剂的抽提、均质破壁、生物酶解等步骤。新方法制备的β-D-葡聚糖纯度高达93%,得率为酵母细胞干重的11%。
     酵母β-D-葡聚糖不溶性制约其在工业中的应用,本研究采用超声修饰和均相硫酸酯化技术对酵母β-D-葡聚糖进行修饰改性研究。以400W的功率对酵母β-D-葡聚糖进行超声处理,每循环处理时间24s,间歇时间6s,共20个循环,酵母β-D-葡聚糖的平均粒径由起始的56.49μm降到2.33μm;在Urea-DMSO的均相体系中,以硫酸为酯化剂,对酵母β-D-葡聚糖进行均相硫酸酯化反应,硫酸浓度5%,100℃下反应4 h,最终酯化β-D-葡聚糖的取代度和得率分别为0.43和87.97%。
     采用了FTIR、EA和NMR等方法对酵母β-D-葡聚糖及其硫酸酯的基本结构进行分析,确定酵母β-D-葡聚糖以β-(1,3)为主链,其中新方法制备β-D-葡聚糖以β-(1,3)为主链每九个单元与一分子葡萄糖通过β-(1,6)键连接,而酸碱法制备β-D-葡聚糖以β-(1,3)为主链每五个单元与一分子葡萄糖通过β-(1,6)键连接;酵母β-D-葡聚糖硫酸酯化学通式为(C6H10O5)20·9SO3·20H2O,硫酸基团取代位置在糖环的C-6上。此外,本研究还采用激光光散射(MALLS)技术结合YFY和KP蠕虫模型的方法进行研究。判定酵母β-D-葡聚糖硫酸酯溶液构象为一种介于柔性链和刚性链之间的半刚性链构象,并得到其分子层面的构象参数:ML = 646 nm-1,q = 5.1 nm,d = 0.99 nm,C∞= 16.33。
     最后通过动物试验,证实酵母β-D-葡聚糖及其硫酸酯具有增强免疫功效,其中新方法制备酵母β-D-葡聚糖对Con A诱导小鼠淋巴细转化率具有极显著性差异(P≤0.01),对小鼠NK细胞活性具有显著性差异(P≤0.05);酸碱法制备酵母β-D-葡聚糖对Con A诱导小鼠淋巴细转化率和小鼠NK细胞活性具有显著性差异(P≤0.05);而经超声处理和硫酸酯化之后的酵母β-D-葡聚糖衍生物对Con A诱导小鼠淋巴细转化率、小鼠血清中总补体溶血活性(CH50)和小鼠NK细胞活性均具有极显著性差异(P≤0.01)。
β-D-Glucans, homopolymers of glucose, was widely distributed in the cell walls of microorganisms, mushrooms and plants. One important source ofβ-D-glucans was the cell wall of yeasts, particularly of the baker’s and brewer’s yeast Saccharomyces cerevisiae. Since the 1940s, numerous studies have demonstrated thatβ-D-glucans could enhance innate host defenses by binding to specific macrophage receptors and activating macrophage, resulted in antitumour, antibacterial, and wound-healing activities. Moreover, yeastβ-D-glucans was widely applied in the food industry as a thickening and water-holding agent, emulsifying stabilizer and fat replacer. The mensuration way for detectingβ-D-glucan was a difficult problem and there had no a standard mensuration way in the world. Routine mensuration way for detectingβ-D-glucan was phenol-sulfated acid method, but the method was easily to be disturbed by other polysaccharides and lead to receive incorrect results. In our research, a new method for quantitative determination of yeastβ-D-glucan was proposed. Firstly, vortex-mini-bead disruption way was used to broke the yeast cell walls and the ratio of broken yeast cells reached 95.28%; Secondly, modified sulfuric acid hydrolysis method was adopted to completely release glucose and the recoveries of hydrolysis ofβ-D-glucan came to 98.76%; Based on this, using GOPOD enzyme way, the content of the yeastβ-D-glucan was obtained. The new the relative standard deviation value and the average recovery of the new method were 0.46% and 99.96%, respectively. The ratios ofβ-D-glucan in various strain Saccharomyces cerevisiae were detected with the new mensuration method. The results indicates that the ratios ofβ-D-glucan in various strain Saccharomyces cerevisiae were distinctly difference (P≤0.05). The most difference of cell wall and cell dry mass reached 138.10% and 189.52%, respectively.
     Theβ-D-glucans content of yeast must be influenced by culture medium and condition, so we optimized the Fermentation condition. Firstly, the influences of carbon source, nitrogen source, and enzyme activation on content ofβ-glucan were evaluated using factional factorial design. Based on this, the experiment for optimization of theβ-glucan fermentation medium was carried out with the design of the rotation-regression-orthogonal combination and received model equation: Y = 106.89+3.74X_1-8.85X_1~2-5.72X_2~2-7.96X_3~2-7.52X_4~2. The optimal parameters were obtained by multinomial regression techniques as follows: glucose: 32.7 g/L, peptone: 18.9 g/L, yeast extract: 15.7 g/L;glycerin: 10.4 g/L. The optimized culture medium allowedβ-glucan to increase from 65.80 mg/100ml to 109.33 mg/100ml. Secondly, adopting orthogonal design to optimize theβ-glucan fermentation condition, the sequences of primary and secondary influence factor were quantity of culture medium, culture temperature, initial pH and quantity of inoculation. A satisfactory productivity of yeastβ-D-glucans was obtained under the condition: pH5.0, 5ml/100ml (quantity of inoculation), 32℃and 60 ml/flask (quantity of culture medium), the quantity ofβ-D-glucans increased from 109.33 mg/100ml to 128.30 mg/100ml.
     In the basis of optimize fermentation, the yeast biomass and quantity ofβ-D-glucans were simulated by Logistic, BoxLucas1 and SRichards2 model. The Logistic model mostly suitted to the yeast biomass, the simulation equation as follows: y = 1317. 3?1 +(1x2/0180..96)2.7, the correlation coefficient was 0.975. The best simulated model ofβ-D-glucans was SRichards2 model, the simulation equation as followed: the correlation coefficient was 0.996. The glucose consume model is founded with Exponemtial ExpDec1 model, which correlated experiment well with of R2 of 0.977, the simulation equation
     In the past decades,β-D-glucans have been often isolated by an acid-alkaline method. However, using these methods had some drawbacks: the great mass ofβ-D-glucans were degraded and distributed in all levels in supernatant. This led to lowerβ-D-glucans yields compared with the original content in the cell walls and remarkably influenced on its biological function. A new mild method to extractβ-D-glucans from S.cerevisiae cells was proposed in this paper, which was composed of induced autolysis, water and organic solvent treatment, homogenization and protease hydrolysis. The broken yeast cell was key and difficulty in theβ-D-glucans isolation procedure, so yeast cells were firstly treated by hot water. Treated by hot water, the mechanical strength of the yeast cell wall decreased with the removal of the mannoproteins, which caused the yeast cell walls easy to be disrupted. As a result, the ratio of broken yeast cell slightly exceeded 95% after three passes in homogenization treatment in 70 MPa. Finally,β-D-glucans were obtained at a yield of 91% of the original ratio in the yeast cell walls and with a purity of up to 93% (w/w). Because of infusibility,β-D-glucans was limited in the industry application.β-D-glucans modification was achieved by ultrasonication and homogeneous sulfation in this paper. The optical ultrasonical condition was 400W (power), 24s (treat time), 6s (intermission time) and 20 circle times. Using ultrasonication, the average diameter ofβ-D-glucans reduced from 56.49μm to 2.49μm.β-D-glucans sulfation reaction was in Urea-DMSO homogeneous system, in which 5% sulfate acid was employed as esterifiable reagent. The reaction carried through 4 h at 100℃, the sulfated yield was approximate 87.97% (w/w) and DS was 0.43 in the end.
     In order to make clear basic configuration ofβ-D-glucans and its sulfated derivative, some modern analysis technology FTIR, EA and NMR were adopted. These spectra revealed thatβ-D-glucans were (1→3)-linkedβ-D-glucopyranan backbone with (1→3)-β-branches every nine or five units and the etherification ofβ-D-glucans mainly exist on C6-SO3. Based on the elemental analysis, the empirical formula of sulfatedβ-D-glucans was (C6H10O5)20·9SO3·20H2O. The solution properties of sulfatedβ-D-glucans which was essential for the further insight on the correlation of structure to bioactivities, have not been reported. So based on YFY and KP wormlike cylinder models, the molecular parameters of sulfatedβ-D-glucans in solution were obtained by laser light scattering and viscometry in this paper. The results indicated that the conformational parameters of sulfatedβ-D-glucans were calculated to be 646 nm-1 for ML, 5.1 nm for q and 16.3 for C∞by wormlike cylinder mode, indicating a relatively extended flexible chain in the aqueous solution.
     Further, the immunobiological activity ofβ-D-glucans and its sulfated derivative was approved by mice experimentation. Preliminary immunopharmacological tests suggested that ultrasonic and sulfatedβ-D-glucans could significantly increased the ConA-induced spleen lymphocytes proliferation, the hemolytic level and the activity of NK cells (P≤0.01).
引文
1、http://www.chinafeed.org.cn/cms/code/business/include/php/151496.html
    2、http://www.cvmachine.com/detail/product/308260.html
    3、http://www.tiantianbio.com/gsjj.html
    4、李花霞,杨文鸽.啤酒酵母中β-(1,3)-D-葡聚糖的研究[J].食品研究与开发, 2004, 25(5):54-56
    5、Aguilar U B, Francois J M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation [J]. Letters in Applied Microbiology, 2003, 37:268-274
    6、Duffus J H, Levi C, Manners D J. Advances in microbial physiology (vol. 23) Yeast cell-wall glucans [M]. London: Academic Press, 1982:151-181
    7、Lipke P N, Ovalle R. Cell wall architecture in yeast: New structure and new challenges [J]. Journal of Bacteriology, 1998, 180(15):3735-3740
    8、Nguyen T H, Fleet G H, Rogers P L. Composition of the cell walls of several yeast species [J]. Applied Microbiology and Biotechnology, 1998, 50:206-212
    9、Baets S D, Vandamme E J, Steinbüchel A. Biopolymers (vol. 6) Polysaccharides2 [M], Germany: Wiley-VCH Verlag Press, 2002:179-213
    10、Manners D J, Masson A J, Patterson J C. Structure of aβ-(1,3)-D-glucan from yeast cell walls [J]. Biochemical Journal, 1973, 135(1):19-30
    11、Klis F, Mol P, Hellingwerf K, et al. Dynamic of cell wall structure in Saccharomyces cerevisiae [J]. FEMS Microbiology Reviews, 2002, 26:239-256
    12、Charpentier A M, Dos S, Feuillat M. Release of macromolecules by Saccharomyces cerevisiae during ageing of French flor sherry wine‘‘Vin jaune’’[J]. International Journal of Food Microbiology, 2004, 96:253-262
    13、Sbrana C, Avio L, Giovannetti M. The occurrence of calcofluor and lectin binding polysaccharides in the outer wall of arbuscular mycorrhizal fungal spores [J]. Mycological Research, 1995, 99:1249-1252
    14、Mol P C, Wessels J G H. Linkages between glucosaminoglycan and glucan determine alkali-insolubility of the glucan in walls of Saccharomyces cerevisiae [J]. FEMS Microbiology Letters, 1987, 41(1): 95-99
    15、Hartland R P, Vermeulen C A, Klis F M, et al. The linkage of (1,3)-β-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae [J]. Yeast, 1994, 10:1591-1599
    16、Kollar R, Petrakova E, Ashwell G, et al. Architecture of the yeast cell wall. The linkage between chitin andβ-(1,3)-glucan [J]. Journal of Biological Chemistry, 1995, 270:1170–1178
    17、Fleet G H, Manners D J. Isolation and composition of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae [J]. Journal of General Microbiology, 1976, 94:180-192
    18、Fleet G H, Manners D J. The enzymatic degradation of an alkali-soluble glucan from the cell walls of Saccharomyces cerevisiae [J]. Journal Gen Microbiology, 1977, 98:315-322
    19、Tsutomu F, Hitoshi S, Yuzuru I, Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae [J]. Biochemical et Biophysica Acta, 1999, 1427:133-144
    20、Kollar R, Reinolds B B, Petrakova E, et al. Architecture of the yeast cell wall.β-(1,.6)-glucan interconnects mannoprotein,β-(1-.3)-glucan, and chitin [J]. Journal of Biological Chemistry, 1997, 272:17762-17775
    21、Frans M, Klis P M, Klaas H, et al. Dynamics of cell wall structure in Saccharomyces cerevisiae [J]. FEMS Microbiology Reviews, 2002, 26:239-256
    22、Mouyna I, Fontaine T, Vai M, et al. Glycosylphosphati-dylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall [J]. Journal of Biological Chemistry,2000, 275:14882-14889
    23、Paula M, John F C, Claudia A. A Refined Method for the Determination of Saccharomyces cerevisiae Cell Wall Composition andβ-1,6-Glucan Fine Structure [J]. Analytical Biochemistry, 2002, 301:136-150
    24、Kiran M, Desai K, Vaidya R S, et al. Use of an artificial neural network in modeling yeast biomass and yield ofβ-glucan [J]. Process Biochemistry, 2005, 40:1617-1626
    25、胡晓忠,甄宝贵,冯万祥.酵母葡聚糖的制备及理化性质[J].华东理工大学学报, 1999(5):477-479
    26、李卫旗,皇甫宏,吴雪昌等.啤酒酵母中β-(1-3)葡聚糖的提取及其性能分析[J].浙江大学学报:理学版, 1999, 26(2):75-79
    27、Ruud H, Thansen K. The EBC methods for determination of high molecular weight glucan in barley, malt, wort and beer [J]. Journal Instustry Brewing, 1989, 95:79-82
    28、Kwang S K, Jung E C, Hyun S Y. Estimation of soluble -glucan content of yeast cell wall by the sensitivity to Glucanex 200G treatment [J]. Enzyme and Microbial Technology, 2004, 35:672-677
    29、Dallies N, Fran?ois J, Paquet V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae [J]. Yeast, 1998, 14:1297-1306
    30、Pilar P, Juan C R. Cell wall analysis [J]. Methods, 2004, 33:245-251
    31、Hassid W Z, Joslyn M A, McCready R M. The molecular constitution of an insoluble polysaccharide from yeast,Saccharomyces cerevisiae [J]. Journal of the American Chemical Society, 1941, 63:295-298
    32、Barry V C, Dillon T. On the glucan of the yeast membrane [J]. Proc.R.Ir.Acad.Sect, 1943, B49:177-185
    33、Peat S, Whelan W J, Edwards T E. Polysaccharides of baker's yeast. Part III. The presence of1: 6-linkages in yeast glucan [J]. Journal Chemistry Society, 1958, 3862-3868
    34、Manners D J, Patterson J C. A reexamination of the molecular structure of yeast glucan [J]. Biochemical Journal, 1966, 98:19-20
    35、Misaki J A, Johnson J, Kirkwood S, et al. Structure of the cell-wall glucan of yeast Saccharomyces cerevisiae [J]. Carbohydrate Researech, 1968, V6(2): 150-164
    36、Bacon J S D, Farmer V C, Jones D, et al. The glucan components of the cell wall of baker`s teast (Saccharomyces cerevisiae )considered in relation to its ultrastructure [J]. Biochemical Journal, 1969, 114:557-567
    37、Manners D J, Masson A J, Patterson J C, et al. The structure of aβ-(1,6)-D-glucan from yeast cell walls [J]. Biochemical Journal, 1973, 135(1):31-36
    38、Douglas W, Lowman A, Donald A, et al. Structural characterization of (1/3)-β-D-glucans isolated from blastospore and hyphal forms of Candida albicans [J]. Carbohydrate Research, 2003, 338: 1491-1496
    39、Klis F M. Cell wall assembly in yeast [J]. Yeast, 1994, 10: 851-869
    40、Smits G J, Ende H, Klis F M. Differential regulation of cell wall biogenesis during growth and development in yeast [J]. Microbiology, 2001, 147:781-794
    41、Awald P, Zugel M, Monks C P, et al. Purification of 1,3-β-Glucan Synthase from Neurospora crassa by Product Entrapment [J]. Experimental Mycology, 1993, 17(2): 130-141
    42、Takahiko U, Masayo M, Aiko H, et al. Movement of yeast 1,3-beta-D-glucan synthase is essential for uniform cell wall synthesis [J]. Genes To Cells, 2002, 7(1):1-9
    43、Cabib E, Drgonova J, Drgon T. Role of small G proteins in yeast cell polarization and wall biosynthesis [J]. Annu. Review Biochemistry, 1998, 67:307-333
    44、Mazur P, Morin N, Baginsky W, et al. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase [J]. Cell and Molecular Biology, 1995, 15:5671-5681
    45、Inoue S B, Takewaki N, Takasuka T, et al. Characteization and gene cloning of (1→3)-β-D-glucan synthase from Saccharomyces cerevisiae [J]. European Journal Biochemistry, 1999, 231:845-854
    46、Gerrit J P, Dijkgraaf M A, Ohya Y, et al. Mutations in Fks1p affect the cell wall content ofβ-1,3- andβ-1,6-glucan in Saccharomyces cerevisiae [J]. Yeast, 2002, 19: 671-690
    47、Hochstenbach F, Klis F M, Ende H, et al. Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast [J]. Biochemistry, 1998, 95(16):9161-9166
    48、Qadota H, Python C P, Inoue S B, et al. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase [J]. Science, 1996, 272:279-281
    49、Roh D H, Bowers B, Riezman H, et al. Rho1p mutations specific for regulation ofβ(13)glucan synthesis and the order of assembly of the yeast cell wall [J]. MolecularMicrobiology, 2002, 44:1167-1183
    50、Abe M, Qadota H, Hirata A, et al. Lack of GTP-bound Rho1p in secretory vesicles of Saccharomyces cerevisiae [J]. Journal Cell Biology,2003, 162: 85-97
    51、Sekiya-Kawasaki M, Abe M, Saka A, et al. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan synthase, in Saccharomyces cerevisiae [J]. Genetics, 2002, 162:663-676
    52、Schmidt A, Schmelzle T, Hall M N. The RHO1-GAPs SAC7, BEM2 and BAG7 control distinct RHO1 functions in Saccharomyces cerevisiae [J]. Molecular Microbiology, 2002, 45:1433-1441
    53、Shahinian S, Bussey H. Beta-1,6-glucan synthesis in Saccharomyces cerevisiae [J]. Molecular Microbiology, 2000, 35:477-489
    54、Vink E, Rodriguez-Suarez R J, Gerard-Vincent M, et al. An in vitro assay for (1→6)-β-D-glucan synthesis in Saccharomyces cerevisiae [J]. Yeast, 2004, 21: 1121-1131
    55、Sacher M, Barrowman J, Wang W, et al. TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport [J]. Molecular Cell, 2001, 7(2):433-42
    56、Romero P A, Dijkgraaf G J P, Shahinian S, et al. The yeast CWH41 gene encodes glucosidase Ⅰ[J]. Glycobiology, 1997, 7:997-1004
    57、Trombetta E S, Simons J F, Helenius A, Endoplasmic reticulum glucosidaseⅡis composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit [J]. Journal of Biological Chemistry, 1996, 271:27509-27516
    58、Choi W J, Sburlati A, Cabib E, Chitin synthase 3 from yeast has zymogenic properties that depend on both the CAL1 and the CAL3 genes [J]. The National Academy Of Sciences, 1994, 91(11):4727-4730
    59、Ono N, Yabe T, Sudoh M, et al. The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein-protein interaction [J]. Microbiolog,(England), 2000, 146:385-391
    60、黄刚良,刘曼西,曹元成等.啤酒酵母中(1→3)-β-D-葡聚糖的提取及其机理研究[J].精细化工, 2003, 13:458-459
    61、Antije M, Harry E, Henry P, et al. The application of various protic acids in the extraction ofβ-(1-3)-D-Glucan from saccharomyces cerevisiae [J]. Carbohydrate Research, 1997, 299:203-208
    62、Eddy A A, Woodhead J S. An alkali soluble glucan fraction from the cell walls of the yeast saccharomyces carlsbergensis [J]. FEBS, Letters, 1968, 1:67-68
    63、Ferencik M, Kotulova D, Masler L, et al. Modulatory effect of glucans on the functional and biochemical activities of guinea-pig macrophages [J]. Methods Find Exp Clin Pharmacol, 1986, 8:163-166
    64、Williams D L, Pretus H A, McNamee R B, et al. Development of a water-soluble,sulfatedβ-(1-3)-D-glucan biological response modifier derived from Saccharomyces cerevisiae [J]. Carbohydrate Research, 1992, 235:247-257
    65、胡晓忠,明杰,甄宝贵等,用酸碱法从面包酵母中提取β-(1-3)-D-葡聚糖[J].工业微生物, 2000, 3:29-31
    66、刘烺新,陈宗道,王光慈.啤酒酵母胞壁多糖提取工艺的研究[J].重庆大学学报, 1994, 17: 43-48
    67、Saowanee T, Manop S, Thanaporn P, et al. Preparation of spent brewer’s yeastβ-glucans for potential applications in the food industry [J]. International Journal of Food Science and Technology, 2004, 39:21-29
    68、赵光远,殷蔚申,吴小荣.用废啤酒酵母制备碱不溶性葡聚糖的研究.微生物学通报, 1997, 24(4):148-152
    69、Naohito O, Michiharu U, Aiko T, et al. Solubilization of yeast cell-wallβ-(1.3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction [J]. Carbohydrate Research, 1999, 316:161-172
    70、Yajun W, Shanjing Y, Tianxing W. Combination of induced autolysis and sodium hypochlorite oxidation for the production of Saccharomyces cerevisiae (1→3)-β-D-glucan [J]. World Journal of Microbiology & Biotechnology, 2003, 19:947-952
    71、Müller A, Raptis J, Rice P J, et al. The influence of glucan polymer structure and solution conformation on binding to (1→3)-beta-D-glucan receptors in a human monocyte-like cell line [J]. Glycobiology, 2000, 10:339-346
    72、Stefan F, Martin S, Othmar K, et al. A new non-degrading isolation process for 1,3-β-D-glucan of high purity from baker’s yeast Saccharomyces cerevisiae [J]. Carbohydrate Polymers, 2003, 54: 159-171
    73、Hunter K W, Gault R A, Berner M D. Preparation of microparticulateβ-glucan from Saccharomyces cerevisiae for use in immune potentitation [J]. Letters in Applied Microbiology, 2002, 35:267-271
    74、Cheng Y L, Chun H C, An I Y, et al. Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound [J]. Food Hydrocolloids, 1999, 13 :477-481
    75、Tabata K, Ito W, Kojima T. Ultrosonic degradation of schizophyllan, an antitumor polysaccharide produced by schizophyllan communefries [J]. Carbohydrate Research, 1981, 89(1):121-135
    76、Isono Y, Kumagai T, Wetanabe T, Ultrasonic degradation of waxy rice starch [J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(10):1799-1802
    77、Showsun C S, Gerald Z, Rachel S. Ultrasonic irradiation of bacteria polysacchrides [J]. Carbohydrate research, 1986, 152:7-20
    78、王亚军.酵母培养制备(1→3)-β-D-葡聚糖方法及相关基础研究[D]: [博士学位论文].杭州:浙江大学化工与生物工程学院, 2004. 97-106
    79、Ying W, Rawle I, Dennis L K. Ozonolytic depolymerization of polysaccharides in aqueous solution [J]. Carbohydrate Research, 1999, 319 :141-147
    80、Torgeir H, Bj?rn T S, Olav S, et al. Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions [J]. Carbohydrate Polymers, 1998, 37: 41-48
    81、Schierbaum F, Kordel K. Reaction of starch with the chlorosulfonic acid-form amide reagent in Carbohydratesulfates[M]. Washington:American Chemical Society, 1978:173-192
    82、Guiseley K B. Some novel methods and results in the sulfation of polysaccharides in Carbohydrate sulfates[M]. Washington:American Chemical Society, 1978:148-162
    83、Williams D L, McNamee R B, Pretus H A, et al. A method for the solubilization of a (1-3)-beta-D-glucan isolated from Saccharomyces cerevisiae [J]. Carbohydrate Research, 1991, 219:203-213
    84、王淼.酵母免疫活性葡聚糖的研究与开发[D]: [博士学位论文].无锡:无锡轻工大学食品学院, 1998. 32-38
    85、Jozef S, Grigorij K, Marta K, et al. Microbial (1- 3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity [J]. Carbohydrate Polymers, 1999, 38:247-253
    86、Sandula J, Machova E, Hibalova V. Mitogenic activity of particulate yeastβ-(1→3) -D-glucan and its water-soluble derivatives [J]. International Journal Biological Macromoogyl, 1995, 17(6): 323 - 326
    87、王淼,丁宵霖.羧甲基化改性酵母葡聚糖的流变性质[J].无锡轻工业大学学报, 1998, 17(2):34-38
    88、王淼,丁宵霖.改性酵母葡聚糖-CMG的部分性质及其在溶液中构象行为[J].中国生物化学与分子生物学报, 1998, 14(5):636-640
    89、Gohdes M, Mischnick P. Determination of the substitution on pattern in the polymer chain of celluloses sulfates [J]. Carbohydrate Research, 1998,309(1):109-115
    90、Wdfrom M L, Juliano B O. Chondroitin sulfate modificationsⅡ. Sulfated and N-deacetylaed preparations [J]. Amercian Chemistry Society, 1960, 82:2588
    91、马宁,汪琴,孙胜玲等,甲壳素和壳聚糖化学改性研究进展[J],化学进展, 2004, 16(4):643-653
    92、Ya-Jun W, Shan-Jing Y, Yi-Xin G, et al. A novel process for preparation of (1/3)-β-D-glucan sulphate by a heterogeneous reaction and its structural elucidation [J]. Carbohydrate Polymers, 2005, 59:93-99
    93、Chihara G. Recent progress in immunopharmacology and therapeutic effects of polysaccharides [J]. Developments in biological standardization, 1992, 77:197-207
    94、Hofer M, Pospisil M. Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. A survey of the authors' results [J]. International Immunopharmacolgy, 1997, 19: 607-609
    95、Masashi M, Yoichi S, Ken-ichiro M. Fucogalactan isolated from Sarcodon aspratus elicits release of tumor necrosis factor and nitric oxide from murine macrophages [J]. Immunopharmacology, 2000, 46:113-121
    96、Cheung N K, Yim S F, Yu M Y, et al. Expression of apoptotic regulators and their significance in cervical camcer [J]. Cancer Immunological Lmmunothery, 2002, 51: 557-564
    97、Thompson I M, Silence C R, Lamm D L, Immunochemotherapy of bladder carcinoma with glucan and cyclophosphamide [J]. The American journal of the medical sciences, 1987, 294(5):294-300
    98、Michael J M, Cathy S D, Lawrence B S. Alteration of macrophage anti-tumor activity and transferrin receptor expression by exposure to dimethylnitrosamine in vivo [J]. Immunopharmacology, 1987, 13(3): 189-194
    99、Hakan K M, Fatih O, Serdar K, et al. The antioxidant effect ofβ-glucan on oxidative stress status in experimental spinal cord injury in rats [J]. Neurosurgical Review, 2005, 28:298-302
    100、Darina S, Juraj L, Livia K. Protective effects of fungal (1-3)-β-D-glucan derivatives against oxidative DNA lesions in V79 hamster lung cells [J]. Cancer Letters, 2003, 198:153-160
    101、Petruczenko A, Glucan effect on the survival of mice after radiction exposure [J]. Acta physiologica Polonica, 1984, 35( 3):231-236
    102、Nicolosi R, Bell S J, Bistrian B R, et al. Plasma lipid changes after supplementation with ?-glucan fiber from yeast[J]. American Journal of Clinical Nutrition, 1998, 34:189-203
    103、http://www.ceocio.com.cn/special/20070409
    1、Kiran M D, Bhalchandra K V, Rekha S S, et al. Use of an artificial neural network in modeling yeast biomass and yield ofβ-glucan [J]. Process Biochemistry, 2005, 40:1617-1626
    2、胡晓忠,甄宝贵,冯万祥.酵母葡聚糖的制备及理化性质[J].华东理工大学学报, 1999(5):477-479
    3、李卫旗,皇甫宏,吴雪昌等.啤酒酵母中β-(1-3)葡聚糖的提取及其性能分析[J].浙江大学学报:理学版, 1999, 26(2):75-79
    4、Ruud H, Thansen K, The EBC methods for determination of high molecular weight glucan in barley, malt, wort and beer [J]. Journal Instustry Brewing, 1989, 95:79-82
    5、Kwang S K, Jung E C, Hyun S Y, Estimation of soluble -glucan content of yeast cell wall by the sensitivity to Glucanex 200G treatment [J]. Enzyme and Microbial Technology, 2004, 35:672-677
    6、Dallies N, Fran?ois J, Paquet V. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae [J]. Yeast, 1998, 14:1297-1306
    7、Aguilar U B, Fran?ois J M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation[J]. Letters in Apllied Microbiology, 2003, 37:268-274
    8、Pilar P, Juan C R. Cell wall analysis[J]. Methods, 2004, 33:245-251
    9、孙海翔,尹卓容,马美范.高压均质破碎啤酒酵母细胞壁的研究[J].食品工业科技, 2002, 23(2):66-67
    10、Nguyen T H, Fleet G H, Rogers P L. Composition of the cell walls of several yeast species [J]. Applied Microbiology and Biotechnology, 1998, 50:206-212
    11、Paula M, John F C, Claudia A. A refined method for the determination of Saccharomyces cerevisiae cell wall composition andβ-1,6-glucan fine structure [J]. Analytical Biochemistry, 2002, 301:136-150
    12、Walther P, Müller M. Double-layer coating for field-emission cryo-scanning electron microscopy-present state and applications [J]. Scanning, 1997, 19:343-348
    13、张惟杰.糖复合物生化研究技术(第二版) [M].杭州:浙江大学出版社, 1999.11-15
    14、Freimund S, Sauter M, K?ppeli O, et al. A new non-degrading isolation process for 1,3-β-D-glucans of high purity from baker’s yeast Saccharomyces cerevisiae [J]. Carbohydrate Polymers, 2003, 54:159-171
    15、Limon-Lason J, Hoare M, Orsborn C B, et al. Reactor properties of a high-speed bead mill for microbial cell rupture [J]. Biotechnology and Bioengineering, 1979, 21:745-774
    16、Kloostermaniv J, Enfors S O. An integrated approach to the recovery of intracellular products from yeasts by bead milling and precoat filtration [J]. The Chemical Engineering Journal, 1988, 37:47-54
    17、Franziskus K, Werner M K. Mild enzyme isolation of mannan and glucan from yeast Saccharomyces cerevisiae [J]. Die Angewandte Makromolekulare Chemie, 1999, 268: 59-68
    18、万其兵,刘丽丽,杨秀英.真菌细胞破壁方法的研究[J].天津师范大学学报(自然科学版), 2004, 24(4):38-40
    19、蔡俊.啤酒废酵母细胞壁破壁研究[J].酿酒, 2001, 28(4):104-105
    20、Wase D J, Patel Y R. Effect of Cell volume of disintegretion by ultrasonics [J]. Chemistry Technological Biotechnology, 1985, 35B:165-173
    21、丘泰球,宋武明,陈树功.超声波在花粉细胞破璧技术上的应用[J].声波技术, 1992, 10(1):12-14
    1、Mitsuyoshi U, Atsuo T. Cell surface engineering of yeast: constriction of arming yeast with biocatalyst [J]. Journal of Bioscience and Bioengineering, 2000, 90:125-136
    2、Gordon D B, Siamon G. Fungalβ-D-glucans and mammalian immunity [J]. Immunity, 2003, 19:311-315
    3、Jamas S, Easson J, Davidson D. Use of aqueous soluble glucan preparation to stimulate platelet production [P]. US Patent, 1996, 5, 532, 223
    4、Peter J R, Bren E L, Luke A B. Pharmacokinetics of fungal (1–3)-β-D-glucans following intravenous administration in rats [J]. International Immunopharmacology, 2004, 4:1209-1215
    5、Konuklar G, Inglett G, Carriere C J. Use of aβ-D-glucans hydrocolloidal suspension in the manufacture of low-fat Cheddar cheese: manufacture, composition, yield and microstructure [J]. International Journal of Food Science and Technology, 2004, 39:109-119
    6、Supachai W.β-D-glucans prepared from spent brewer’s yeast as a fat replacer in mayonnaise [J]. Food Hydrocolloid, 2005, 20:68-78
    7、Hassid W Z, Joslyn M A, McCready R M. Molecular constitution of an insoluble polysaccharide from yeast Saccharomyces cerevisiae [J]. Journal of the American Chemical Society, 1941, 63:295-298
    8、Ohno N, Miura T, Miura N N, et al. Structure and biological activities of hypochlorite oxidized zymosan [J]. Carbohydrate Polymers, 2001, 44:339-349
    9、Yajun W, Shanjing Y, Tianxing W. Combination of induced autolysis and sodium hypochlorite oxidation for the production of Saccharomyces cerevisiae (1→3)-β-D-glucans [J]. World Journal of Microbiology & Biotechnology, 2003, 19:947-952
    10、Baets S D, Vandamme E J, Steinbüchel A. Biopolymers (vol. 6) Polysaccharides2 [M], Germany: Wiley-VCH Verlag Press, 2002:179-213
    11、Manners D J, Masson A J, Patterson J C. Structure of aβ-(1,3)-D-glucan from yeast cell walls [J]. Biochemical Journal, 1973, 135(1):19-30
    12、Klis F, Mol P, Hellingwerf K. Dynamic of cell wall structure in Saccharomyces cerevisiae [J]. FEMS Microbiology Reviews, 2002, 26:239-256
    13、Aguilar U B, Fran?ois J M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation [J]. Letters in Apllied Microbiology, 2003, 37:268-274
    14、王镜岩,朱圣庚,徐长法.生物化学(第三版) [M].北京:高等教育出版社,2003. 1
    15、Boulton R B, Singletion V L, Bisson L F. et al. Principles and Practices of Winemaking [M]. USA NY: The Chaprnan& Hall Enology Library, 1996. 203
    16、柳岛直言,大屿泰治,大隅正子等,酵母解剖[M].天津:南开大学出版社, 1990. 27
    17、Griffin S R. Pitching rate and yeast activity during fermention of brewers wort [J]. Journal Instustry Brewing, 1979, 76:357-361
    18、诸葛建,王正祥,工业微生物试验手册[M].北京:中国轻工业出版社, 1994. 167-169
    19、Ingeldew W M, Kunkee R E. Factors influencing sluggish fermentations of grape juice. Am [J]. American Journal Enology and Viticulture, 1985, 36:65-76
    20、Awald P, Zugel M, Monks C P, et al. Purification of 1,3-β-D-glucans Synthase from Neurospora crassa by Product Entrapment [J]. Experimental Mycology, 1993, 17:130-141
    21、Martin J F, Demain A L. Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites [J]. Annual Review of Microbiology, 1989, 43:173-206
    22、Kayingo G, Kilian S G, Prior B A. Conservation and release of osmolytes by yeasts during hypoosmotic stress [J]. Archives Microbiology, 2001, 177:29-35
    23、Maia M M D, Heasley A, Camargo M M. Effect of culture on lipase production by Fusarium solani in batch fermentation [J]. Bioresource technology, 2001, 76:23-27
    24、Laznikov T N, Dmitrieva V G. Effect of temperature on the biosynthesis of tetracycline [J]. Antibiotiki, 1973,18:780-784
    25、Gadcn E L. Fermentation Kinetics and Productivity [J]. Journal of Biochemical and Microbiological Technology Engineering, 1959, 1(4):413-429
    26、Luedeking R, Piret E L. A kinetic study of the lactic acid fermentation: batch process at controled pH [J]. Journal of Biochemical and Microbiological Technology Engineering, 1959, 1(4):393-412
    1、Dijkgraaf G J P, Li H, Bussey H. Cell-β-D-glucans of Saccharomyces cervisiae. In E. J. Vandamme, S. De Baets, & A. Steinbüchel (Eds.), Biopolymers (vol. 6) Polysaccharides2 [M], Germany: Wiley-VCH Verlag, 2002: 179-213
    2、Klis F, Mol P, Hellingwerf K, et al. Dynamic of cell wall structure in Saccharomyces cerevisiae [J]. FEMS Microbiology Reviews, 2002, 26:239-256
    3、Patchen M L, Liang J, Vaudrain T, et al. Mobilization of peripheral blood progenitor cells by Beta fectin PGG-Glucan alone and in combination with granulocyte colony-stimulating factor [J]. Stem Cells, 1998, 16:208-217
    4、?andula J, Kogan G, Ka?urákováM, et al. Microbial (1→3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity [J]. Carbohydrate Polymers, 1999, 38:247-253
    5、Müller A, Ensley H, Pretus H, et al. The application of various protic acids in the extraction of (1→3)-β-D-glucan from Saccharomyces cervisiae [J]. Carbohydrate Research, 1997, 299:203-208
    6、Ohno N, Miura T, Miura N N, et al. Structure and biological activities of hypochlorite oxidized zymosan [J]. Carbohydrate Polymers, 2001, 44:339-349
    7、Tsiapali E, Whaley S, Kalbfleisch J, et al. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity [J]. Free Radicals in Biology and Medicine, 2001, 30:393-402
    8、Liang J S, David M, Lauren C, et al. Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity [J]. International Journal of Immunopharmacology, 1998, 20:595-614
    9、Hassid W Z, Joslyn M A., McCready R M. Molecular constitution of an insoluble polysaccharide from yeast Saccharomyces cerevisiae [J]. Journal of the American Chemical Society, 1941, 63:295-298
    10、Manners D J, Masson A J, Patterson J C. Structure of aβ-(1→3)-D-glucan from yeast cell walls [J]. Biochemical Journal, 1973, 135:19-30
    11、Williams D L, Pretus H A, McNamee R B, et al. Development of water-soluble, sulfated (1→3)-β-D-glucan biological response modifier derived from Saccharomyces cerevisiae [J]. Carbohydrate Research, 1992, 235:247-257
    12、Yajun W, Shanjing Y, Tianxing W. Combination of induced autolysis and sodium hypochlorite oxidation for the production of Saccharomyces cerevisiae (1→3)-β-D-glucan [J]. World Journal of Microbiology & Biotechnology, 2003, 19:947-952
    13、Müller A, Raptis J, Rice P J, et al. The influence of glucan polymer structure and solution conformation on binding to (1→3)-beta-D-glucan receptors in a human monocyte-like cell line [J]. Glycobiology, 2000, 10:339-346
    14、Freimund S, Sauter M, K?ppeli O, et al. A new non-degrading isolation process for 1,3-β-D-glucan of high purity from baker’s yeast Saccharomyces cerevisiae [J]. Carbohydrate Polymers, 2003, 54:159-171
    15、AOAC. Official methods of analysis, methods 920.39, 942.05 (15th ed.). Arlington VA: Association of Official Analytical Chemists, 1990
    16、Peterson G L. A simplification of the protein assay method of Lowry et al. which is more generally applicable [J] . Analytical Biochemistry, 1977, 83:346-356
    17、Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28:350-356
    18、张运涛,谷文英.紫外分光光度法测定啤酒酵母中甘露糖[J],食品与发酵工业, 1999, 25(6): 32-36
    19、Walther P, Müller M. Double-layer coating for field-emission cryo-scanning electron microscopy—Present state and applications [J]. Scanning, 1997, 19:343-348
    20、孙海翔,尹卓容,马美范.高压均质破碎啤酒酵母细胞壁的研究[J].食品工业科技, 2002, 23(2):66-67
    21、Artiwan S, Pranee K, Manop S, et al. Application of rotary microfiltration in debittering process of spent brewer`s yeast [J]. Bioresource Technology, 2005, 96:1851-1859
    22、Hough J S, Maddox I S. Yeast autolysis [J]. Process Biochemistry, 1970, 5:50-52
    23、Konrr D, Shetty K J, Hood L F, et al. An enzymatic method for yeast autolysis [J]. Journal of Food Science, 1979, 44 (5):1362-1365
    24、David R C, David G C, Ron J N. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier [J]. Applied and Environmental Microbiology, 1988, 54:1420-1425
    25、Franziskus K, Werner-Michael K. Mild enzyme isolation of mannan and glucan from yeast Saccharomyces cerevisiae [J]. Die Angewandte Makromolekulare Chemie, 1999, 268:59-68
    26、Rito-Palomares M, Lyddiatt A. Impact of cell disruption and polymer recycling upon aqueous two-phase processes for protein recovery [J]. Journal Chromatography B, 1996, 680:81-89
    27、苏志国.高压均浆破碎法提取酵母胞内蛋白[J].生物工程学报, 1990, 6(3):240-245
    28、Doulah M S, Hammond T H. A hydrodynamic mechanism for the. disintegration of Saccharomyces cervesiae in an industrial homogenizer [J]. Biotechnology. Bioengineering, 1975, 17: 845-858
    29、Hetherington P J. Release of protein from Baker's yeast by disruption in an industrial homogenizer [J]. Transaction of the Institution of Chemical Engineering, 1971, 49:142-148
    30、Chisti Y, Moo-Young M. Disruption of microbial cells for intracellular products [J]. Enzyme and Microbial Technology, 1986, 8(4):194-204
    31、Charm S E, Matteo C C. Scale-up of protein isolation [J]. In Methods in enzymology, 1971, 22:476-556
    32、胡晓忠,明杰,甄宝贵等,用酸碱法从面包酵母中提取β-(1-3)-D-葡聚糖[J].工业微生物, 2000, 3:29-31
    33、Saowanee T, Manop S, Thanaporn P, et al. Preparation of spent brewer’s yeastβ-D-glucans for potential applications in the food industry [J]. International Journal of Food and Technology, 2004, 39:21-29
    34、Ohno N, Miura T, Miura N N, et al. Structure and biological activities of hypochlorite oxidized zymosan [J]. Carbohydrate Polymers, 2001, 44:339-349
    1、Hunter K W, Gault R A, Berner M D. Preparation of microparticulateβ-D-glucans from Saccharomyces cerevisiae for use in immune potentitation [J]. Letters in Applied Microbiology, 2002, 35:267-271
    2、Cheng-yi L, Chun-Hsien C, An-I Y, et al. Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound [J]. Food Hydrocolloids, 1999, 13:477-481
    3、王亚军.酵母培养制备(1→3)-β-D-葡聚糖方法及相关基础研究[D]: [博士学位论文].杭州:化工与生物工程学院, 2004. 97-106
    4、Tabata K I W, Kojima T. Ultrosonic degradation of schizophyllan an antitumor polysaccharide, produced by schizophyllan communefries [J]. Carbohydr Res, 1981,89(1):121-135
    5、Isono Y, Kumagai T, Wetanabe T. Ultrasonic degradation of waxy rice starch [J]. Biosci Biotechnol Biochem, 1994, 58(10):1799-1802
    6、Showsun C S, Gerald Z, Rachel S. Ultrasonic irradiation of bacteria polysacchrides [J].Carbohydrate research, 1986, 152:7-20
    7、Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophages [J]. Biomaterials, 1988, 9:356-362
    8、Ying W, Rawle I H, Dennis L K, Ozonolytic depolymerization of polysaccharides in aqueous solution [J]. Carbohydrate Research, 1999, 319:141-147
    9、Torgeir H, Bj?rn T S, Olav S, et al. Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions [J]. Carbohydrate Polymers, 1998, 37: 41-48
    10、Jozef S, Grigorij K, Marta K, et al. Microbial (1-3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity [J]. Carbohydrate Polymers, 1999, 38:247-253
    11、Sandula J, Machova E, Hibalova V. Mitogenic activity of particulate yeastβ-(1→3) -D-glucan and its water-soluble derivatives [J]. Int. J. Biol. Macromol, 1995, 17(6):323-326
    12、王淼,丁宵霖.羧甲基化改性酵母葡聚糖的流变性质[J].无锡轻工业大学学报, 1998, 17(2):34-38
    13、王淼,丁宵霖.改性酵母葡聚糖-CMG的部分性质及其在溶液中构象行为[J].中国生物化学与分子生物学报, 1998, 14(5):636-640
    14、Guiseley K B. Some novel methods and results in the sulfation of polysaccharides [A]. In: Schweiger R G, ed. Carbohydrate sulfates [J]. ACSSymps Ser, 1978, 77:148-162
    15、Wdfrom M L, Juliano B O. Chondroitin sulfate modificationsⅡ. Sulfated and N-deacetylaed preparations [J]. Am Chem Soc, 1960, 82:2588
    16、Ya-Jun W, Shan-Jing Y, Yi-Xin G, et al. A novel process for preparation of (1/3)-β-D-glucan sulphateby a heterogeneous reaction and its structural elucidation [J]. Carbohydrate Polymers, 2005, 59:93-99
    17、张惟杰.糖复合物生化研究技术(第二版) [M].杭州:浙江大学出版社, 1999. 91
    18、Suslick K S. Ultrasound, its chemical, physical, and biological effects [M]. New York: VCH Publishers, 1988. 132-133
    19、郑波,何得昌.窄分布纳米级HMX的制备及粒度分析[J].固体火箭技术, 2003, 26(4):58-59
    20、王淼,陈玉添.酵母β-D-葡聚糖在肉制品中的应用研究[J].食品与机械, 2001, 2:32-33
    21、Konuklar G, Inglett G E, Carriere C J, et al. Use of aβ-glucan hydrocolloidal suspension in the manufacture of low-fat Cheddar cheese: manufacture, composition, yield and microstructure [J]. International Journal of Food Science and Technology, 2004, 39:109-119
    22、马宁,汪琴,孙胜玲等,甲壳素和壳聚糖化学改性研究进展[J],化学进展, 2004, 16(4):643-653
    23、Williams D L, Pretus H A, McNamee R B, et al. Development of a water-soluble, sulfatedβ-(1-3)-D-glucan biological response modifier derived from Saccharomyces cerevisiae [J]. Carbohydrate Research, 1992, 235:247-257
    1、Baets S D, Vandamme E J, Steinbüchel A. Biopolymers (vol. 6) Polysaccharides2 [M], Germany: Wiley-VCH Verlag Press, 2002:179-213
    2、Peat S, Whelan W J, Edwards T E. Polysaccharides of baker`s yeast [J]. Journal of Chemical Society, 1958, 3862-3868
    3、Manners D J, Patterson J C. A reexamination of the molecular structure of yeast glucans [J]. Biochemical Journal, 1966, 98:19-20
    4、Misaki J A, Johnson J, Kirkwood S, et al. Structure of the cell-wall glucans of yeast Saccharomyces cerevisiae [J]. Carbohydrate Research, 1968, 6(2): 150-164
    5、Bacon J S D, Farmer V C, Jones D, et al. The glucans components of the cell wall of baker`s teast (Saccharomyces cerevisiae) considered in relation to its ultrastructure [J], Biochemical Journal, 1969, 114:557-567
    6、Manners D J, Masson A J, Patterson J C. Structure of aβ-(1,3)-D-glucans from yeast cell walls [J]. Biochemical Journal, 1973, 135(1):19-30
    7、Manners D J, Masson A J, Patterson J C, et al. The structure of aβ-(1,6)-D-glucans from yeast cell walls [J]. Biochemical Journal 1973, 135(1):31-36
    8、Fleet G H, Manners D J. Isolation and composition of an alkali-soluble glucans from the cell walls of Saccharomyces cerevisiae [J]. Journal of General Microbiology, 1976, 94:180-192
    9、Di-Luzio N R. Update on the immunomodulating activities of glucans [M]. Springer Semin Immunopathol, 1985. 387-400
    10、张惟杰.糖复合物生化研究技术(第二版) [M].杭州:浙江大学出版社, 1999.193-198
    11、Lapasin R, Pricl S. Rheology of Industrial Polysaccharides: Theory and Applications [M]. Blackie Academic and Professional, 1995.250-294
    12、李卫旗,皇甫宏,吴雪昌等.啤酒酵母中β-(1-3)葡聚糖的提取及其性能分析[J].浙江大学学报:理学版, 1999, 26(2):75-79
    13、Rakhimov D A, Yuldasheva N P. Polysaccharides of Eremurus. XXIX. Isolation of a Glucomannan [J]. Chemistry of Natural Compounds, 1996, 32:587-588
    14、胡晓忠,明杰,甄宝贵等,用酸碱法从面包酵母中提取β-(1-3)-D-葡聚糖[J].工业微生物, 2000, 3:29-31
    15、Bao X, Duan J, Fang X, et al. Chemical modifications of the (1-3)-β-D-glucans from spores of Ganoderma lucidurn and investigation of their physicochemical properties and immunological activity [J]. Carbohydr Research, 2001, 336:127-140
    16、Lloyd A G, Large P J, Davies M, et al. Infrared studies on sulphate esters [J]. Biochimica et Biophysica acta, 1961, 46:108-115
    17、Freimund S, Sauter M, K?ppeli O, et al. A new non-degrading isolation process for 1,3-β-D-glucans of high purity from baker’s yeast Saccharomyces cerevisiae [J]. Carbohydrate Polymers, 2003, 54:159-171
    18、Douglas W L, Donald A F, David L W, Structural characterization of (1-3)-β-D-glucans isolated from blastospore and hyphal forms of Candida albicans [J]. Carbohydrate Research, 2003, 338:1491-1496
    19、Steve W C. Food Carbohydrates: Chemistry, Physical Properties, and Application. New York: Taylor & Francis Press, 2005.148-149
    20、Yajun W, Shanjing Y, Yixin G, et al. A novel process for preparation of (1→3)-β-D-glucans sulphate by a heterogeneous reaction and its structural elucidation [J]. Carbohydrate Polymers, 2005, 59:93-99
    21、Ensley H E, Tobias B, Pretus H A, et al. NMR spectral analysis of a water-insoluble (1->3)-beta-D-glucans isolated from Saccharomyces cerevisiae [J]. Carbohydrate Research, 1994, 258:307-311
    22、Naohito O, Michiharu U, Aiko T, et al. Solubilization of yeast cell-wallβ-(1,3)-D-glucans by sodium hypochlorite oxidation and dimethyl sulfoxide extraction [J]. Carbohydrate Research, 1999, 316:161-172
    23、Williams D L, Pretus H A, McNamee R B, et al. Development of water-soluble, sulfated (1→3)-β-D-glucans biological response modifier derived from Saccharomyces cerevisiae [J]. Carbohydrate Research, 1992, 235:247-257
    24、Ribeiro A, Vieira R P, Mourao P A. A sulfatedα-L-fucan from sea cucumber [J]. Carbohydrate Research, 1994, 255:225-240
    25、Mei Z, Lina Z., Yifeng W, et al. Chain conformation of sulfated derivatives ofβ-D-glucans from sclerotia of Pleurotus tuber-regium [J]. Carbohydrate Research, 2003, 338:2863-2870
    26、Pingyi Z, Lina Z., Shuyao C. Solution properties of anα-(1→3)-D-glucans from Lentinus edodes and its sulfated derivatives [J]. Carbohydrate Research, 2002, 337:155-160
    27、Bushin S V, Tsvetkov V N, Lysenko Y B, et al. Triple helix of a Schizophyllum commune polysaccharide in aqueous solution [J]. Vysokomolekulyarnye Soedineniya Seriya A, 1981, 23:2494-2503
    28、Bohdanecky M. New method for estimating the parameters of the wormlike chain model from the intrinsic viscosity of stiff-chain polymers [J]. Macromolecules, 1983, 16:1483-1492
    29、Yamakawa H, Fujii M. Intrinsic viscosity of wormlike chains. Determination of the shift factor [J]. Macromolecules, 1974, 7:128-135
    30、Yamakawa H, Yoshizaki T. Transport coefficients of helical wormlike chains. IV: Intrinsic viscosity of the touched-bead model [J]. Macromolecules, 1980, 13:165-171
    31、Kratky O, Porad G. Rontgenuntersuchung geloster fadenmolekule [J]. Recueil Des Travaux Chimiques Des Pays-Bas, 1949, 68:1106-1122
    32、Jinghua C, Lina Z, Nakamura Y, et al. Viscosity behavior and chain conformation of a (1→3)-α-glucans from Ganoderma lucidum [J]. Polymer Bulletin, 1998, 41:471-478
    33、Lina Z, Mei Z, Peter C. Chemical structure and chain conformation of the water insoluble glucans isolated from Pleurotus tuber-regium [J]. Biopolymers, 2001, 59:457-464
    1、Chihara G. Recent progress in immunopharmacology and therapeutic effects of polysaccharides [J]. Developments in biological standardization, 1992, 77:197-207
    2、Riggi S J, Di-Luzio N R. Identification of a reticulo endothelial stimulating agent in zymosan [J]. Amercian Journal of Physiology, 1961, 200:297-300
    3、Williams D L, Di-Luzio N R. Glucan- induced modification of murin eviral hepatitis [J]. Science, 1980, 208:67-69
    4、Hofer M, Pospisil M. Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. A survey of the authors' results [J]. International Immunopharmacolgy, 1997, 19 (9-10):607-609
    5、Miura T, Ohno N, Miura N N, et al. Antigen-speci¢c response of murine immune system toward a yeastβ-D-glucans preparation, zymosan [J]. Immunology and Medical Microbiology, 1999, 24:131-139
    6、Gordon D B, Siamon G. Fungalβ-D-glucans and mammalian immunity[J]. Immunity, 2003, 19:311-315
    7、Di-Luzio N R. Update on the immunomodulating activities of glucans. Springer Semin Immunopathology, 1985.387-400
    8、Ferencik M, Kotulova D, Masler L, et al. Modulatory effect of glucans on the functional and biochemical activities of guinea-pig macrophages [J]. Methods and Finding in. Experimental Clinical. Pharmacology, 1986, 8:163-166
    9、Williams D L, Pretus H A, McNamee R B, et al. Development of a water-soluble, sulfatedβ-(1-3)-D-glucan biological response modifier derived from Saccharomyces cerevisiae [J].Carbohydr Research, 1992, 235:247-257
    10、胡晓忠,明杰,甄宝贵等,用酸碱法从面包酵母中提取β-(1-3)-D-葡聚糖[J].工业微生物, 2000, 3:29~31
    11、MachováE, Kogan G, Alf?ldi J, et al. Enzymatic and ultrasonic depolymerization of carboxymethylatedβ-1,3-D-glucans derived from Saccharomyces cerevisiae [J]. Journal Applied Polymer Science, 1995, 55:699-704
    12、保健食品功能学评价程序和检验方法.卫监发[1996]38号
    13、Xingfeng B, Cuiping L Jinian F,et al. Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum (Fr.) Karst [J]. Carbohydrate Research, 2001, 332:67-74
    14、雷林生,孙莉莎,杨淑琴.有限稀释微量溶血法测定小鼠血清溶血素的活性[J].中国药理学通报, 1999, 15(3):274-276
    15、朱立平,陈学清.免疫学常用实验方法[M].北京:人民军医出版社, 2000. 120-122
    16、何金生,李瑞珠,宗庭益. MTT还原法检测NK细胞活性的方法学研究[J].中国免疫学杂志, 1996, 12:356-358
    17、Vaclav V, Jean-Claude Y. Effects of marineβ-1,3-glucan on immune reactions [J]. International Immunopharmacology, 2004, 4:721-730
    18、Lersch C, Zeuner M, Bauer A, Siemens M, et al. Nonspecific immunostimulation with low doses of cyclophosphamide (LDCY), thymostimulin, and Echinacea purpurea extracts (echinacin) in patients with far advanced colorectal cancers: preliminary results [J]. Cancer Investigation, 1992, 10(5):343-348
    19、于善谦.免疫学导论[M].北京:高等教育出版社, 1999.133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700