固定化—共代谢技术处理五氯苯酚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
五氯苯酚(PCP)作为一种持久性有机污染物,对人类和环境具有很大的危害,对PCP生态毒性及生物降解的研究一直是国际关注热点。本文提出用固定化-共代谢方法来处理含PCP的废水,对PCP的生态毒性和固定化-共代谢生物降解过程机理进行了系统的研究。
     以原生动物为靶生物对PCP的生态毒性进行了综合评价,确定了PCP对原生动物群落12h急性中毒的最大无致死和最小全致死浓度范围,并得出半数致死效应浓度(LC50)为2.40mg/L。
     对活性污泥废水的土著混合菌进行驯化、分离,得到四株降解PCP的优势菌:NERCDT-A、NERCDT-B、NERCDT-C和NERCDT-D,根据16SrDNA测序结果,确定该四株菌分属于Klebsiella terrigena、Uncultured bacterium、Bacterium SV26II和Pseudomonas migulae菌属。
     通过正交实验及各菌株的生长曲线的研究,以PCP的降解效果为目标,确定了固定化微生物降解PCP的最优操作条件为:选用PVA+海藻酸钠为包埋材料,包埋100mL吸光度在0.85nm~0.90nm范围内的菌液,pH值为8.0。通过间歇实验,系统地研究了游离菌种、固定化单株菌和固定化混合菌对废水中PCP的去除效果。实验结果表明:固定化微生物降解PCP优于游离菌种,固定方法可以使PCP的去除率提高35%。
     通过固定化-共代谢降解实验研究表明,不同的共代谢基质对PCP的降解速率有着不同影响:葡萄糖和丁二酸对PCP降解起促进作用;苯酚对PCP降解的影响程度与浓度有关,10mg/L浓度的苯酚对PCP的降解起到促进作用,而5mg/L和50mg/L浓度的苯酚却抑制了PC P的降解;丙三醇对PCP降解有明显抑制作用。
     通过固定化单株菌和固定化-共代谢降解PCP的实验数据拟合与理论研究,提出了单底物、双底物降解动力学模型,并定量化地描述了固定化菌体在单底物和双底物生物降解系统中的降解动力学行为,模型结果与实验数据吻合良好。
Pentachlorophenol (PCP) is one of persistent organic pollutants. It is existed broadly in the waters. The research of toxicity and biodegradation of PCP is focused by international chemical field. The immobilization-cometabolism method is used to remove PCP which is existed in the wastewater. The toxicity of PCP and the mechanisms of immobilization- cometabolism have been investigated.
     The toxicity of pentachlorophenol (PCP) with protozoan community as target organism was studied. In the 12h-cute toxicity testing, the maximal tolerance and minimal all lethal were tigated, the half lethal concentration was 2.40 mg/L. Through mixed culture four strains that could live in the high concentration of PCP have been isolated by enriching, screening and culturing from activated sludge. They are called NERCDT-A, NERCDT-B, NERCDT-C, NERCDT-D. The four strains are identified by 16SrDNA as Klebsiella terrigena, Uncultured bacterium, Bacterium SV26II and Pseudomonas migulae, respectively. The fittest vegetal conditions and optimized biodegradation condition have been determined by orthogonal experiments and the bacteria growth curves. The PVA mixed algin has been chosen as embedding material and 10mL bacteria was embedded which absorbency is varied from 0.85nm to 0.90nm. The value of pH is 8.0.
     The experiments have been used in detail to compare the effect of PCP removal by bacteria in solution, the immobilized single bacteria and the immobilized mixed bacteria. Results show that the velocity of degradation used by immobile bacteria method is faster than that used by bacteria in solution. The removal rate of PCP is increased by 35%.
     Four cometabolism substrates have been used to compare the effect of different growth substrates, which include glucose, butyric acid, glycerol and phenol. Results show that the glucose and butyric acid can promote the degradation rate of PCP, and the glycerol will restrain it. The effect of phenol is related by the initial concentration of phenol. When the concentration of phenol is 10mg/L, the existing of phenol can promote the degradation rate of PCP by using immobilization-cometabolism. When the concentration of phenol is 5mg/L and 50mg/L, the restrain effect is obviously observed.
     Based on the experimental data and theoretical research of immobilization- cometabolism, single substrate and two substrates model are presented to quantificationally describe the process of PCP degradation. The result of simulation is in good agreement with the experiment data.
引文
[1] Wild S R, Harrad S J, Jones K C. Chlorophenls in digestedU .K.sewage sludges. Water Research.1993, 27:1527-1534.
    [2] Tanjore A, Viraraghavan T. Pentachlorophenol water pollution impacts and removal technologies. Int J Environ Studies. 1994,45(2): 155-164.
    [3] Engwall M A, Pignatello J J and Grasso D. Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-Fenton reaction. Water Research. 1999,33:1151-1158.
    [4] Packham E D, Duxbury C L.an d Mayfeld C I.et al. Bull.Environ.Contam. Toxicol. 1982,29:739.
    [5] 金相灿. 机化合物污染化学-有毒有机物污染化学,北京:清华大学出版社,1990.
    [6] 张宗炳. 杀虫剂的分子毒理学,北京:农业出版社,1987.
    [7] Yves Arcand, Jalal Hawari, S.K Guiot. Solubility of pentachlorophenol in aqueous solutions:the pH efect. Water research.1995,29 (1) : 131-136.
    [8] Crosby D G. Environmental chemistry of pentachlorophenol, In:Pure&APP. Chem.,1981,53:1051~1080.
    [9] 迟杰. 五氯酚在区域水环境中归趋的研究.天津:南开大学.2000.
    [10] 郭家钢,郑江. 中国血吸虫病流行与防治,疾病控制杂志,2000,4(4):289-293.
    [11] 张兵,郑明辉 . 五氯酚在洞庭湖环境介质中的分布 . 中国环境科学.2001,21( 2) :165-167.
    [12] 王宏,杨霓云,沈英娃等. 海河流域几种典型有机污染物环境安全性评价.环境科学研究.2003,16 (6):35-37.
    [13] Engst R. The metabolism of hexachlorobenzene in rats, In:Bull. Environ. Contam. Toxicol.,1976,16:248-252.
    [14] 张春桂,许华夏,姜晴楠. 五氯酚的微生物降解与光解.生态学杂志,1997,16 (3) : 19-22.
    [15] Berry D F, Francis A J, Bollag J M. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiologicalreviews.1987,5 1(1):43 -59.
    [16] Thompson T S. Preliminary results of a survey of pentachlorophenol levels in human urine.Bull.Environ. Contam. Toxicol.1994,53:274-279.
    [17] Cessna A J. Concentrations of pentachlorophenol in atmospheric samples from three Canadian locations,1994.Bull.E nviron.Contam.Toxicol.1997,58:651 -658.
    [18] 陈国新. 环境科学基础知识,上海:复旦大学出版社,1992,247-257.
    [19] 夏北成. 环境污染物生物降解,北京:化学工业出版社,2002,266-276.
    [20] Daniel. V. Association of elevated blood levels of pentachlorophenol with cellular and humoral immunodeficiencies.Archives of environmental health.200 1, 56 (1):77 -83.
    [21] 任引津,张寿林. 急性化学物中毒救援手册,上海:上海医科大学出版社,1994.
    [22] Makinen, P.M,Theno T.J., Fergusor, J.F. Chlorophenol toxocity removal and monitoring in aerobiot reatment:recovery from process upset. Environment Science technology.1993,27:14 34-1439.
    [23] Salminen J.,Haimi J. Efects of PCP on soil organisms and decompositior forest soil. Journal of applied ecology.1997,34 (1):101-110.
    [24] Zheng M, Zhu L. Toxicity effects of pentachlorophenol on Brachydanio rerio. Applied Ecology, 2005,16(10): 1967-1971.
    [25] 刘希涛,袁 星,赵元慧等. 应用 AM1 法研究取代芳烃化合物对水生生物的急性毒性,化学学报,2002,4(1):223-224.
    [26] Iounes N, Guerbet M, Jouany J M, Hamel J. Acute comparative toxicity of phenol and some chlorophenols on aquatic and terrestrial organisms. Revue des Sciences de l'Eau, 2000,13(2): 167-173.
    [27] 陆光华,耿亮. 取代芳烃对藻类毒性与结构参数之间的定量关系,环境科学研究,2004,17(6):74.
    [28] 堵锡华. 结构信息廉洁性指数用于取代芳烃生物毒性与性质的研究,化学通报,2005, http://www.hxtb.org.
    [29] John C J, Paul V, McCormick B R. Niederlehner. Estimating ecotoxicological risk and impact using indigenous aquatic microbial communities. Hydrobiologia. 1992,237(3): 573-577.
    [30] Mahory L M. Alternative Prey: a mechanism for elimination of bacteriaspecies by protozoa. Application Environmental Microbiology, 1983, 46(9): 1073-1079.
    [31] Christian P, Marc M, Gerard M. Characteristics of Pentachlorophenate Degradation in Aqueous Solution by Means of Ultrasound. Environmental Science Technology,1992, 26:1639-1642.
    [32] 张玲玲,李亚峰. Fenton 氧化法处理废水的机理及应用,辽宁化工,2004,33(12):112-114.
    [33] 沈壮志,程建政,吴胜举. 五氯苯酚降解的超声诱导,化学学报,2003,61(12):2016~2019.
    [34] Petrier C, Jiang Y, Larny M F. Ultrasound and environment: Sonochemical destruction of chloroaromatic derivatives. Environmental Science and Technology, 1998, 32:1316-1318.
    [35] 林建平. 小生命大贡献-微生物工程,杭州,浙江大学出版社,2002.
    [36] Mullen M D, Wolf D C. Bacterial sorption of heavy metals. Appllied Environment Microbiology,1989,55(12):3143-3149.
    [37] Texier A C, Andres Y. Selective biosorption of lanthanide ions by pseudomonas aeruginosa. Environment Technology, 1999,33:489~495.
    [38] Anders B, Norberg, Hans P. Accumulation of heavy-metal ions by Zoogloes ramigera, In: Biotechnol.Bioeng., 1984,26:239-246.
    [39] Morron M L,Ben O N,Gonzalez M T. Myxococcus xanthus biomass as biosorbent for lead, In: Appl.Microbiol.,1998,84:63-67.
    [40] Norberg A, Ryclin S. Development of a continuous process for metal accumulation by Zooglea ramigera, In: Biotechnol.Bioeng.,1984,26:265~268
    [41] Akira F, Zhang X T. Titanium dioxide photocatalysis: present situation and future approaches, In:Kanagawa Academy of Science and Technology,2005,10:1106-1110.
    [42] Jarnuzi G, Winarti A L. Photocatalytic degradation of pentachlorophenol in aqueous solution employing immobilized TiO2 supported on titanium metal. Photochemistry and photobiology A: Chemistry,2005,173.
    [43] Xi B D, Liu H L. Photocatalytic degradation of PCP-Na with TiO2 photocatalysis loaded with platinum. Environmental Sciences, 2002,14: 428-432.
    [44] 刘月英,傅锦坤. 细菌吸附 Pb2+的研究,微生物学报,2000,40(5):533-539.
    [45] 赵晓红,张敏. SRV 菌去除电镀废水中铜的研究,中国环境科学,1996,16(4):288-292.
    [46] 吴云,马国华. 短芽孢杆菌 J74 降解萘和靛蓝形成的研究,环境科学学报,1992,12(2):249-253.
    [47] Volesky B, May H, Hoan Z R. Cadmium biosorption by Saccharomyces cerevisia. Biotechnol.Bioeng., 1993,41:826-829.
    [48] 张锡辉,Bajpai R. 难降解有机污染物共降解机理分析,上海环境科学,2000,19(7):297-301.
    [49] Loh K C, Wang S J. Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources , In: Biodegradation,1997,8(5):329-338.
    [50] Wang S J, Loh K C. Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation, 1999, 10(4): 261-269.
    [51] 刘和,沈超峰. 多食鞘氨醇杆菌共代谢降解五氯酚,中国环境科学,2004,24(3):294-298.
    [52] 李萍,刘俊新. 共代谢基质驯化活性污泥降解五氯酚,中国给水排水,2004,20(6):119-124.
    [53] 徐向阳,屠明. 厌氧颗粒污泥降解五氯酚活性的研究,应用与环境生物学报,1996,2(4):398~404.
    [54] Puhakka, Jaakko A S, Wen K. Chlorophenol degradation under oxic and anoxic conditions. Water Science and Technology, 1992,25(1):147-152.
    [55] 汤岳琴,林军,王建华. 生物吸附研究进展,四川环境,2001,20(2):12-17.
    [56] Singleton I, Simmons P. Factors affecting silver biosorption by an industrial strain Saccharomyces cerevisiae, In: Chem. Tech. Biotech.,1996,65:21-28.
    [57] 牛慧,许学书,王建华. 非生长产黄青霉吸附铅的研究,微生物学报,1993,33(6):459-463.
    [58] Lamar R T, Glaser J A, Evans J W. Solid phase treatment of pentachlorophenol contaminated soil using lignin-degrading fungi. Environmental Science and Technology, 1993,27:2566-2571.
    [59] Lamar R T, Dietrich D M. In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Applied and Environmentalmicrobiology, 1990,56:3093-310.
    [60] Lamar R T, Larsen M J, Kirk T K. Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Applied and Environmental microbiology, 1990,56(11):3519-352.
    [61] Seigle-Murandi F. Biodegradation potential of some micromycetes for pentachlorophenol. Ecotoxicol. Environ.Saf., 1990,21:290-300.
    [62] Mileski G J. Bumpus J A. Biodegradation of pentachlorophenol by the white-rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology.1988,54(12):2885-2889.
    [63] Curds C R. Protozoa in biological sewage treatment processes, In:Water Research, 1988,14 (3):225-236.
    [64] 刘文科,冯固,李晓琳. 4 种菌根真菌对五氯酚耐受性及其生理基础研究,农业环境科学学报,2004,23(4):801-805.
    [65] 陈俊,程树培,王洪丽等. 基因工程菌在精对苯二甲酸废水处理中的应用, 工业用水与废水,2006,37(1):32-35.
    [66] Morsen A, Rehm H J. Degradation of phenol by a mixed culture immobilized by adsorption on activated carbon and sintered glass, In:Applied Microbiology and Biotechnology,1990,33(2):206-212.
    [67] 陈元彩,蓝惠霞,陈中毫. 固定化好氧菌和厌氧颗粒污泥在不同供氧条件下降解氯酚的研究,环境科学学报,2005,25(2):172-175.
    [68] 李萍. 吸附一共代谢再生活性污泥法去除污水中五氯苯酚的研究:[博士学位论文],北京:2004.
    [69] Pignatello J J. Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams.Apply environmental microbial. 1983,4 6(5):1024 -1031.
    [70] Chu J P. Metabolism of pentachlorophenol by an axentic bacterial cultur e. Appl.Microbiol.1972,23 (5):1033-1035.
    [71] Stanlake G J and Finn R K. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appllied Environment Microbiology. 1982,44(6):1421-1427.
    [72] Saber D L and Crawford R L. Isolation and characherization of Flavobacterium strains that degrade pentachlorophenol. Appllied Environment Microbiology. 1985,50 (6):1512-1518.
    [73] Radehaus P M., Schmidt S K. Characterization of a novel Pseudomonas sp.thatmineralizes high concentrations of pentachlorophenol. Appllied Environment Microbiology. 1992,58 :2879-2885.
    [74] Karn J S. Metabolism of halophenols by 2,4,5-Trichlorophenoxyacetic Acid-Degrading Pseudomonas cepacia. A ppllied Environment Microbiology. 1983,46:1176 -1181.
    [75] Mieski G J. Biodegradation of pentachlorophenol by the white Rote Fungus. Phane rochaete Chrysosporium. Appllied Environment Microbiology. 1988, 54(12):2885 -2889.
    [76] Berry D F. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under an aerobic conditions. Microbiological reviews. 1987, 51( 1) :43 -59.
    [77] Xun L, C S Orser. Purification and properties of pentachlomphenol hydroxylase, a flavoprotain from Flavobactenium sp strainA TCC 39723. Journal of Bacteriology. 1991,173(14):4447-4453.
    [78] Xun L, Topp E, C S Orser. Purification and proper of tetrachloro-p-hydroquinoner eductived ehalogenase from a Flavobacterium sp. Journal of bacteriology. 1992,174(24):8003-8007.
    [79] Xun L. Evidence that pcpA encodes 2,6-dichlorohydroquinone dixygenase the ring cleavage enzyme required for pentachlorophenol degradation in sphingomonas chlorophenolica strain ATCC 39723. Biochemistry.1999,38 (23):7659-7669.
    [80] 王绍文, 罗志腾,钱雷等. 高浓度有机废水处理技术与工程应用.北京:冶金工业出版社,2003,90-93.
    [81] 郭加恩. 氯酚类在厌氧河 G7 底泥之生物分解.硕士论文.国立台湾海洋大学海洋生物研究所.1995.
    [82] 王洪祚,刘世勇. 酶和细胞的固定化,化学通报,1997,2:22-27.
    [83] Pinal A. Intergeneric hybirds of Saccharomyces cerevisiac and Zygosac-charomyces fermentati obtained by Protoplsat fusion, In:Appl.environ.Mic robiol.,1986,51(5): 995-1003.
    [84] Chen W. Intergeneric protoplast fuison between Fusobacterium varium and Enterocoecus faecium for Enhancing Oehydrodivanillin degradation, In:Appl. Environ. Microbiol. 1987,53(3): 542-54.
    [85] 李尔炀,史乐文,王恒新. 一株降解性工程菌的构建,生物工程进展,1992,12(3):30-33.
    [86] 林雅兰. 降解质粒及其遗传控制,微生物学通报,1988,15,(5):226-229.
    [87] 蒋宇红,黄霞,俞毓馨. 几种固定化细胞载体的比较,环境科学,1992,14(2):11-15.
    [88] 周定,候文华. 固定化过程中试剂对微生物活性影响的研究,哈尔滨工业大学学报,1990,57(7):2847-2857.
    [89] 张蔚文,张灼. 固定化微生物技术在废水处理中的应用与研究,上海环境科学,1992,10(10):20-24.
    [90] 闵航,郑耀通. 聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件研究,环境科学,1996,15(5):10-14.
    [91] 吴晓磊,刘建广,黄霞等. 海藻酸钠和聚乙烯醇作为固定化微生物包埋剂的研究,环境科学,1995,14(2):28-31.
    [92] 陈敏,罗启芳. 聚乙烯醇包埋活性炭与微生物的固定化技术及其对水胺硫磷降解的研究,环境科学,1996,15(3):11-14.
    [93] 李月中,陈世和. 固定化微生物细胞法处理含氰废水的研究,上海环境科学,1991,10(12):2-4.
    [94] 千佃一郎. 固定化酶素,东京:论坛社,1975.
    [95] 居乃琥. 全国固定化生物催化剂学术讨论会报告,1988.
    [96] 顾谬. 全国固定化生物催化剂学术报告讨论研究会,1988.
    [97] Negoro S. Plasmid determined enzymatic degradation of nylon oligomers, In: I.Bacteriol.,1983,155(1): 22-31.
    [98] Schell M A. Cloning and expression in Ecoli of the naphthaiene degradation genes from plasmid NAH7 , In: Bacteriol.,1983,153(2):822-829.
    [99] Wynne E C. Cloning of a gene cluster from Collvibrio mixtus which codes for cellulose, chitinase ,amylase and pectinase, In: Appl. Environ. Microbiol., 1986,52 (6): 1362-1367.
    [100] Inonye S. Molecular Cloning of Genexyls of the TOL plasmid: evidence for positive regulation of the xyldegf operon by xyls, In:I.Bacteriol. 1981,148(2):413-418.
    [101] 田建民. 生物吸附法在含重金属废水处理中的应用,太原理工大学学报,2000,31(1):74-78.
    [102] 陈铭,周晓云. 固定化细胞技术在有机废水处理中的应用与前景,水处理技术,1997,23(2):98-104.
    [103] Ramaraj Boopathy. Bioremediation of HMX-contaminated soil using soil slurry reactors .Soil and sediment contamination.2001,10(3):269-283.
    [104] John P t,Janice A G. Cometabolic biotransformation of trinitrotolunene supported by aromatic and non-aromatic cosubstrates. Chemosphere. 1999, 38( 6) : 1323-1330.
    [105] 瞿福平,张晓健,何苗等. 氯苯驯化活性污泥对同类有机物的好氧降解性比较研究.环境科学. 1997,18 (4):21-24.
    [106] 巩宗强,李培军,王新. 污染土壤中多环芳烃的共代谢降解过程.生态学杂志,2000, 19( 6) :40-45.
    [107] Alvarez G L, Mccarty P L. A two-stage bioreactor for cometabolism of TCE. Environment Science Technology. 1991,25 :1387-1495.
    [108] Dolasa A.G, Ergas S J. Membrane bioreactor for TCE cometabolism with toluene. Annu.meet.exib.proc.CD-ROM. Air waste manage assoc. 92nd [compute roptical disk]1999.
    [109] 瞿福平. 氯代芳香化合物好氧生物降解性能及其基质条件下相互作用研究. 博士论文 .清华大学环境工程系.
    [110] Anke Schaffr and Edward J Bouwer. Toluene induced cometabiolism of cis -1, 2-dichloroethylene and vinyl chloride under conditions expected downgradient of apermeable Fe(0)barrier.Wat. Res.2000,34 (13):3391-3399.
    [111] Macintyre J, Dalrymple H, MacLean F. Development of a system for reporting pharmaceutical care issues in cancer patients receiving chemotherapy. Pharmaceutical Journal, 2003,271(64): 266-267.
    [112] 陈天寿. 微生物培养基的制造与应用,北京:中国农业出版社,1995.
    [113] 戴维斯等著,张钰等译. 分子生物学基本实验方法,上海:复旦大学出版社,1989.
    [114] 顾夏声. 水处理微生物学基础,北京:中国建筑工业学院出版社,1989.
    [115] Arail, Ohishi H T, Chang M Y. Microbiology[M].2000.
    [116] 赵建夫. 活性污泥对六氯苯和五氯酚吸附作用的研究,环境保护科学,1992,18(4):56-58.
    [117] 郝丽芳,周岳溪,张寒霜. 厌氧颗粒污泥对五氯苯酚的吸附、解析及生物降解,中国环境科学,1999,19(1):5-8.
    [118] Abdul H, Mollah, Campbell W. Robinson. Penchlorophenol adsorption and desorption characteristics of granular activated sludge, In: Journal ofHazardous Materials, 2004,B108:183-188.
    [119] Abdul H M, Robinson C W. Penchlorophenol adsorption and desorption characteristics of granular actived carbon- Ⅱ , In: Kinetics.Wat.Res., 1996,30(12):2907-2913.
    [120] Viraraghavan T, Kevin Slough. Sorption of pentachlorophenol on peat-bentonite mixture, In: Chemosphere,1999,39(9):1487-1496.
    [121] Simkins S, Alexander M. Models for mineralization kinetics with the variable of substrate concentration and population density, Appl. Environ. Microbiol., 1984,47:1299-1306.
    [122] Kelly W R, Hornberger G M, Herman J S, and Mills A L. Kinetics of BTX biodegradation and mineralization in batch and column systems, Journal of contaminant Hydrology, 1996,23:113-132.
    [123] 李萍,刘俊新. 废水中难降解性有机物的共代谢降解.环境污染防治技术与设备.2002,3(11):43 -46 .
    [124] Si ing Wang and Kai chee Loh. New cell growth patern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol. Water research. 2000,34(15):3786-3794.
    [125] Gu Y, Korus R. Kenetics of pentachlorophenol degradation by Flavobacterium species. Appl. Microbial.Biotechnol.1995,43 :374-378.
    [126] Gu Y, Korus R .Efects of p –cresol and chlorophenols on PCP biodegradation. Biotechnol. Bioengineer.1995,47: 470-475.
    [127] Hill G A, Milne B J, Nawrocki.P.G. Cometabolic degradation of 4-chlorophenol by Alcaligenes entrophus. Appllied Microbiology Biotechnol. 1996, 46 :163 -168.
    [128] Bekins B A, Warren E, Michael Godsy E. A comparison of Zero-order, First-order, and Monod biotransformation models, Ground Water, 1998, 36(2):261-268.
    [129] Vayenas D V, Michalopoulou E, Constantinides G N, Pavlou S. Visualization experiments of biodegradation in porous media and calculation of the biodegradation rate, Advances in Water Resources, 2002, 23:203-219.
    [130] Davis J W, S Madsen. Factors affecting the biodegradation of toluene in soil. Chemosphere, 1996, 33(1): 107-130.
    [131] Reddy H L, R M Ford. Analysis of biodegradation and bacterial transport:Comparison of models with kinetic and equilibrium bacterial adsorption, J. Contaminant Hydrology, 1996, 22:271-287.
    [132] Lahvis M A, Baehr A L. Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone, Water Resource Research, 1996, 32(7): 2231-2249.
    [133] Borden R C, Bedient P B. Transport of dissolved hydrocarbons influedced by oxygen-limited biodegradation, 1.Theoretical development, Water Resources Research, 1986, 22(13):1973-1982.
    [134] McQuarrie K T, Sudicky E A. Simulation of biodegradable organic contaminants in groundwater, 1. numerical formulation in principal directions. Water Resources Research, 1996, 26(2):207-222.
    [135] Reddy K R, Zhou J. Finite element modeling of in-situ air sparging for groundwater remediation. In: Proceedings of the 2nd International Congress on Environmental Geotechnics, Rotterdam, Netherlands, Balkema Publishers, 1996:299-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700