水稻T-DNA插入突变体库侧翼序列的分离与分析及控制叶色性状基因OsRNase Z的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突变体在水稻功能基因组研究中具有重要的作用,创造基因功能缺失突变体是研究目的基因功能的最直观和有效的途径之一。T-DNA侧翼序列的分离对水稻T-DNA插入突变体库的应用至关重要。一方面,我们可以根据大量的T-DNA侧翼序列来分析T-DNA在水稻基因组中的分布规律,进而明晰农杆菌介导的T-DNA转化机制;另一方面,根据侧翼序列提供的基因信息,我们可以广泛地开展反向遗传学的研究。
     本研究中,以本室T-DNA插入突变体库为材料,采用PCR扩增对突变体库阳性情况进行了检测。利用TAIL-PCR技术成功分离T-DNA侧翼序列7,333。本研究共收集来自全世界水稻T-DNA侧翼序列144,427条,Tos17侧翼序列22,432条,比较了它们在水稻基因组中的分布规律。通过对T-DNA插入位点序列的分析,揭示了插入位点侧翼序列DNA的物理特性和碱基组成特征。采用正向和反向遗传学的方法,利用已有的突变体库资源,鉴定了2个白化苗突变体,并具体分析由T-DNA插入而产生白化苗性状的基因OsRNase Z的功能。
     主要研究结果如下:
     1.以T-DNA上GAL4/VP16基因区段为标记,对15,535个转基因植株DNA进行PCR扩增阳性检测,扩增结果表明13,080个为PCR阳性,阳性率约88.9%。
     2.利用TAIL-PCR的方法单独分离侧翼序列73,33条,其中T-DNA或载体骨架序列3,343条,水稻基因组序列3,215条,能够在水稻基因组上精确定位序列(E-value<10~(-5))2361条。同时我们还收集全世界其他研究机构分离的T-DNA和Tos17侧翼序列,用于分析的T-DNA侧翼序列共144,427条,Tos17侧翼序列22,432条。
     3.对所有收集的侧翼序列分析显示:无论T-DNA和Tos17在染色体上的分布数量还是分布密度都偏向插入到水稻中较大的染色体上,且插入密度和染色体大小高度相关。在同一染色体上,T-DNA倾向于插入到远离着丝粒区域,且分布数量与着丝粒的距离明显正相关;Tos17在染色体两端分布较多,在着丝粒附近和染色体中部分布较少。T-DNA在染色体上的分布和cDNA的分布显著相关,Tos17中不存在这一现象。
     4.T-DNA和Tos17在水稻基因区间的分布显示,无论T-DNA或Tos17都极度偏向插入基因区,而极度的不偏向插入转座子相关基因中;T-DNA在基因间隔区的插入比较均一,基本不存在偏爱,而Tos17极度不偏向插入基因间隔区。在基因区域中,T-DNA和Tos17偏爱插入基因编码区而偏爱不插入基因调控区;在编码序列中,T-DNA和Tos17偏爱插入外显子区域,而不偏爱插入内含子区域。相对基因间隔区而言,T-DNA和Tos17更偏爱插入到基因编码区。
     5.我们还对T-DNA和Tos17插入的功能基因进行了分析。在转座子相关基因中,Tos17在在转座子相关基因的插入要相对集中,可能存在偏爱;而T-DNA的插入比较均一,不存在插入热点基因。在转座子和反转座子相关基因中,Tos17更偏爱插入反转座子相关基因,T-DNA对两者没有偏爱。对T-DNA和Tos17插入的具体基因分析,它们可能存在相同的插入热点基因。在不同功能基因中,T-DNA和Tos17共同偏向于插入“Motor”,“Signal transducer”,“Transporter”和“Transcription regulator”等4类功能基因,而不偏向插入“Binding”和“Nutrientreservoir”等2类基因,除此之外,T-DNA还偏向插入“Structural molecule”和“Translation regulator”两类功能基因,不偏向插入“Catalytic”类基因中,而Tos17在这3类功能基因中呈随机分布状态。
     6.对T-DNA插入位点前后各1 kb的序列(ISNS)弯曲度平均值分析结果显示:在插入位点-200 bp和200 bp的序列区间弯曲度值出现了一个明显的波形变化,在—200和200位置为波谷。最大值波峰分别出现在约-10和10的位置,且在0,即T-DNA插入位点出现陡然的下降出现一个相对低值。其他研究单位提取的ISNS中我们同样观察到了同样的现象,而随机提取的序列的弯曲度值表现为杂乱的曲线。
     7.对ISNS和随机提取序列的GC skew和TA skew分析发现:两组ISNS的GC与TA skews之间呈显著的负相关。GC与TA skew曲线在插入位点位置出现交叉,且值在插入位点都约为0,表明在插入位点G与C,T与A的含量均等;在-800到0的这段序列里,GC skew值表现为正值,且在-200到-100位置达到最大值,表现为G与C在单链上的极度不均衡分布,与之对应的是TA skew值为负值,但也是在同样位置达到最小值,表现为T与A在单链上的极度不均衡分布;在0-800区域内我们也发现了对应的结果,GC skew值表现为负值,TA skew值表现为正值,且在200到100位置碱基的分布出现极度的不均衡情况。在对照序列的结果中并没有发现这些特征。
     8.通过对1994个T-DNA插入突变体家系的T_1代苗期筛选鉴定,获得2个T-DNA侧翼序列和白化苗性状共分离白化苗突变家系03211EV57和03211DH29。
     9.在03211EV57家系中,T-DNA插入位点在水稻第5染色体上编码含蛋白激酶结构域的表达蛋白基因的第1个内含子里,在TIGR中的编号为LOC_Os05g47770,预测基因全长6,339 bp,CDS总长2,853 bp,由6个外显子和5个内含子组成,编码一个包含951个氨基酸的蛋白,无全长cDNA信息支持。
     10.在03211DH29家系中,T-DNA插入位点在水稻第9染色体上编码RNase Z基因的第Ⅶ外显子的3′端。在TIGR中的编号为LOC_Os09g30466,基因全长3,066bp。KOME提供了该基因的全长cDNA信息(AK070747):cDNA的总长度为1,352bp,由8个外显子和7个内含子组成,编码一个包含365个氨基酸的蛋白,编码蛋白的氨基酸序列与拟南芥RNase Z有97%的相似性,因此将该蛋白命名为OsRNase Z。
     11.对03211DH29白化苗突变体叶片透射电镜观察发现,叶绿体数目明显减少,并且叶绿体变形,内囊体膜消失,白化苗突变表型的叶绿体中出现前片层体,但不能形成内囊体。叶绿素含量测定表明,在白化苗中叶绿素的合成系统完全丧失。
     12.全生育期表达谱芯片和RT-PCR结果显示OsRNase Z基因与叶绿素的合成密切相关。OsRNase Z基因的表达和组织的叶绿素含量存在十分明显的正相关,叶绿素含量高的组织基因表达水平就高,叶绿素含量低的组织基因的表达水平就低或者RT-PCR方法未检测到基因表达。
     13.对中花11中的OsRNase Z基因利用双链RNA进行抑制表达,30%的转化苗出现白化表型,RT-PCR结果显示,在白化苗中OsRNase Z基因的表达基本被抑制。
     14.P_(Ubi):⊿OsRNase Z-GFP融合表达载体转化拟南芥原生质体,瞬时表达结果表明OsRNase Z基因编码的蛋白定位在叶绿体中。
Mutants play an important role in rice functional genomic research.Generating loss-of-function mutant is one of the most straightforward and efficient way to study gene function.The isolation of the flanking sequence tags(FSTs) is crucial in the application of rice T-DNA insertional mutant library.First,based on the vast FST data,we can have a deep insight into the T-DNA distribution pattern in rice genome and then elucidate the Agrobacterium-mediated T-DNA transformation mechanism;on the other hand,we can carry out reverse genetics studies for the corresponding genes according to the tagged gene information.
     In this study,we examined the transformation positive ratio of our insertional population by checking the T-DNA insertional positivity.TAIL-PCR method was employed to isolate T-DNA FSTs.144,427 T-DNA FSTs and 22,432 Tosl7 FSTs were collected from worldwide databases for analyzing distribution pattern in the rice chromosomes in this study.We revealed the DNA physical property and base composition features of the insertion sites through analyzing T-DNA insertion site nearby sequences. We screened 1,994 T_1-generation T-DNA insertion lines and obtained some leaf color mutations in seeding stage.We obtained two albinos and study OsRNase Z gene function that interrupted by T-DNA.The detail results were summarized as follows:
     1.The transformation positive percentage of 15,535 transformants was checked by using GAL4/VP16 fragment in T-DNA as a PCR marker,13,080(88.9%) out of them showed to be PCR positive.
     2.Employing the TAIL-PCR method,I independently isolated total 7,333 FSTs, including 3,343 T-DNA or vector bone sequences,5,110 rice genome sequences. 2361 of 3215 FSTs can be well mapped into the rice genome(E-value<10~(-5)).A total of 144,427 T-DNA FSTs and 22,432 Tosl7 FSTs in this study were collected from several major institutes in the world.
     3.T-DNA and Tosl7 insertions were biased towards large chromosomes,not only in the absolute number of insertions but also in the relative density,and the insertion density is highly correlated with the chromosome size.Within chromosomes,T-DNA insertions occurred more densely in the distal ends,and less densely in the centromeric regions and the insertion number is significantly correlated with the distances to centromere;Tosl7 insertions mainly distribute in the distal ends of chromosome,and a few distribute in centromeric region and the middle part of chromosome.The number of T-DNA insertions in the chromosome is significantly correlated with the cDNA number in corresponding region,which did not observed in Tosl7 insertions.
     4.The distribution of T-DNA and Tosl7 insertions in different regions of genome show that T-DNA and Tosl7 insertions strongly disfavored transposable element (TE)-related sequences and favored genic sequences;Tosl7 insertions strongly disfavored intergenic but T-DNA showed a random distribution in this region.In the genic region,T-DNA and Tosl7 prefer to insert in the coding sequences,but not the regulating sequences;particularly,T-DNA and Tosl 7 prefer exons,rather than introns, in the coding sequence.Compared with the intergenic region,T-DNA and Tosl7 insert favorably in the genic region.
     5.We also analyzed the function genes which inserted by T-DNA and Tosl7.In TE-related genes,the distributions of Tosl7 insertions were relatively concentrated, insert hot spot may be there,but T-DNA insertions were relatively uniform and no insert hot spot were observed.Tosl7 insertions prefer retrotransposon genes than transposon genes,T-DNA have no insertional bias between them.T-DNA and Tosl7 insertions bias among the various classes of functional genes were observed: preferentially occurred in "Motor","Signal transducer","Transporter" and "Transcription regulator",but preferentially not occurred in "Binding" and "Nutrient reservoir".In addition,T-DNA also biased "Structural molecule" and "Translation regulator",not biased insert "Catalytic",but Tosl7 showed a random distribution pattern in the 3 gene classes.
     6.In ISNS bendability analyze result,the random CK showed an irregular curve.But in our ISNS,elevated bendability was observed at positions from -200 to 200 bp and the bendability peak is symmetric in this region,with the highest points at both -10 and 10 bp from the insertion sites.There was an abrupt drop in the bendability value at the insertion sites.A similar result was also observed in ISNS from other research groups.
     7.The GC skew and TA skew calculation exhibited several features in both ISNS from our lab and other groups:The GC and TA skews appeared to be inversely correlated; The two curves crossed each other at the insertion sites(point 0) at which both GC and TA skews were equal to 0,indicating complete symmetry at this point;From the insertion site to -800 bp upstream,the GC skew was positive and reached a plateau in approximately the region from -300 to -100 bp,indicating a extremely uneven distribution of G and C in the strand analyzed,whereas the TA skew was negative and formed a valley in a similar position in approximately the region from -300 to -100 bp.The reverse was the case from the insertion sites to 800 bp downstream, whereas no such features were observed in the 2000 random sequences.
     8.We screened 1,994 T_1-generation T-DNA insertion lines,observed some color mutations in seeding stage.We obtained two albino lines 03Z11EV57 and 03Z11DH29 which co-segregation with T-DNA insertion.
     9.The albino line 03Z11EV57 which harbored a T-DNA insertion in the first intron of a gene in chromosome 5.The gene codes a protein kinase domail cotaining protein, which ID is LOC_Os05g47770 in TIGR,length 6,339 bp and CDS 2,853 bp contain 6 exons and 5 introns,encoding a 951 AA protein,but no supported by FLcDNA.
     10.Line 03Z11DH29 was selected for further detailed study,which harbored a T-DNA insertion in the seventh exon of OsRNase Z in chromosome 9.The ID of OsRNase Z in TIGR is LOC_Os09g30466 with a length of 3066bp.KOME provided the full-length cDNA information(AK070747):1,352bp in length,containes 8 exons and 7 introns,encoding a 365AA protein,which has 97%similarity with RNase Z of Arabidopsis,so we named OsRNase Z.
     11.We investigated the albino mutant and normal green seedlings by transmission electron microscope,which showed that the chloroplast of albino mutants had changed remarkably compared with normal green seedlings:the number of chloroplast decreased,the shape distorted,the thylakoid membrane disappeared and prolamellar body formed instead of thylakoid.At the same time,we measured the chlorophyll contents,the result suggested that the pathway of chlorophyll biosynthesis have been blocked in albino.
     12.Microarray based expression profile and RT-PCR data showed that OsRNase Z has a close relationship with the synthesis of chlorophyll.The expression level of OsRNase Z was positively correlated with the chlorophyll content,In the tissues with high content chlorophyll,the expression of OsRNase Z was high;correspondingly,in the tissues with low content chlorophyll,the expression of OsRNase Z was low or otherwise couldn't be detected.
     13.RNA interference(RNAi) technique was used to suppress OsRNase Z expression in the rice variety Zhonghua 11.About 30 percent of transgenic seedlings appear albino phenotype.A part of these mutant plants were used to analyze the expression of OsRNase Z gene.RT-PCR result revealed that the expression of OsRNase Z was suppressed significantly in the chlorophyll mutant plants.
     14.The construction of P_(Ubi):△OsRNase Z-GFP was transformed into Arabidopsis protoplast by PEG-mediated transformation method.Observation of protoplasts under a confocal microscope showed that OsRNase Z protein is exclusively localized in chloroplast.
引文
1.陈文峻,蒯本科.植物叶绿素的降解.植物生理学通讯,2001,37:336-339
    2.代明球.水稻苗顶端器官形成的分子机制.[博士学位论文].武汉:华中农业大学图书馆,2007
    3.林拥军,陈浩,曹应龙,吴昌银,文静,李亚芳,华红霞.农杆菌介导的牡丹江8号高效转基因体系的建立.作物学报,2002,28:294-300
    4.潘瑞炽,董愚得编.植物生理学.北京:高等教育出版社,1995.7-97
    5.吴昌银.水稻T-DNA插入突变体库及其Enhancer gap系的创建.[博士学位论文].武汉:华中农业大学图书馆,2003
    6.袁斌.OsMPK6双向调控水稻抗病反应.[博士学位论文].武汉:华中农业大学图书馆,2007
    7.张健.水稻T-DNA插入突变体库侧翼序列的分离与分析及控制杂合单株低育性基因Osfbox的功能研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    8.Agrawal G K,Yamazaki M,Kobayashi M,Hirochika R,Miyao A,Hirochika H.Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion.Tagging of a zeaxanthin epoxidase gene and a novel ostate gene.Plant Physiol,2001,125:1248-1257
    9.Alonso J M,Stepanova A N,Leisse T J,Kim C J,Chen H,Shinn P,Stevenson D K,Zimmerman J,Barajas P,Cheuk R,Gadrinab C,Heller C,Jeske A,Koesema E,Meyers C C,Parker H,Prednis L,Ansari Y,Choy N,Deen H et al.Genome-wide insertional mutagenesis of Aiabidopsis thaliana.Science,2003,301:653-657
    10.An G,Lee S,Kim S H,Kim S R.Molecular genetics.using T-DNA in rice,Plant Cell Physiol,2005,46:14-22
    11.An S,Park S,Jeong D H,Lee D Y,Kang H G,Yu J H,Hur J,Kim S R,Kim Y H,Lee M,Han S,Kim S J,Yang J,Kim E,Wi S J,Chung H S,Hong J P,Choe V,Lee H K,Choi J H,et al.Generation and analysis of end sequence database for T-DNA tagging lines in rice.Plant Physiol,2003,133:2040-2047
    12.Amon D I.Copper enzymes in isolated chloroplasts:polyphenoloxidase in Beta vulgaris.Plant Physiol,1949,24:1-15
    13.Azpiroz-Leehan R,Feldmann K A.T-DNA insertion mutagenesis in Arabidopsis:going back and forth.Trends Genet,1997,13:152-156
    14.Baba A,Hasezawa S,Syono K.Cultivation of rice protoplasts and their transformation mediated by Agrobacterium spheroplasts.Plant Cell Physiol,1986,27:463-471
    15.Babiychuk E,M(u|¨)ller F,Eubel H,Braun HP,Frentzen M,Kushnir S.Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation,but is dispensable for mitochondrial function.Plant J,2003,33:899-909
    16.Balzergue S,Dubreucq B,Chauvin S,Le-Clainche I,Le Boulaire F,de Rose R,Samson F,Biaudet V,Lecharny A,Cruaud C,Weissenbach J,Caboche M,Lepiniec L.Improved PCR-walking for large-scale isolation of plant T-DNA borders.Biotechniques,2001,30:496-498,502,504
    17.Barak S,Heimer Y,Nejidat A,Volkita M.The peroxisomal glycolate oxidase gene is differenttially expressed in yellow and white sectors of the D_(P1) variegated tobacco mutant.Physiol Plant,2000,110:120-126
    18. Barakat A, Gallois P, Raynal M, Mestre-Ortega D, Sallaud C, Guiderdoni E, Delseny M, Bernardi G. The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Lett, 2000, 471:161 -164
    
    19. Beale S I. Green genes gleaned. Trend Plant Sci, 2005, 10:301-312
    
    20. Bouchez D, Hofte H. Functional genomics in plants. Plant Physiol, 1998, 118:725-732
    
    21. Brukner I, Sanchez R, Suck D, Pongor S. Trinucleotide models for DNA bending propensity: comparison of models based on DNasel digestion and nucleosome packaging data. J Biomol Struct Dyn, 1995, 13:309-317
    
    22. Brunaud V, Balzergue S, Dubreucq B, Aubourg S, Samson F, Chauvin S, Bechtold N, Cruaud C, DeRose R, Pelletier G, Lepiniec L, Caboche M, Lechamy A. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep, 2002, 3:1152-1157
    
    23. Ceballos M, Vioque A. tRNase Z. Protein Pept Lett, 2007, 14:137-145
    
    24. Cha K W, Lee Y J, Koh H J, Lee B M, Nam Y W, Paek N C. Isolation, chaaracterization, and mapping of the stay green mutant in rice. Thror Appl Genet, 2002, 104:526-532
    
    25. Chan M T, Chang H H, Ho S L, Tong W F, Yu S M. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol, 1993,22:491-506
    
    26. Chan M T, Lee T M, Chang H H. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol, 1992, 33:577-583
    
    27. Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005,41:364-375
    
    28. Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P. Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J, 2003, 36:105-113
    
    29. Chen Y, Beck A, Davenport C, Chen Y, Shattuck D, Tavtigian S V. Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2 encoding tRNase Z. BMC Mol Biol, 2005, 6:12
    
    30. Cheng Z, Buell CR, Wing RA, Gu M, Jiang J. Toward a cytological characterization of the rice genome. Genome Res, 2001,11:2133-2141
    
    31. Chilton M D, Que Q. Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol, 2003, 133:956-965
    
    32. Chin H G, Choe M S, Lee S H, Park S H, Park S H, Koo J C, Kim N Y, Lee J J, Oh B G, Yi G H, Kim S C, Choi H C, Cho M J, Han C D. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J, 1999, 19:615-623
    
    33. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Gene Dev, 2006, 20:1250-1255
    
    34. Colbert T, Till B J, Tompa R, Reynolds S, Steine M N, Yeung A T, McCallum C M, Comai L, Henikoff S. High-throughtput screening for induced point mutations. Plant Physiol, 2001, 126:480-484
    
    35. Coschigano K T, Melo-Oliveira R, Lim J, Coruzzi G M. Arabidopsis gls mutants and distinct Fd-GOGAT genes: implications for photorespiration and primary nitrogen assimilation. Plant Cell, 1998, 10:741-752
    
    36. Devic M, Albert S, Delseny M, Roscoe T J. Efficient PCR walking on plant genomic DNA. Plant Physiol Biochem, 1997, 35:331-339
    37.Dlakic M,Harrington R E.The effects of sequence context on DNA curvature.Proc Natl Acad Sci USA,1996,93:3847-3852
    38.Does M P,Dekker B M M,De Groot M J A,Offringa R.A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation,using inverse PCR.Pl Mol Bio Rep,1991,17:151-153
    39.Dominski Z.Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism.Crit Rev Biochem Mol Biol,2007,42:67-93
    40.Dong J J,Teng W M,Buchholz W G,Hall T C.Agrobacterium-mediated transformation of javanica rice.Mol Breeding,1996,2:267-276.
    41.Dubrovsky E B,Dubrovskaya V A,Levinger L,Schiffer S,Marchfelder A.Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3' ends in vivo.Nucleic Acids Res,2004,32:255-262
    42.Fedoroff N V,Furtek D B,Nelson O E.Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator(Ac).Proc Natl Acad Sci USA,1984,81:3825-3829
    43.Feng Q,Zhang Y,Hao P,Wang S,Fu G,Huang Y,Li Y,Zhu J,Liu Y,Hu X,Jia P,Zhang Y,Zhao Q,Ying K,Yu S,Tang Y,Weng Q,Zhang L,Lu Y,Mu Jet at.Sequence and analysis of rice chromosome 4.Nature,2002,420:316-320
    44.Francis K E,Spiker S.Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations.Plant J,2005,41:464-477
    45.Frick G,Su Q X,Apel K,Armstrong G A.An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arreste.Plant J,2003,35:141-153
    46.Gan S,Amasino R M.Inhibition of leaf senescence by autoregulated production of cytokinin.Science,1995,270:1986-1988
    47.Gaubier P,Wu H J,Laudie M,Delseny M,Grellet F.A chlorophyll synthetase gene from Arabidopsis thaliana.Mol Gen Genet,1995,249:58-64
    48.Gheysen G,Villarroel R,Van Montagu M.Illegitimate recombination in plants:a model for T-DNA integration.Genes Dev.1991,5:287-297
    49.Goff SA,Ricke D,Lan T H,Presting G,Wang R,Dunn M,Glazebrook J,Sessions A,Oeller P,Varma H,Hadley D,Hutchison D,Martin C,Katagiri F,Lange B M,Moughamer T,Xia Y,Budworth P,Zhong J,Miguel T et al.A draft sequence of the rice genome(Oryza sativa L.ssp.japonica).Science,2002,296:92-100
    50.Goodsell D S,Dickerson R E.Bending and curvature calculations in B-DNA.Nucleic Acids Res,1994,22:5497-5503
    51.Grant S G,.lessee J,Bloom F R,Hanahan D.Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.Proc Natl Acad Sci USA,1990,87:4645-4659
    52.Greco R,Ouwerkerk P B F,de Kam R J,Sallaud C,Favalli C,Colombo L,Guiderdoni E,Meijer A H,Hoge J H C,Pereira A.Transpositional behaviour of an Ac/Ds system for reverse genetics in rice.Theor Appl Genet,2003,108:10-24
    53.Green P.Documentation for Phrap.Nature,1996,390:580-586
    54.Greenblatt I M.A Chromosome Replication Pattern Deduced from Pericarp Phenotypes Resulting from Movements of the Transposable Element,Modulator,in Maize.Genetics,1984,108:471-485
    55. Gross E, Arnold N, Goette J, Schwarz-Boeger U, Kiehle M. A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC. Hum Genet, 1999, 105:72-78
    
    
    56. Hedden P, The genes of the green revolution, Trends in Genet, 2003, 19:5-9
    
    57. Hiei Y, Komari T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell, Tissue and Organ Culture, 2006, 85:271-283
    
    58. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6:271-282
    
    59. Hieter P, Boguski M. Functional genomics: it's all how you read it. Science, 1997, 278:601-602.
    
    60. Hirochika H, Guiderdoni E, An G, Hsing Y I, Eun M Y, Han C D, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H. Rice mutant resources for gene discovery. Plant Mol Biol, 2004, 54:325-334.
    
    61. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA, 1996,93:7783-7788.
    
    62. Hirochika H. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol, 2001, 4:118-122
    
    63. Hirochika H. Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol, 1997,35:231-240
    
    64. Hobbs S L, Kpodar P, DeLong C M. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol, 1990, 15:851-864
    
    65. Holtorf H, Guitton M C, Reski R. Plant functional genomics. Naturwissenschaften, 2002, 89:235-249
    
    66. Hopper A K, Phizicky E M. tRNA transfers to the limelight. Genes Dev, 2003,17:162-80
    
    67. Hoque M, Mansfield J, Bennett M. Agrobacterium-mediated transformation of indica genotypes: an assessment of factors affecting the transformation efficiency. Plant Cell, Tissue and Organ Culture, 2005, 82:45-55
    
    68. Hsing Y I, Chern C G, Fan M , Lu P C, Chen K T, Lo S F, Sun P K, Ho S L, Lee K W, Wang Y C, Huang W L, Ko S S, Chen S, Chen J L, Chung C I, Lin Y C, Hour A L, Wang Y W, Chang Y C, Tsai M W, et al. A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol, 2007, 63:351-364
    
    69. Iglesias V A, Moscone E A, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke A J. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell, 1997, 9:1251 -1264
    
    70. International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 426:793-800
    
    71. Ito Y, Eiguchi M, Kurata N. Establishment of an enhancer trap system with Ds and GUS for functional genomics in rice. Mol Gen Genomics, 2004,271:639-650
    
    72. Izawa T, Miyazaki C, Yamamoto M, Terada R, Iida S, Shimamoto K. Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L). Mol Gen Genet, 1991,227:391-396
    
    73. Izawa T, Ohnishi T, Nakano T, Ishida N, Enoki H, Hashimoto H, Otih K, Terada R, Wu C, Miyazaki H, Endo T, Iida S, Shimamoto K. Transposon tagging in rice. Plant Mol Biol, 1997, 35:219-229
    
    74. Jeon J S, An G. Gene tagging in rice: a high throughput system for functional genomics, Plant Science, 2001, 161:211-219
    75. Jeon J S, Lee S, Jung K H, Jun S H, Jeong D H, Lee J, Kim C, Jang S, Yang K, Nam J. T-DNA insertional mutagenesis for functional genomics in rice. Plant J, 2000, 22:561-570
    
    76. Jeong D H, An S, Kang H G, Moon S, Han J J, Park S, Lee H S, An K, An G. T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol, 2002, 130:1636-1644
    
    77. Jeong D H, An S, Park S, Kang H G, Park G G, Kim S R, Sim J, Kim Y O, Kim M K, Kim S R, Kim J, Shin M, Jung M, An G. Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J, 2006, 45:123-132
    
    78. Jung K H, Hur J, Ryu C H, Choi W, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44:463-472
    
    79. Kannangara C G, Gough S , Bruyant P, Hoobwer J K, Kahn A, Wettstein D. tRNA~(glu) as a cofactor in d-aminolevulinate biosynthesis. Trends Biochem Sci, 1988, 13:139-143
    
    80. Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, Weigel D. Activation tagging of the floral inducer FT. Science, 1999, 286:1962-1965
    
    81. Katz R A, Gravuer K, Skalka A M. A preferred target DNA structure for retroviral integrase in vitro. J Biol Chem, 1998, 273:24190-24195
    
    82. Khrustaleva L I, Kik C. Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultra-sensitive FISH with tyramide signal amplification. Plant J, 2001, 25:699-707
    
    83. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li C J, Ohtsuki K, Shishiki T, Otomo Y et al. Collection, mapping and annotation of over 28,000 cDNA clones from japonica rice. Science, 2003, 310:376-379
    
    84. Kilstrup M, Kristiansen K N. Rapid genome walking: a simplified oligo-cassette mediated polymerase chain reaction using a single genome-specific primer. Nucleic Acids Res. 2000, 28:E55
    
    85. Koornneef M, Dellaert L W M, van der Veen J H. EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.). Heynh Mut Res, 1982,93:109-123
    
    86. Krens F A, Molendijk L, Wullems G J, Schilperoot R A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature, 1982,296:72-74
    
    87. Krysan P J, Young J C, Sussman M R. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell, 1999,11:2283-2290
    
    88. Kumar A M, Soll D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol, 2000, 122:49-55
    
    89. Kurusu T, Yagala T, Miyao A, Hirochika H, Kuchitsu K. Identification of a putative voltage-gated Ca~(2+) channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice. Plant J, 2005, 42:798-809
    
    90. Lagerstrom M, Parik J, Malmgren H, Stewart J, Pettersson U, Landegren U. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. PCR Methods, 1991, 1:111-119
    
    91. Laufs P, Autran D, Traas J. A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J, 1999, 18:131-139
    
    92. Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 2000, 14:2366-2376
    93. Lee S. Jung K H, An G, Chung Y Y. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol, 2004, 54:755-765
    
    94. Leung H, Wu C, Baraoidan M, Bordeos A, Ramos M, Madamba S, Cabauatan P, Vera Cruz C, Portugal A, Reyes G, Bruskiewich R, McLaren G, Lafitte R, Gregorio G, Bennett J, Brar D, Khush GS, Schnable P, Wang GL , Leach J. Deletion mutants for functional Genomics: Progress in phenotyping, sequence assignment, and database development. In: Khush G S, Brar D S, Hardy B eds. Rice Genetics IV. Science Publishers, 2001. 239-252
    
    95. Li X, Song Y, Century K, Straight S, Ronald P, Dong X, Lassner M, Zhang Y. A fast neutron deletion mutagenesis-based reverse genetics system for plants, Plant J, 2001, 27:235-242
    
    96. Liao G C, Rehm E J, Rubin G M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A, 2000, 97:3347-3351
    
    97. Lin Y J, Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23:540-547
    
    98. Li-Sucholeiki X C, Khrapko K, Andre P C, Marcelino L A, Karger B L, Thilly W G. Applications of constant denaturant capillary electrophoresis/high fidelity polymerase chain reaction to human genetic analysis. Electrophoresis, 1999, 20:1224-1232.
    
    99. Liu D, Zhang S, Fauquet C, Crawford N M. The Arabidopsis transposon Tag1 is active in rice, undergoing germina 1 transposition and restricted, late somatic excision. Mol Gen Genet, 1999, 262:413-420
    
    100. Liu Y G, Mitsukawa N, Oosumi T, Whittier R F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J, 1995, 8:457-463
    
    101. Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995 25:674-681
    
    102. Liu Z L, Han F P, Tan M, Shan X H, Dong Y Z, Wang X Z, Fedak G, Hao S, Liu B. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genomic regions. Theor Appl Genet, 2004, 109:200-209
    
    103. Lobry JR. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol, 1996,13:660-665
    
    104. Matsumoto S, Ito Y, Hosoi T, Takahashi Y, Machida Y. Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol Gen Genet, 1990, 224:309-316
    
    105. Matsumura H, Nirasawa S, Terauchi R. Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J, 1999, 20:719-726
    
    106. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J, 1991, 10:697-704
    
    107. McCallum C M, Comai L, Greene E A, Henikoff S. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol, 2000b, 123:439-442
    
    108. McCallum C M, Comai L, Greene E A, Henikoff S. Targeted screening for induced mutations. Nat Biotechnol, 2000a, 18:455-457
    
    109. McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman M A, Tossberg J, Nickle T, Levin J Z, Law M, Meinke D, Parton D. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics, 2001, 159:1751-1763.
    110. Meinke D W, Meinke L K, Showalter T C, Schissel A M, Mueller L A, Tzafrir I. A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol, 2003, 131:409-418.
    111.Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H. Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell, 2003, 15:1771 -1780
    
    112. Miyazawa S, Jernigan R L. Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules, 1985, 18:534-552
    
    113. Miyazawa S, Jernigan R L. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol, 1996, 256:623-644
    
    114. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9:11-17.
    
    115. Morl M, Marchfelder A. The final cut. The importance of tRNA 3'-processing. EMBO Rep, 2001,2:17-20
    
    116. Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K, Shinozaki K. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J, 2003, 34:719-731
    
    117. Muller H J. Types of visible variations induced by X-rays in Drosophila. J Genet, 1930, 22:299-334.
    
    118. Müller H P, Varmus H E. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J, 1994, 13:4704-4714
    
    119. Murai N, Li Z J, Kawagoe Y, Hayashimoto A. Transposition of the maize activator element in transgenic rice plants. Nucleic Acids Res, 1991, 19:617-622
    
    120. Muskett P R, Kahn K, Austin M J, Moisan L J, Sadanandom A, Shirasu K, Jones J D G, Parker J E. Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. Plant Cell, 2002, 14:979-992
    
    121. Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics, 1998, 149:641-650
    
    122. Nakagawa Y, Machida C, Machida Y, Toriyama K. Frequency and pattern of transposition of the maize transposable element Ds in transgenic rice plants. Plant Cell Physiol, 2000, 41:733-742
    
    123.Nakano A, Suzuki G, Yamamoto M, Turnbull K, Rahman S, Mukai Y. Rearrangements of large-insert in transgenic rice T-DNA. Mol Gen Genet, 2005, 273:123-129
    124. Nambara E, Keith K, McCourt P, Naito S. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABB gene. Plant Cell Physiol, 1994, 35:509-513
    125.Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F. Hybrid genes in the analysis of transformation conditions. Plant Mol Biol, 1987, 8:363-373
    126. Niwa Y, Goto S, Nakano M, Hirano T, Tsukaya H, Komeda Y, kobayashi H. Arabidopsis mutants by activation tagging in which photosynthesis genes are expressed in dedifferentiated calli. Plant Cell Physiol, 2006, 47:339-331
    127.Nonomura K,Nakano M,Fukuda T,Eiguchi M,Miyao A,Hirochika H,Kurata N.The novel gene HOMOLOGOUS PAIRING ABERRATION IN 1UCE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis.Plant Cell,2004a,16:1008-1020.
    128.Nonomura K,Nakano M,Murata K,Miyoshi K,Eiguchi M,Miyao A,Hirochika H,Kurata N.An insertional mutation in the rice PAIR2 gene,the ortholog of Arabidopsis ASY1,results in a defect in homologous chromosome pairing during meiosis.Mol Genet Genomics,2004b,271:121-129
    129.Nthangeni M B,Ramagoma F,Tlou M G,Litthauer D.Development of a versatile cassette for directional genome walking using cassette ligation-mediated PCR and its application in the cloning of complete lipolytic genes from Bacillus species.J Microbiol Methods,2005,61:225-234
    130.Ohba T,Yoshioka Y,Machida C,Machida Y.DNA rearrangement associated with the integration of T-DNA in tobacco:An example for multiple duplications of DNA around the integration target.Plant J,,1995,7:157-164
    131.Ortega D,Raynal M,Laudie M,Llauro C,Cooke R,Devic M,Genestier S,Picard C.Abad P,Contard P,Sarrobert C,Nussaume L,Bechtold N,Horlow C,Pelletier G,Delseny M.Flanking sequence tags in Arabidopsis thaliana T-DNA insertion lines:a pilot study.C R Biol,2002,325:773-780
    132.Oster U,Tanaka R,Tanaka A,R(u|¨)dier W.Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis(CAO) from Arabidopsis thaliana.Plant J,2000,21:305-310
    133.Pandey A,Mann M.Proteomics to study genes and genomes.Nature,2000,405:837-846
    134.Parks B M,Quail P H.Phytochrome-deficient hy1 and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis.Plant Cell,1991,3:1177-1186
    135.Pellegrini O,Nezzar J,Marchfelder A,Putzer H,Condon C.Endonucleolytic processing of CCA-less tRNA precursors by RNase Z in Bacillus subtilis.EMBO J,2003,22:4534-4543
    136.Peng H,Huang H,Yang Y,Zhai Y,Wu J,Huang D,Lu T.Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines.Plant Sci,2005,168:1571-1579
    137.Perucho M,Hanahan D,Lipsich L,Wigler M.Isolation of the chicken thymidine kinase gene by plasmid rescue.Nature,1980,285:207-210
    138.Perwez T,Kushner S R.RNase Z in Escherichia coli plays a significant role in mRNA decay.Mol Microbiol,2006,60:723-737
    139.Petersen B L,Moiler M G,Jensen P E,Henningsen K W.Identification of the Xan-g gene and expression of the Mgchelatase encoding genes Xan-f,-g and-h in mutant and wild type barley (Hordeum vulgare L.).Hereditas,1999,131:165-170
    140.Piffanelli P,Droc G,Mieulet D,Lanau N,Bes M,Bourgeois E,Rouviere C,Gavory F,Cruaud C,Ghesquiere A,Guiderdoni E.Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library.Plant Mol Biol,2007,65:587-601
    141.Poroyko V,Hejlek L G,Spollen W G,Springer G K,Nguyen H T,Sharp R E,Bohnert H J.The maize root transcriptome by serial analysis of gene expression.Plant Physiol,2005,138:1700-1710
    142.Potrykus I,Shillito R D,Saul M,Paszkowski J.Direct gene transfer:state of the art and future perspectives.Plant Mol Biol Rep,1985,3:117-128
    143. Potrykus I. Gene transfer methods for plants and cell cultures. Ciba Found Symp, 1990, 154:198-208; discussion 208-212.
    
    144. Prod'hom G, Lagier B, Pelicic V, Hance A J, Gicquel B, Guilhot C. A reliable amplification technique for the characterization of genomic DNA sequences flanking insertion sequences. FEMS Microbiol Lett, 1998, 158:75-81
    
    145. Raineri D M, Bottino P, Gordon M P, Nester E W. Agrobacterium-mediated transformation of rice (Oryza sativa L). Bio/Technology, 1990, 8:33-38
    
    146. Rashid H, Yokui S, Toriyama K, Hinata K. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep, 1996, 15:727-730
    
    147. Reinbothe S, Pollmann S, Springer A, James R J, Tichtinsky G, Reinbothe C. A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH: protochlorophyllide oxidoreductase (POR) A. Plant J, 2005,42:1-12
    
    148. Reyes-Arribas T, Barrett J E, Huber D J, Nell T A, Clark D G. Leaf senescence in a non-yellowing cultivar of chrysanthemum (Dendranthema grandiflora). Physiol Plant, 2001, 111:540-544
    
    149. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet, 2000, 16:276-277
    
    150. Robson P R H, Donnison I S, Wang K, Frame B, Pegg S E, Thomas A, Thomas H. Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnol J, 2004, 2:101-112
    
    151. Rosenthal A, Jones D S. Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res, 1990, 18:3095-3096
    
    152. Ryu C H, You J H, Kang H G, Hur J, Kim Y H, Han M J, An K, Chung B C, Lee C H, An G Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol, 2004,54:489-502
    
    153. Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P, Piegu B, Droc G, Regad F, Bourgeois E, Meynard D, Perin C, Sabau X, Ghesquiere A, Glaszmann J C, Delseny M, Guiderdoni E. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J, 2004,39:450-464
    
    154. Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard J P, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk P B, Rueb S, Delseny M, Guiderdoni E. Highly efficient production and characterization of T-DNA plants for rice (Oryza saliva L.) functional genomics. Theor Appl Genet, 2003, 106:1396-1408
    
    155. Salomon S, Puchta H. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBOJ, 1998, 17:6086-6095
    
    156. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nded. New York: Cold Spring Harbor Laboratory Press, 1989
    
    157. Sandhu D, Gill K S. Gene-containing regions of wheat and the other grass genomes. Plant Physiol, 2002, 128:803-811
    
    158. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio B A, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H et al. The genome sequence and structure of rice chromosome 1. Nature, 2002,420:312-316
    
    159. Satchwell S C, Drew H R, Travers A A. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol, 1986, 191:659-675
    160. Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res, 1999, 6:283-290
    161. Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J, 1999, 18:992-1002
    162. Schena M, Shalon D, Davis R W, Brown O B. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995,270:467-470
    163. Schiffer S, Rosch S, Marchfelder A. Assigning a function to a conserved group of proteins: the tRNA 3'-processing enzymes. EMBO J, 2002,21:2769-2777
    164. Schilling O, Spath B, Kostelecky B, Marchfelder A, Meyer-Klaucke W, Vogel A. Exosite modules guide substrate recognition in the ZiPD/ElaC protein family. J Biol Chem, 2005, 280:17857-17862
    165. Schneeberger R G, Zhang K, Tatarinova T, Troukhan M, Kwok S F, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann K A. Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions. Funct Integr Genomics, 2005, 5:240-253
    166. Schultes N P, Sawers R J H, Brutnell T P, Krueger R W. Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J, 2000,21:317-327
    167. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke J D, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell, 2002, 14:2985-2994
    168. Sha Y, Li S, Pei Z, Luo L, Tian Y, He C. Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet, 2004, 108:306-314
    169. Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol, 2001,127:1466-1475
    170. Sheng J, Citovsky V. Agrobacterium-plant cell DNA transport: Have virulence proteins, will travel. Plant Cell, 1996, 8:1699-1710
    171.Shimamoto K, Miyazaki C, Hashimoto H, Izawa T, Itoh K, Terada K, Inagaki Y, Iida S. Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Mol Gen Genet, 1993, 239:354-360
    172. Siebert P D, Chenchick C, Kellog D E, Lukyanov K, Lukyanov S A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res, 1995,23:1087-1088
    173. Smith E F, Townsend C O. A Plant-tumor of bacterial origin. Science, 1907, 25:671-673
    174. Smith M M, Levitan D J. The Caenorhabditis elegans homolog of the putative prostate cancer susceptibility gene ELAC2, hoe-1, plays a role in germline proliferation. Dev Biol, 2004, 266:151-160
    175. Spath B, Canino G, Marchfelder A. tRNase Z: the end is not in sight. Cell Mol Life Sci, 2007, 64:2404-2412
    176. Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99:9043-9048
    177. Sun T P, Goodman H M, Ausubel F M. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell, 1992, 4:119-128
    178. Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev, 1995, 9:1797-1810
    179. Sung A O, Joo-Hyun P, Gyu I L, Kyung H P, Soon K P, Hong G N. Identification of three loci controlling leaf senescence in Arabidopsis thaliana. Plant J, 1997, 12:527-535
    180. Szabados L, Kovacs I, Oberschall A, Abraham E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gal M, Berente A, Redei G P, Haim A B, Koncz C. Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J, 2002, 32:233-242
    18l.Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGSl;l, a Cytosolic glutamine synthetase 1; 1. Plant J, 2005,42:641 -651
    182. Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001, 13:521-534
    183. Tani H, Chen X, Nurmberg P, Grant J J, SantaMaria M, Chini A, Gilroy E, Birch P R, Loake G J. Activation tag-ging in plants: a tool for gene discovery. Funct Integr Genomics, 2004, 4:258-266
    184. Tavtigian S V, Simard J, Teng D H, Abtin V, Baumgard M, Beck A, Camp N J, Carillo A R, Chen Y, Dayananth P, Desrochers M, Dumont M, Farnham J M, Frank D, Frye C, Ghaffari S, Gupte J S, Hu R, Iliev D, Janecki T et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet, 2001,27:172-180
    185. Terry M J, Kendrick R E. Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient urea and yellow-green-2 mutants of tomato. Plant Physiol, 1999, 19:143-152
    186. Terry M J. Phytochrome chromophore-deficient mutants. Plant Cell Environ, 1997, 20:740-745
    187. The rice chromosome 10 sequencing consortium. Indepth view of structure, activity, and evolution of rice chromosome 10. Science, 2003,300:1566-1569
    188. Thomas C M, Jones DA, English J J, Carroll B J, Bennetzen J L, Harrison K, Burbidge A, Bishop G J, Jones J D. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet, 1994, 242:573-585
    189. Tinland B. The integration of T-DNA into plant genomes. Trends Plant Sci, 1996, 1:178-184
    190. Triglia T, Peterson M G, Kemp D J. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res, 1988,16: 81-86
    191.Tzfira T, Frankman L R, Vaidya M, Citovsky V. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol, 2003, 133:1011-1023
    192. Upadhyaya N M, Zhou X R, Zhu Q H, Ramm K, Wu L, Eamens A, Sivakumar R, Kato T, Yun D W, Kumar S, Narayana K K, Peacock J W, Dennis E S. An iAc/Ds gene and enhancer trapping system for insertional mutagenesis in rice. Functional Plant Biology, 2002, 29:547-559
    193. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature, 1974,252:169-170
    194. Van Larebeke N, Genetello C, Schell J, Schilperoort R A, Hermans A K, Van Montagu M, Hernalsteens J P. Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature, 1975, 255:742-743
    195.Velculescu V E,Zhang L,Vogelstein B,Kinzler K W.Serial analysis of gene expression.Science,1995,270:484-487
    196.Vincentini F,Hortensteiner S,Schellenberg M,Thomas H,Matile P.Chlorophyll breakdown in senescent leaves;identification of biochemical lesion in a stay-green genotype of Festuca pratensis Huds.New Phytol,1995,129:247-252
    197.Vogel A,Schilling O,Sp(a|¨)th B,Marchfelder A.The tRNase Z family of proteins:physiological functions,substrate specificity and structural properties.Biol Chem,2005,386:1253-1264
    198.Wallroth M,Gerats A G M,Rogers S G,Fraley R T,Horsch R B.Chromosomal localization of foreign genes in Petunia hybrida.Mol.Gen Genet,1986,202:6-15
    199.Wang J,Lewis M E,Whallon J H,Sink K C.Chromosome mapping of T-DNA inserts in transgene Petunia by in situ hybridization.Transgene Res,1995,4:241-246
    200.Weigel D,Ahn J H,Blazquez M A,Borevitz J O,Christensen S K,Fankhauser C,Ferrandiz C,Kardailsky I,Malancharuvil E J,Neff M M,Nguyen J T,Sato S,Wang Z Y,Xia Y,Dixon R A,Harrison M J,Lamb C J,Yanofsky M F,Chory J.Activation tagging in Arabidopsis.Plant Physiol,2000,122:1003-1013
    201.Withers-Ward E S,Kitamura Y,Barnes J P,Coffin J M.Distribution of targets for avian retrovirus DNA integration in vivo.Genes Dev,1994,8:1473-1487
    202.Wu C Y,Li X J,Yuan W Y,Chen G X,Andrzej K,Li J,Xu C G,Li X H,Zhou,D X,Wang S P,Zhang Q F.Development of enhencer trap lines for functional analysis of the rice genome.Plant J,2003,35:418-427
    203.Wu D X,Shu Q Y,Xia Y W.In vitro mutagenesis induced novel thermo/photoperiod-sensitive genie male sterile indica rice with green-revertible xanthan leaf color marker.Euphytica,2002,123:195-202
    204.Wu J,Maehara T,Shimokawa T,Yamamoto S,Harada C,Takazaki Y,Ono N,Mukai Y,Koike K,Yazaki J,Fujii F,Shomura A,Ando T,Kono I,Waki K,Yamamoto K,Yano M,Matsumoto T,Sasaki T.A comprehensive rice transcript map containing 6591 expressed sequence tag sites.Plant Cell,2002,14:521-523
    205.Xiao S,Scott F,Fierke C A,Engelke D R.Eukaryotic ribonuclease P:a plurality of ribonucleoprotein enzymes.Annu Rev Biochem,2002,71:165-189
    206.Yamazaki J,Kamimura Y,Okada M,Sugimura Y.Changes in photosynthetic characteristics and photosystem stoichiometries in the lower leaves in rice seedlings.Plant Sci,1999,148:155-163
    207.Yamazaki M,Tsugawa H,Miyao A,Yano M,Wu J,Yamamoto S,Matsumoto T,Sasaki T,Hirochika H.The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets.Mol Genet Genomics,2001,265:336-344
    208.Yaronskaya E,Ziemann V,Walter G.Averina N,B(o|¨)rner T,Grimm B.Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians.Plant J,2003,35:512-522
    209.Yin Z,Wang G L.Evidence of multiple complex patterns of T-DNA integration into rice genome,Theor Appl Genet,2000,100:461-470
    210.Yu J,Hu S,Wang J,Wong GK,Li S,Liu B,Deng Y,Dai L,Zhou Y,Zhang X,Cao M,Liu.J,Sun J,Tang J,Chen Y,Huang X,Lin W,Ye C,Tong W,Cong L et al.A draft sequence of the rice genome(Oryza sativa L.ssp.indica).Science,2002,296:79-92
    211.Yu J,Wang J,Lin W,Li S,Li H,Zhou J,Ni P,Dong W,Hu S,Zeng C,Zhang J,Zhang Y,Li R,Xu Z,Li S,Li X,Zheng H,Cong L,Lin L,Yin Jet al.The genomes of Oryza sativa:A history of duplications.PLoS Biol,2005,2:e38
    212. Zaenen I, Van Larebeke N, Van Montagu M, Schell J. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol, 1974, 86:109-127
    213. Zareen N, Yan H, Hopkinson A, Levinger L. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding. J Mol Biol, 2005, 350:189-199
    214. Zhang G, Angeles E R, Abenes M L P, Khush G S, Huang N. RAPD and RFLP mapping of the bacterial blight resistance gene xa13 in rice. Theor Appl Genet, 1996, 93:65-70
    215. Zhang J L, Lou X M, Cai R Z, Huang R X, Hong M M. Transposition of maize-transposable element Activator in rice, Plant Sci, 1991, 73:191-198
    216. Zhang J, Guo D, Chang Y, You C, Li X, Dai X, Weng Q, Zhang J, Chen G, Li X, Liu H, Han B, Zhang Q, Wu C. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J, 2007,49:947-959
    217. Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S. RMD: a rice mutant database for functional analysis of the rice genome. Nucleic Acids Res, 2006, 34(Database issue):D745-748.
    218. Zhu Z G, Fu Y P, Xiao H, Hu G C, Si H M, Yu Y H, Shu Z X. Ac/Ds transposition activity in Transgenic rice population and DNA flanking sequence of Ds insertion sites. Acta Botanica Sinica, 2003,45:102-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700