基因组尺度人类代谢网络的亚细胞及组织定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体代谢系统的实验研究与人体内不同亚细胞结构和组织的功能是密切相关的,因而人体蛋白和代谢反应的亚细胞定位及组织分布是人体生物学研究和药物开发的重要研究对象。为了更好地理解人体代谢网络的复杂性,融合亚细胞和组织信息的人类代谢网络不可或缺。本文通过添加亚细胞定位信息、运输反应和组织定位信息对已构建的爱丁堡人类代谢网络模型(EHMN进行了扩展,并且在亚细胞定位的基础上对网络中错误的蛋白-反应关系进行了修正。首先蛋白亚细胞位置信息来自于不同的数据库,而EHMN中所有反应的位置信息则根据蛋白位置通过蛋白-反应关系获得,由此初步构建了亚细胞分室网络;之后,本文通过对每个途径中子网络的图论分析确定了网络中的空白和孤立反应并对其进行了修正;此外,本文基于文献及教科书中对途径位置的描述进一步校正了网络中反应的位置。最终初步分室网络中上百个反应的位置得到了修正,基于修正后反应的亚细胞位置,错误的蛋白-反应关系也得到了更正。亚细胞分室完成后,本文基于Recon 1模型、数据库以及代谢末端分析添加了1400多个运输反应,使网络中的各个亚细胞位置连通起来。为了验证分室网络的质量,本文通过途径分析检验了EHMN对近70种重要代谢物的合成和降解能力以及代谢位置,结果表明EHMN中这些代谢物的代谢过程与文献或教科书一致。在亚细胞分室网络的基础上,利用与亚细胞定位相同的方法,本文将组织信息也融合到EHMN中,从而构建了更加完整的包含亚细胞和组织定位的人类代谢网络。最后,本文从拓扑结构的角度对定位后的线粒体和脑两个子网络进行了功能验证,表明从拓扑结构出发的网络分析结果与子网络的功能特点相符。本文首次将图论分析的方法用于亚细胞及组织定位过程中并且利用途径分析工具对网络的可靠性进行分析,并开发了新的将分类树与模块化指标相结合的网络解耦方法对网络进行解耦以进行进一步的功能分析。亚细胞及组织定位后的网络可以从EHMN网站(www.ehmn.bioinformatics.ed.ac.uk)上下载并免费提供给学术研究。
Direct in vivo investigation of human metabolism is complicated by the distinct metabolic functions of various sub-cellular organelles and tissues.sub-cellular and tissue location of gene expression and metabolic reactions is an important issue in human biological research and biomedicine development. To better understand the complexity in the human metabolism, a human metabolic network with integrated sub-cellular and tissue location information is required. In this work, we extended the previously reconstructed Edinburgh Human Metabolic Network (EHMN) by integrating the sub-cellular location, transport reactions and tissue location. Firstly, protein subcelluar location information was obtained from various databases. Then all the reactions in EHMN were assigned to subcellular locations based on protein-reaction relationships to get a preliminary compartmentalized network. We investigated the localized sub-networks in each pathway to identify gaps and isolated reactions by connectivity analysis and refined the location information based on literature. As a result, location information for hundreds of reactions was revised and hundreds of incorrect protein-reaction relationships were corrected based on the sub-cellular location. Over 1400 transport reactions were added to link the location specific metabolic network. To validate the network, we have done pathway analysis to examine the capability of the network to synthesize or degrade certain key metabolites. Using a similar approach, we added the the tissue distribution information into EHMN to reconstruct a more complete sub-cellular and tissue localized human metabolic network. As an example, we further analyzed the biological functions of mitochondria and brain using a newly developed network decomposition method. The results showed good agreements between the structurally identified modules and the pathways classified based on biofunctions. The whole network can be downloaded from www.ehmn.bioinformatics.ed.ac.uk and free for academic use.
引文
[1] R D Fleischmann, M D Adams, O White, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995, 269: 496-512
    [2] R Overbeek, T Begley, R M Butler, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res, 2005, 33: 5691-5702
    [3] E S Lander, L M Linton, B Birren, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860-921
    [4] J C Venter, M D Adams, E W Myers, et al. The sequence of the human genome. Science, 2001, 291: 1304-1351
    [5] Finishing the euchromatic sequence of the human genome. Nature, 2004, 431: 931-945
    [6] C Francke, R J Siezen, B Teusink. Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol, 2005, 13: 550-558
    [7] H Kitano. Systems biology: a brief overview. Science, 2002, 295: 1662-1664
    [8] M L Mo, N Jamshidi, B O Palsson. A genome-scale, constraint-based approach to systems biology of human metabolism. Mol Biosyst, 2007, 3: 598-603
    [9] J L Reed, I Famili, I Thiele, et al. Towards multidimensional genome annotation. Nat Rev Genet, 2006, 7: 130-141
    [10] J S Edwards, B O Palsson. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J Biol Chem, 1999, 274: 17410-17416
    [11] J S Edwards, B O Palsson. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A, 2000, 97: 5528-5533
    [12] J L Reed, T D Vo, C H Schilling, et al. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol, 2003, 4: R54
    [13] A M Feist, C S Henry, J L Reed, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol, 2007, 3: 121
    [14] J Forster, I Famili, P Fu, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 2003, 13: 244-253
    [15] N C Duarte, M J Herrgard, B O Palsson. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scalemetabolic model. Genome Res, 2004, 14: 1298-1309
    [16] L Kuepfer, U Sauer, L M Blank. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res, 2005, 15: 1421-1430
    [17] M J Herrgard, N Swainston, P Dobson, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol, 2008, 26: 1155-1160
    [18] I Nookaew, M C Jewett, A Meechai, et al. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol, 2008, 2: 71
    [19] I Thiele, B O Palsson. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc, 5: 93-121
    [20] J L Gardy, M R Laird, F Chen, et al. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics, 2005, 21: 617-623
    [21] Z Lu, D Szafron, R Greiner, et al. Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics, 2004, 20: 547-556
    [22] M Kanehisa, S Goto, S Kawashima, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32: D277-280
    [23] P Romero, J Wagg, M L Green, et al. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol, 2005, 6: R2
    [24] A K Chavali, J D Whittemore, J A Eddy, et al. Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major. Mol Syst Biol, 2008, 4: 177
    [25] H David, I S Ozcelik, G Hofmann, et al. Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics, 2008, 9: 163
    [26] A Manichaikul, L Ghamsari, E F Hom, et al. Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods, 2009, 6: 589-592
    [27] L Matthews, G Gopinath, M Gillespie, et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res, 2009, 37: D619-622
    [28] N C Duarte, S A Becker, N Jamshidi, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A, 2007, 104: 1777-1782
    [29] H Ma, A Sorokin, A Mazein, et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol, 2007, 3: 135
    [30] D F Lewis. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr Med Chem, 2003, 10: 1955-1972
    [31] E Mogilevskaya, O Demin, I Goryanin. Kinetic model of mitochondrial krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects. J Biol Phys, 2006, 32: 245-271
    [32] E Schwedhelm, R H Boger. Application of gas chromatography-mass spectrometry for analysis of isoprostanes: their role in cardiovascular disease. Clin Chem Lab Med, 2003, 41: 1552-1561
    [33] G Schlotterbeck, A Ross, F Dieterle, et al. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics, 2006, 7: 1055-1075
    [34] D B Kell. Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today, 2006, 11: 1085-1092
    [35] J L Griffin, A W Nicholls. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics, 2006, 7: 1095-1107
    [36] D S Wishart, D Tzur, C Knox, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res, 2007, 35: D521-526
    [37] B M Spiegelman. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes, 1998, 47: 507-514
    [38] C De Duve, R Wattiaux. Functions of lysosomes. Annu Rev Physiol, 1966, 28: 435-492
    [39] B Winchester, A Vellodi, E Young. The molecular basis of lysosomal storage diseases and their treatment. Biochem Soc Trans, 2000, 28: 150-154
    [40] J H Park, E H Schuchman. Acid ceramidase and human disease. Biochim Biophys Acta, 2006, 1758: 2133-2138
    [41] D C Colin J. Masters. the peroxisome:a vital organelle. Cambridge University Press, 2005: 101-105
    [42] J F Presley, N B Cole, T A Schroer, et al. ER-to-Golgi transport visualized in living cells. Nature, 1997, 389: 81-85
    [43] A L N Lehninger, David L.; Cox, Michael M. Principles of Biochemistry (3rd ed.). New York: Worth Publishers., 2000
    [44] http://scienceblogs.com/clock/2006/11/cell_structure.php.
    [45] S J Wiback, B O Palsson. Extreme pathway analysis of human red blood cell metabolism. Biophys J, 2002, 83: 808-818
    [46] T D Vo, H J Greenberg, B O Palsson. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J Biol Chem, 2004, 279: 39532-39540
    [47] E W Sayers, T Barrett, D A Benson, et al. Database resources of the NationalCenter for Biotechnology Information. Nucleic Acids Res, 38: D5-16
    [48] T S Keshava Prasad, R Goel, K Kandasamy, et al. Human Protein Reference Database--2009 update. Nucleic Acids Res, 2009, 37: D767-772
    [49] The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res, 38: D142-148
    [50] T Shlomi, M N Cabili, M J Herrgard, et al. Network-based prediction of human tissue-specific metabolism. Nat Biotechnol, 2008, 26: 1003-1010
    [51] I Yanai, H Benjamin, M Shmoish, et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics, 2005, 21: 650-659
    [52] D S Wishart, C Knox, A C Guo, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res, 2009, 37: D603-610
    [53] I Schomburg, A Chang, C Ebeling, et al. BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res, 2004, 32: D431-433
    [54] M Ashburner, C A Ball, J A Blake, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25: 25-29
    [55] P M Gomez-Fabre, J C Aledo, A Del Castillo-Olivares, et al. Molecular cloning, sequencing and expression studies of the human breast cancer cell glutaminase. Biochemical Journal, 2000, 345: 365-375
    [56] W S Modi, D D Pollock, B A Mock, et al. Regional localization of the human glutaminase (GLS) and interleukin-9 (IL9) genes by in situ hybridization. Cytogenet Cell Genet, 1991, 57: 114-116
    [57] Y Ide, E Miyoshi, T Nakagawa, et al. Aberrant expression of N-acetylglucosaminyltransferase-IVa and IVb (GnT-IVa and b) in pancreatic cancer. Biochemical and Biophysical Research Communications, 2006, 341: 478-482
    [58] S Ferdinandusse, S Denis, G Dacremont, et al. Studies on the metabolic fate of n-3 polyunsaturated fatty acids. J Lipid Res, 2003, 44: 1992-1997
    [59] H Ma, A P Zeng. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 2003, 19: 270-277
    [60] H W Ma, A P Zeng. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 2003, 19: 1423-1430
    [61] C Claudel-Renard, C Chevalet, T Faraut, et al. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res, 2003, 31: 6633-6639
    [62] A Osterman, R Overbeek. Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol, 2003, 7: 238-251
    [63] S J Cordwell. Microbial genomes and "missing" enzymes: redefining biochemical pathways. Arch Microbiol, 1999, 172: 269-279
    [64] D Dolcetta, L Perani, M I Givogri, et al. Design and optimization of lentiviral vectors for transfer of GALC expression in Twitcher brain. J Gene Med, 2006, 8: 962-971
    [65] K Bode, M A Hooks, I I Couee. Identification, separation, and characterization of acyl-coenzyme A dehydrogenases involved in mitochondrial beta-oxidation in higher plants. Plant Physiol, 1999, 119: 1305-1314
    [66] S J Steinberg, S J Wang, D G Kim, et al. Human very-long-chain acyl-CoA synthetase: cloning, topography, and relevance to branched-chain fatty acid metabolism. Biochem Biophys Res Commun, 1999, 257: 615-621
    [67] R J Wanders, H S Heymans, R B Schutgens, et al. Peroxisomal disorders in neurology. J Neurol Sci, 1988, 88: 1-39
    [68] I Singh, K Pahan, G S Dhaunsi, et al. Phytanic acid alpha-oxidation. Differential subcellular localization in rat and human tissues and its inhibition by nycodenz. J Biol Chem, 1993, 268: 9972-9979
    [69] N M Verhoeven, D S Roe, R M Kok, et al. Phytanic acid and pristanic acid are oxidized by sequential peroxisomal and mitochondrial reactions in cultured fibroblasts. J Lipid Res, 1998, 39: 66-74
    [70] S J Mihalik, S J Steinberg, Z Pei, et al. Participation of two members of the very long-chain acyl-CoA synthetase family in bile acid synthesis and recycling. J Biol Chem, 2002, 277: 24771-24779
    [71] G Dodt, D G Kim, S A Reimann, et al. L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases. Biochemical Journal, 2000, 345: 487-494
    [72] M Wilcke, S E Alexson. Characterization of acyl-CoA thioesterase activity in isolated rat liver peroxisomes. Partial purification and characterization of a long-chain acyl-CoA thioesterase. Eur J Biochem, 1994, 222: 803-811
    [73] E Mayatepek, G F Hoffmann. Leukotrienes: biosynthesis, metabolism, and pathophysiologic significance. Pediatr Res, 1995, 37: 1-9
    [74] S M Hutson, D Fenstermacher, C Mahar. Role of mitochondrial transamination in branched chain amino acid metabolism. J Biol Chem, 1988, 263: 3618-3625
    [75] A Suryawan, J W Hawes, R A Harris, et al. A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr, 1998, 68: 72-81
    [76] S M Hutson, A J Sweatt, K F Lanoue. Branched-chain [corrected] amino acid metabolism: implications for establishing safe intakes. J Nutr, 2005, 135: 1557S-1564S
    [77] S Apparsundaram, S M Ferguson, A L George, Jr., et al. Molecular cloning of ahuman, hemicholinium-3-sensitive choline transporter. Biochem Biophys Res Commun, 2000, 276: 862-867
    [78] D S Gerhard, L Wagner, E A Feingold, et al. The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res, 2004, 14: 2121-2127
    [79] Q Ren, I T Paulsen. Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol, 2007, 12: 165-179
    [80] D Gorlich. Transport into and out of the cell nucleus. EMBO J, 1998, 17: 2721-2727
    [81] E E Bittar. Cellular Organelles. Elsevier, 1995: 28~29
    [82] S M Patton, D J Pinero, N Surguladze, et al. Subcellular localization of iron regulatory proteins to Golgi and ER membranes. J Cell Sci, 2005, 118: 4365-4373
    [83] V R Young. Adult amino acid requirements: the case for a major revision in current recommendations. J Nutr, 1994, 124: 1517S-1523S
    [84] K Imura, A Okada. Amino acid metabolism in pediatric patients. Nutrition, 1998, 14: 143-148
    [85] A Remaury, D Larrouy, D Daviaud, et al. Coupling of the alpha 2-adrenergic receptor to the inhibitory G-protein Gi and adenylate cyclase in HT29 cells. Biochem J, 1993, 292 ( Pt 1): 283-288
    [86] I M Keularts, R M van Gorp, M A Feijge, et al. alpha(2A)-adrenergic receptor stimulation potentiates calcium release in platelets by modulating cAMP levels. J Biol Chem, 2000, 275: 1763-1772
    [87] J Tan, J Dunn, J Jaeken, et al. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development. Am J Hum Genet, 1996, 59: 810-817
    [88] A J Bruce Alberts, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Molecular Biology of the Cell, Fourth Edition. Garland Science, 2002
    [89] J Wysocka, M P Myers, C D Laherty, et al. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev, 2003, 17: 896-911
    [90] O Kabil, Y Zhou, R Banerjee. Human cystathionine beta-synthase is a target for sumoylation. Biochemistry, 2006, 45: 13528-13536
    [91] R C Ajit Barki, Jeffrey Esko, Hudson freeze, Gerald Hart, Jamey Marth. Essentials of Glycobiology Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999
    [92] M De Matteis, A Godi, D Corda. Phosphoinositides and the golgi complex. CurrOpin Cell Biol, 2002, 14: 434-447
    [93] T Kawazoe, H Tsuge, T Imagawa, et al. Structural basis of D-DOPA oxidation by D-amino acid oxidase: alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun, 2007, 355: 385-391
    [94] L B Bailey, J F Gregory, 3rd. Folate metabolism and requirements. J Nutr, 1999, 129: 779-782
    [95] M S Boguski, T M Lowe, C M Tolstoshev. dbEST--database for "expressed sequence tags". Nat Genet, 1993, 4: 332-333
    [96] The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res, 2009, 37: D169-174
    [97] G R Mishra, M Suresh, K Kumaran, et al. Human protein reference database--2006 update. Nucleic Acids Res, 2006, 34: D411-414
    [98] G Kollberg, M Tulinius, T Gilljam, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med, 2007, 357: 1507-1514
    [99] R Gitzelmann, M A Spycher, G Feil, et al. Liver glycogen synthase deficiency: a rarely diagnosed entity. Eur J Pediatr, 1996, 155: 561-567
    [100] S B Renwick, K Snell, U Baumann. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure, 1998, 6: 1105-1116
    [101] P J Stover, L H Chen, J R Suh, et al. Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem, 1997, 272: 1842-1848
    [102] S Levi, B Corsi, M Bosisio, et al. A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem, 2001, 276: 24437-24440
    [103] S Kolker, J G Okun, F Horster, et al. 3-Ureidopropionate contributes to the neuropathology of 3-ureidopropionase deficiency and severe propionic aciduria: a hypothesis. J Neurosci Res, 2001, 66: 666-673
    [104] G Belanger, O Barbier, D W Hum, et al. Molecular cloning, expression and characterization of a monkey steroid UDP-glucuronosyltransferase, UGT2B19, that conjugates testosterone. Eur J Biochem, 1999, 260: 701-708
    [105] T Taki, H Kimura, C Takatsuka, et al. Developmental changes of ganglioside compositions and biosyntheses in rat bone marrow cells, spleen and thymus. J Biochem, 1983, 94: 925-930
    [106] B Chatterjee, I Echchgadda, C S Song. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol, 2005, 400: 165-191
    [107] D W Russell, K D Setchell. Bile acid biosynthesis. Biochemistry, 1992, 31:4737-4749
    [108] M Gascon-Barre, C Demers, O Ghrab, et al. Expression of CYP27A, a gene encoding a vitamin D-25 hydroxylase in human liver and kidney. Clin Endocrinol (Oxf), 2001, 54: 107-115
    [109] A Asadi, J Jorgensen, A Jacobsson. Elovl1 and p55Cdc genes are localized in a tail-to-tail array and are co-expressed in proliferating cells. J Biol Chem, 2002, 277: 18494-18500
    [110] M Singh. Essential fatty acids, DHA and human brain. Indian J Pediatr, 2005, 72: 239-242
    [111] L J Roberts, 2nd, J P Fessel. The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem Phys Lipids, 2004, 128: 173-186
    [112] F Snyder. Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem J, 1995, 305 ( Pt 3): 689-705
    [113] S I Rapoport, J S Rao, M Igarashi. Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids, 2007, 77: 251-261
    [114] S Rebouissou, S Imbeaud, C Balabaud, et al. HNF1alpha inactivation promotes lipogenesis in human hepatocellular adenoma independently of SREBP-1 and carbohydrate-response element-binding protein (ChREBP) activation. J Biol Chem, 2007, 282: 14437-14446
    [115] J G Wetmur, D F Bishop, L Ostasiewicz, et al. Molecular cloning of a cDNA for human delta-aminolevulinate dehydratase. Gene, 1986, 43: 123-130
    [116] S J Dawson, L A White. Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin. J Infect, 1992, 24: 317-320
    [117] D Rollins, A Larsson, B Steen, et al. Glutathione and gamma-glutamyl cycle enzymes in human fetal liver. J Pharmacol Exp Ther, 1981, 217: 697-700
    [118] M U S R Bondy J. A. Graph Theory with Applications. Macmillan: London, 1976
    [119] M E Newman, M Girvan. Finding and evaluating community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 69: 026113
    [120] M E Newman. Fast algorithm for detecting community structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 69: 066133
    [121] H W Ma, X M Zhao, Y J Yuan, et al. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics, 2004, 20: 1870-1876
    [122] M S Poos, S C Walker, D A Jackson. Functional-diversity indices can be driven by methodological choices and species richness. Ecology, 2009, 90: 341-347
    [123] B Merigot, J P Durbec, J C Gaertner. On goodness-of-fit measure for dendrogram-based analyses. Ecology, 91: 1850-1859
    [124] R Guimera, L A Amaral. Cartography of complex networks: modules and universal roles. J Stat Mech, 2005, 2005: nihpa35573
    [125] R Guimera, M Sales-Pardo, L A Amaral. Modularity from fluctuations in random graphs and complex networks. Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 70: 025101
    [126] J Zhao, H Yu, J H Luo, et al. Hierarchical modularity of nested bow-ties in metabolic networks. BMC Bioinformatics, 2006, 7: 386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700