分子标记辅助选择培育新型甘蓝型油菜隐性细胞核雄性不育系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂种优势利用的关键是利用简而易行的方法使不同亲本间的杂交获得具有一定生产潜力的F_1杂交种。这个问题包含两个方面的含义:一是行之有效的授粉控制系统,如植物雄性不育系的利用。目前,在我国油菜杂种优势利用的主要途径是细胞质雄性不育和细胞核雄性不育,细胞质雄性不育系由于有恢复源较窄,育性容易受温度影响等一系列的缺点,使其在生产上的应用受到一定的限制。相反细胞核雄性不育系具有恢复源广泛,育性稳定的优点,目前正受到育种家的关注。隐性细胞核雄性不育系7-7365A(Bnms3ms3ms4ms4RfRf)的育性由两对重叠基因与一对上位基因控制,已经在生产上实现了“三系”配套,但是由于遗传基础复杂,传统的改良方法需要进行大量的测交分析。二是亲本间遗传差异,很多的育种实践表明,亲本间适当的遗传距离有助于杂种F_1代生产潜力的发掘。孟金陵教授课题组利用分子标记辅助选择,创建了新型甘蓝型油菜7-749(A~rA~rC~cC~c),该材料具有白菜的A~r基因组与埃塞俄比亚芥的C~c基因组,遗传背景与普通的甘蓝型油菜的A、C基因组具有一定的差异,它们产生的杂种具有较强的亚基因组间的杂种优势。为了更好利用这一优良隐性细胞核雄性不育材料与新型甘蓝型油菜,本研究对隐性细胞核雄性不育系7-7365A相关基因进行了分子标记定位,并通过标记辅助选择,将7-7365A的不育基因导入到新型甘蓝型油菜的遗传背景中,以改良7-7365A的配合力。其主要结果如下:
     1 BnMs3基因的精细定位
     利用AFLP技术结合集团分析法(BSA)在近等基因系群体7-7365AB中筛选1024对AFLP引物,获得了17个AFLP标记。整合Ke等(2005)发表的7个AFLP标记,有4个标记显示了差异,用2000个单株的大群体对BnMs3基因进行定位分析,21个标记分布于BnMs3基因的两侧,P05MC11_(350)与EA01MC12为基因两侧最近的标记,其遗传距离分别为0.5与0.1cM。将所有的标记进行测序,设计引物,有5个AFLP标记(P05MG05、P11MG02、P03MG04、P05MC11_(250)、EA09P06)被成功转化成SCAR标记。为了将BnMs3基因定位在公布的甘蓝型油菜遗传连锁图谱上,我们利用了两个DH群体Tapidor×Ningyou7和Quantum×No.2127-17的遗传连锁图谱,结果BnMs3基因被定位到了甘蓝型油菜的N19上,并在图谱上获得了一个共显性的SSR标记sR12384,该标记与BnMs3基因仅相距2.0cM。通过BLASTn分析,将该基因定位到拟南芥的第五条染色体上,对应区间为At5g13020-At5g17020。
     2 BnMs4基因的定位
     通过构建近等基因系7-736512AB,利用AFLP技术结合集团分析法(BSA)在近等基因系群体7-736512AB中筛选了1792对AFLP引物,获得了12个AFLP标记,经过1986个单株的大群体分析,所有标记分布于基因的两侧,标记AF6与AF8为两侧最近的标记,遗传距离分别为0.9与0.8 cM,将所有标记测序,设计引物,有3个标记P16MC08、P16MC12、AF6直接转化成了SCAR标记,其中AF6被转化成了一个共显性标记(S1)。经过PCR-walking扩增后,AF8也被成功转化成了一个SCAR标记。
     3分子标记辅助选择培育新型细胞核雄性不育系
     MAS与传统表型选择和品质分析相结合,应用杂交—自交—回交的方法,将7-7365A中的雄性不育基因导入到新型甘蓝型油菜7-749中。通过3次背景选择、一次前景选择,结合田间表型以及品质分析,选出了外源基因组含量(指A~r与C~c的含量之和)在44.2%-49.8%之间的不育株以及用于兄妹交的姊妹单株,通过连续2次的兄妹交,获得了稳定的不育系。
     3.1将育成的不育系与10个恢复系测交,按随机区组设计,对产量及其相关性状进行了配合力分析。改良后的不育系在主花序角果数、全株角果数、单株产量和小区产量四个性状上的一般配合力均表现正效应值,与未改良的不育系相比其差异达到极显著水平。对于每果粒数,改良后的不育系的一般配合力的效应值为负值,其差异达到了显著水平。对于千粒重,改良后的不育系的一般配合力的效应值为正值,但差异未达到显著水平。在配制的10个组合中,在小区产量性状上有7个组合表现正向超标优势,其中与7-1260、7-107、7-138所配组合的超标优势超过10%。
     3.2亲本分子遗传距离与杂种表现及配合力的分析结果表明:SSR遗传距离在产量及产量相关性状上与F_1的表型值、一般配合力、特殊配合力均没有显著相关性。
     4分子标记辅助选择新型细胞核雄性不育系的临保系
     用15对AFLP引物对临保系选育过程中两个世代的每个分离群体的可育单株进行了两次背景选择。结果表明,它们的外源基因组含量分别为14.8%-22.3%与27.2%-31.4%,结合田间表型在两个世代的群体中分别选择了外源基因组含量较高的2个单株进行下一个世代的选择过程。
The key problem in utilizing heterosis is that of producing potential hybrid seeds economically,which contains two aspects of meaning.The first one is the effective pollination system,such as male sterility.Currently,the main approaches for rapeseed hybrid production are cytoplasmic male sterility(CMS) and genic male sterility(GMS) in China. There are some disadvantages in CMS system,such as limited availability of restorer lines, sensitivity to temperature.On the other hand,GMS has more advantages,such as rich resources of restorers,stable and complete male sterility.Now GMS is widely accepted and utilized.Although the recessive genic male sterility(RGMS) 7-7365A (Bnms3ms3ms4ms4RfRf) has been used in rapeseed production,yet for its very complex genetic basis,the traditional methods of three-line improvement are involved in a great deal of test cross analyses.The second aspect is genetic difference of parents.Many breeding practices showed that appropriate genetic difference of parents was helpful to F_1 hybrid production.Professor Meng' lab created the new-typed Brassica napus 7-749(A~rA~rC~cC~c), which had A~r genome from B.rapa and C~c genome from Brassica carinata.There existed some differences between 7-749 and common Brassica napus,therefore the hybrids of them showed strong intersubgenomic heterosis.In order to take advantage of this RGMS line and the new-typed B.napus,we mapped the recessive genic male sterile genes in 7-7365A,and transferred the genetic background of the new-typed B.napus to 7-7365A,so as to improve the 7-7365A.The main results were as follows:
     1 Fine mapping of BnMs3 gene
     1.1 From a survey of 1,024 primer combinations,we identified 17 AFLP markers linked to BnMs3 gene in an NIL(near-isogenic lines) population through AFLP analysis combined with BSA(bulked segregation analysis).By integrating the previous markers reported by Ke (2005) linked to the BnMs3 gene,four of which showed polymorphlism.The NIL population consisting of 2000 individuals was used to analyse the linkage of all markers,as a result,they were located on either side of the BnMs3 gene.EA01MC12 and P05MC11_(350),the nearest markers,were at a distance of 0.1 and 0.5 cM,respectively.All markers were sequenced and primers were designed,five of which(P05MG05,P11MG02,P03MG04,P05MC11_(250), EA09P06) were converted into SCARs successfully.
     1.2 In order to determine the location of the BnMs3 gene in the published B.napus genetic maps,we used two DH populations derived from Tapidor×Ningyou7 and Quantum×No.2127-17.Finally the gene was mapped to the N19 of B.napus genetic maps,and a co-dominant marker sR12384 was identified at a distance of 2.0 cM from the BnMs3 gene.
     1.3 The sequences of all the markers were delivered to NCBI web site for BLASTn analysis and the genes corresponding to the marker sequences were all located on the chromosome 5 of Arabidopsis.The homologous region of BnMs3 in Arabidopsis was between At5g13020 and At5g17020.
     2 Mapping of BnMs4 gene
     We constructed an NIL population 7-736512AB.From a survey of 1,792 primer combinations,we identified 12 AFLP markers linked to BnMs3 gene in the NIL population 7-736512AB through AFLP analysis combined with BSA.All of markers were used to screen the 7-736512AB population including 1986 individuals,as a result,they were located on either side of the BnMs4 gene,AF6 and AF8,the nearest markers,were at a distance of 0.9 and 0.8 cM,respectively.All of markers were sequenced and three markers(P16MC08, P16MC12,AF6) were converted into SCARs successfully,among which AF6 was a co-dominant marker.Through PCR-walking,AF8 was also converted into a SCAR marker.
     3 Improvement of new recessive genie male sterile lines in B.napus by molecular marker-assisted selection(MAS)
     By MAS along with phenotype selection and quality analysis,we successfully transferred the genic male sterility genes of 7-7365A into the new-typed B.napus 7-749 using cross-self-backcross methods,Through three times of background selection and one foreground selection,we selected the sterile individuals and their sibmates,of which the exogenous genome content(A~rand C~c) ranged from 44.2%to 49.8%.We obtained a stable sterile line through continuous sibmating for two times.
     3.1 The combining ability analyses of yeild and yeild-related characters were done in the crosses from the new sterile line and 10 restorers within a random block design.The results demonstrated that the improved sterile line showed positive effects of value in the general combining ability(GCA) of silique numbers on main inflorescence,siliques per plant,seed yield per plant and yield per plot,compared with the original sterile line;the difference was very significant.For seed number per silique,the improved sterile line showed negative GCA value,and the difference reached a significant level.For 1000-seed weight,the improved sterile line showed positive GCA value,but the difference was not significant.In the 10 crosses,seven crosses showed positive heterosis compared with the control in the yield per plot character,and the heterosis advantage of three crosses from the improved sterile line with 7-1260,7-107 and 7-138 was up to more than 10%.
     3.2 Correlation analysis between GD and heterosis showed no significant correlation between the GD based on SSR markers,F_1 traits performance,SCA and GCA.
     4 Improvement of new recessive genie male temporary maintainer in B.napus by molecular-marker assisted selection
     Fifteen AFLP primer combinations were used to perform background selection on the fertile plants of the two segregating populations in two generations for two times, respectively.The results showed that the exogenous genome content of them ranged from 14.8%to 22.3%and 27.2%to 31.4%in two populations,respectively.Combined with agronomic characters and quality analysis,we selected two individuals which had high exogenous genome content in the two populations respectively for the next selection procedure.
引文
1.鲍文奎.机会与风险—40年育种研究的思考.植物杂志,1990,4:4-5
    2.程宁辉,杨金水,高燕萍.玉米杂种一代与亲本基因表达差异的初步研究.科学通报,1996,41(5):451-454
    3.程宁辉,高燕萍,杨金水.水稻杂种一代与亲本幼苗基因表达差异的分析.植物学报,1997,39(4):379-382
    4.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(增刊),1993,2:20-25
    5.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育的遗传研究.Ⅰ.隐性核小育系9012A的遗传.作物学报,1998,24(4):22-26
    6.陈凤祥,胡宝成,拿强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30(4):535-537
    7.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油14”的选育.中国油料作物学报,2003,25(1):63-65
    8.陈伟.用分子标记剖析油菜重要农艺性状的遗传基础.[博上论文].武汉:华中农业大学图书馆,2007
    9.董振生,刘创社,董军刚.甘蓝型油菜细胞质雄性不育及其杂交种陕油8号的选育.西北农业学报,2002,11(1):50-52
    10.邓化冰,邓启云,陈立云,杨益善,熊跃东,孔凡娜,王斌,袁隆平.马来西亚普通野生稻增产QTL的分子标记辅助选择及其育种效果.中国水稻科学,2007,21(6):605-611
    11.傅廷栋,杨光圣.油菜细胞质雄性不育系杂种.见:傅廷栋主编,杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000,56-58
    12.傅廷栋,杨光圣,杨小牛.甘蓝型油菜波里马细胞质雄性不育的研究与利用.作物研究,1990,4(3):9-12
    13.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    14.苟作旺,杨芳萍,杨文雄.作物分子标记辅助选择育种研究进展.甘肃农业科技,2007,1:21-23
    15.官春云,李栒,王国槐,陈社员,袁晏松.化学杂交剂诱导油菜雄性不育机理的研究:Ⅰ.杀雄剂1号对甘蓝型油菜花药毡绒层和花粉粒形成的影响.作物学报,1997,23(5):513-521.
    16.官春云,李栒,王国槐,陈社员,袁晏松.化学杂交诱导油菜雄性不育机理的研究:Ⅱ.KMS-1对甘蓝型油菜育性的影响.中国油料作物学报,1998,20(3):1-4
    17.郭晶心,曹鸣庆.芸薹屋植物的起源,演化和分类所进行的分子标记研究进展.生物技术通报,2001,1:26-30
    18.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料作物学报,1990,2:7-10
    19.黄金龙,孙其信,张爱民,黄铁城.电子计算机在遗传育种中的应用.北京:农业出版社,1991,195-199
    20.华金平.汕优63“永久F_2”群体构建及其杂种优势的遗传研究.[博士学位论文].武汉:华中农业大学,2001
    21.胡胜武.甘蓝型油菜(Brassica napus)新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究.[博士学位论文].杨凌:西北农林科技大学图书馆,2003
    22.黄莉.甘蓝型油菜杂种优势和遗传多样性研究.[硕士学位论文].武汉:华中农业大学,2007
    23.蒋粱材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000,22(2):1-4
    24.栗茂腾.甘蓝型油菜新类型创建及油菜亚基因组间杂种优势研究.[博士论文].武汉:华中农业大学图书馆,2003
    25.李继耕,高文琴.油菜细胞质雄性不育系及其保持系叶绿体超微结构的研究遗传学报,1983,10(4):280-282
    26.李加纳,谌利,唐章林,张学昆.油菜细胞核+细胞质双重不育系选育初报.西南农业大学学报,1994,16(4):403-405
    27.李石开,刘其宁,吴学英,苏振喜,张庆莹,邱怀珊,赵庭周.芥菜型油菜光温敏核不育系K121S的选育.中国油料作物学报,2002,24(3):1-5
    28.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    29.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业学报,1986,2(2):1-8
    30.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报,1987,3(2):1-8
    31.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4(3):27-32
    32.李媛媛.利用功能分子标记分析甘蓝型油菜产量相关性状QTLs及其杂种优势遗传基础.[博士论文].武汉:华中农业大学图书馆,2006
    33.李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.基因组原位杂交辨别芸薹属异源四倍体AA,BB, CC基因组研究.中国油料作物学报,2002,24(1):10-14
    34.倪大虎,易成新,李莉,汪秀峰,张毅,赵开军,王春连,张琦,王文相,杨剑波.分子标记辅助选择培育水稻抗白叶枯病和稻瘟病三基因聚合系.作物学报,2008,34(1):100-105
    35.刘后利.油菜的遗传与育种.上海:上海科学技术出版社,1985
    36.刘后利.油菜遗传育种学.北京:中国农业大学出版社,2000
    37.刘来福.作物数量遗传.北京:农业出版社,1984
    38.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    39.刘洋,徐培洲,张红宇,徐建第,吴发强,吴先军.水稻抗稻瘟病Pib基因的分子标记辅助选择与应用.中国农业科学,2008,41(1):9-14
    40.刘志文.人工合成甘蓝型黄籽油菜的分子标记和利用研究.[博士学位论文].武汉:华中农业大学图书馆,2004
    41.刘忠松,官春云.油菜雄性不育性的研究Ⅰ.甘蓝型油菜波里马(Polima)细胞质雄性不育系与保持系的生化比较.中国油料,1990,3:1-5
    42.刘忠松.油菜远缘杂交的遗传育种研究Ⅱ.甘蓝型油菜与芥菜型油菜杂交的亲和性及其杂种一代.中国油料,1994,16(3):1-5
    43.刘忠松,官春云,李洵,陈社员,王国槐.芥菜型油菜和甘蓝型油菜杂种二代分离观察.中国油料作物学报,1998,20(4):6-10
    44.刘忠松,官春云,李洵,陈社员,王国槐.甘蓝型油菜和芥菜型油菜种间杂交研究.中国油料作物学报,2001,23(2):82-86
    45.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报.2004,30(2):104-107
    46.陆光远.甘蓝型油菜显性细胞核雄性不育基因和上位抑制基因的分子标记及应用.[博士学位论文].武汉:华中农业大学图书馆,2003
    47.马朝芝.甘蓝型油菜遗传多样性和杂种优势的研究.[博士学位论文].武汉:华中农业大学,2001
    48.蒙大庆.甘蓝型油菜核不育系绵9AB-1不育性的遗传规律研究及初步应用.四川农业大学学报,2002,20(4):328-329
    49.潘家驹.作物遗传育种总论.北京:中国农业出版社,1994,82-87
    50.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,(3):5-8
    51.彭应财,李文宏,樊叶扬,郑昀晔.利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218. 杂交水稻,2003,18(5):5-7
    52.秦钢,李杨瑞,李道远,梁海福,莫海玲,于松保,唐梅,郑希.水稻白叶桔病抗性基因Xa4、Xa23聚合及分子标记检测.分子植物育种,2007,5(5):625-630
    53.钱伟.甘蓝型油菜与白菜型油菜亚基因组间杂种优势的研究.[博士论文].武汉:华中农业大学图书馆,2003
    54.沈金雄,陆光远,傅廷栋.甘蓝型油菜遗传多样性及其与杂种表现的关系.作物学报,2002,28(5):622-627
    55.沈金雄.甘蓝型油菜杂种优势及其遗传分析.[博士论文].武汉:华中农业大学图书馆,2003
    56.沈金雄,傅廷栋,杨光圣.甘蓝型油菜SSR、ISSR标记的遗传多样性及其与杂种表现的关系.中国农业科学,2004,37(4):477-483
    57.沈俊儒,吴建勇,张剑,刘平武,杨光圣.甘蓝型油菜华油杂6号及其亲本的基因差异表达研究.中国农业科学,2006,39:23-28
    58.沈俊儒,吴建勇,张剑,杨光圣.甘蓝型油菜杂种及其亲本的基因差异表达分析.中国油料作物学报,2005,27:1-6
    59.宋来强.甘蓝型油菜显性细胞核雄性不育的遗传与应用模式.[博士学位论文].武汉:华中农业大学图书馆,2006
    60.宋敏,张世煌.分子标记在优质蛋白玉米(QPM)前景选择和背景选择中的应用.新疆农业科学,2007,44(z3):61-66
    61.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型油菜隐性核不育系20118A的遗传与利用探讨.中国油料作物学报,2002,24(4):1-4
    62.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004,26(1):63-65
    63.孙逢吉.油菜种间杂种优势.中国农学会报,1943,175:35-38
    64.汤继华,马西青,滕文涛,严建兵,吴为人,戴景瑞,李建生.利用“永久F_2”群体定位玉米株高的QTL与杂种优势位点.科学通报,2006,51(24):2864-2869
    65.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16(2):112-117
    66.王春明,安井秀,吉村醇.水稻叶蝉抗性基因回交转育和CAPS标记辅助选择.中国农业科学,2003,36(3):237-241
    67.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26(5):575-578
    68.王贵春.甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因的分子标记开发.[博士学位论文].武汉:华中农业大学图书馆,2007
    69.王新望,赖菁茹,刘广田.农艺性状优良冬小麦ph1b系的创造及标记辅助选择的应用.作物学报,2000,26(5):327-333
    70.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报,2001,28(7):640-646
    71.夏军红,郑用琏.玉米恢复系的分子标记辅助回交选育与效益分析.作物学报,2002,28(30):339-344
    72.徐爱霞.芥菜型油菜遗传多样性及其黄籽与芥酸性状的分子标记.[博士学位论文].杨凌:西北农林科技大学图书馆,2008
    73.徐一兰,唐海明,官春云.油菜细胞质雄性不育的分子生物学及杂种优势利用研究进展.作物研究,2006(5):446-452
    74.杨光圣,傅廷栋.环境条件对油菜细胞质雄性不育的影响.中国油料作物学报,1987,3:15-19
    75.杨光圣.甘蓝型油菜细胞质雄性不育的研究[J].遗传,1988,10(5):8-11
    76.杨光圣,傅廷栋.油菜杂种优势利用的一条可能途径—细胞核+细胞质雄性不育.华中农业大学学报,1993,12(4):307-316
    77.姚雪琴.芸薹属A、C基因组及拟南芥BnMs候选区域的共线性比较[M].[硕士学位论文].武汉:华中农业大学图书馆,2007
    78.易斌.甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    79.袁美,杨光圣,傅廷栋.甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ.8-8112AB的温度敏感性及其遗传.作物学报,2003,29(3):330-335
    80.张爱民.作物杂种优势基础研究的进展.北京农业大学学报,1985,11(4):135-142
    81.张书芬,傅廷栋,朱家成,王建平,文雁成,马朝芝.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32(8):1135-1142
    82.张英.分子标记辅助选择培育甘蓝型油菜Ogu CMS.[硕士学位论文].武汉:华中农业大学图书馆,2006
    83.钟金城.活性基因效应假说.西南民族学院学报(自然科学版),1994,20(2):203-205
    84.周峰.甘蓝型油菜的杂种优势及其与遗传距离的相关性分析.[硕士学位论文].武汉:华中农业大学图书馆,2008
    85.卓宇红,祁怀风.核不育材料821A的遗传育种研究.湖南农业科学,1999,3:17-18
    86. Aarts M, Rachel H, Kriton K. The Arabidopsis MALE STERILITY2 protein shares similarity with reductases in elongation/condensation complexs. Plant J, 1997, 12 (3): 615-623
    87. Ajmone M P, Castiglioni P, Fusari F, Kuiper M, Motto M. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet, 1998, 96 : 219-227
    88. Ali M, Copeland L D, Elias S G, Kelley J D. Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor Appl Genet, 1995, 91: 118-121
    89. Armstrong K C, Keller W A. Chromosome pairing in haploid of Brassica campestris. Theor Appl Genet, 1981,59:49-52
    90. Armstrong K C, Keller W A. Chromosome pairing in haploid of Brassica oleracea. Can J Genet Cytol, 1982,24:735-739
    91. Attia T, Robbelen C. Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Can J Genet Cytol, 1986, 28: 323-329
    92. Auger D L, Gray A D, Ream T S, Kato A, Coe E H, Jr, Birchler J A. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics, 2005, 169: 389-397
    93. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Gen Genomics, 2003, 268: 656-665
    94. Barone A, Sebastiano A, Carputo D, Rocca F D, Frusciante L. Molecular marker-assisted introgression of the wild Solanum Commersonii genome into the cultivated S. Tuberosum gene pool. Theor Appl Genet, 2001, 102:900-907
    95. Boppenmaier J, Melchinger A E, Sertz G. Genetic diversity for RFLPs in European maize inbreed performance of crosses within between heterosis groups for gTain traits. Plant Breed, 1993, 113: 219-226
    96. Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J F, Cheung WY, Landry B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatrico peptide repeats[J], Plant J, 2003, 35: 262-272
    97. Busso C, Attia T, Robbelen G. Trigenomic combinations for the analysis of meiotic control in the cultivated Brassica species. Genome, 1987, 29: 331-333
    98. Cabelguenne M, Debaeke P, Bouniols A. EPICphase, a version of the EPIC modelsimulating the effects of water and nitrogen stress on biomass and yield, taking account ?developmental stages: validation on maize, sunflower, sorghum, soy-bean and winter wheat. Agric Systems, 1999, 60: 175-196
    99. Cavell A C, Lydiate D J, P Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998, 41: 62-69
    100.Chen S, Lin X H, Xu C G, Zhang Q F. Improvement of bacterial blight resistance of "Minghui 63", an elite restorer line of hybrid rice, by molecular marker-assisted selection. Crop Sci, 2000, 40: 239-244
    101.Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F_2 populations. Theor Appl Genet, 2007, 115:849-858
    102.Cheung W Y, Champagne G, Hubert N, Landry B S. Comparison of genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet, 1997,94: 569-582
    103.Choudhary B R, Joshi P, Ramarao S. Interspecific hybridization between Brassica carinata and Brassica rapa. Plant Breed, 2000, 119: 417-420
    104.Cordesse F. Ribosomal gene spacer length variability in cultivated and wild rice species[J]. Theor Appl Genet, 1990,79:81-88
    105.Delourme R, Eber F. Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet, 1992, 97: 129-134
    106.Delourme R, Horvais R, Renard M. Double low restored F1 can be produced with theOgu-INRA CMS in rapeseed. Proc 10th Int Rapeseed Cong, 1999 (Disk)
    
    107.Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13-15
    108.Dudley J W, Saghai Maroof M A , Rufener G K. Molecular markers and grouping of parents in maize breeding programs. Crop Sci, 1991, 31: 718-723
    109.Erickson L R, Straus N A, Beversdorf W D. Restriction patterna reveal origins of chloroplast genomes in Brassica amphiploids. Theor Appl Gent, 1983, 65: 201-206
    
    110.Fasoulas A C, Allard R W. Nonallelic gene interactions in the inheritance of quantitative character in barley. Genetics, 1962, 47: 899-907
    
    111.Fang G H, McVetty P B E. Inheritance of male fertility restoration and allelism of restorer genes for the Polima cytoplasmic male sterility system in o ilseed rape [J]. Genome, 1989, 32: 1044-1047
    112.Ge X H, Li Z Y. Intra and intergenomic homology of B genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis.Chromosome Res, 2007, 15(7): 849-861
    113.G6mez-Campo C, Prakash S. Origin and domestication. In: Gomez-Campo, C, Biology of Brassica Goenospecies. Amsterdam - Lausanne - New York - Oxford - Shannon - Tokyo press, 1999, Pp: 33-58
    114.Guo M, Rupe M A, Zinselmeier C, Habben J, Bowen B A, Smith O S. Allelic variation of gene expression in maize hybrids. Plant Cell, 2004, 16: 1707-1716
    115.Hansen M, Hallden C, Nilsson N O. Maker-assisted selection of restarted male fertile Brassica napus plants using a set of dominant RAPD makers. Molecular breeding, 1997, 3: 449-456
    116.He J P, Ke L P, Hong D F, Xie Y Z, Wang G C, Liu P W, Yang G S. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP and Arabidopsis derived PCR markers. Theor Appl Genet, 2008, 117: 11-18
    117.Hodge R, Paul W, Draper J. Cold plaque screening: a simple technique for isolation of low abundance, differentially expressed transcripts from conventional cDNA libraries. Plant J, 1997, 2: 257-260
    118.Hoenecke M, Chyi Y S. Comparison of Brassica napus and B. rapa genomes based on restriction fragment length polymorphism mapping. In rapeseed in a changing world, Proc 8th international rapeseed cong. Saskatoon, 1991, 1102-1107
    119.Hong D F, Wan L L, Liu P W, Yang G S, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.). Euphytica, 2006, 151: 401-409
    120.Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997,95: 313-320
    121 .Huang Z, Chen Y F, Yi B, Xiao L, Ma C Z, Tu J X, Fu T D. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007, 115:113-118
    122.Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895
    123.Hu S W, Fan Y F, Zhao H X, Guo X L, Yu C Y, Sun G L, Dong C H, Liu S Y, Wang H Z. Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape (Brassica napus L.). Theor Appl Genet, 2006, 113 (3): 397-406
    124.Jiang M, Cao J S. Isolation and characterization of a male sterility gene homolog BcMS2 from Chinese cabbagge-pak-choi that expressing in an anther-specific manner. Mol Biol Rep, 2008, 35: 299-305
    125.Ke L P, Sun Y Q, Hong D F, Liu P W, Yang G S. Identication of AFLP markers linked to one recessive genic male sterility gene in oilseed rape, Brassica napus. Plant Breed, 2005, 124: 367-370
    126.Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica, 2004, 138: 163-168
    127.Kole C, Quijada P, Michaels S D, Amasino R M, Osborn T C. Evidence for homology of flowering-time genes VFR2 from Brassica rapa and FLC from Arabidopsis thaliana. Theor Appl Genet, 2001, 102:425-430
    128.Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175
    129.Kowalski S P, Lan T H, Feldmann K A, Paterson, A H. Comparative mapping of Arabidopsis thaliana and Brassica oleraca chromosomes reveals islands of conserved organization. Genetics, 1994, 138 (2): 499-510
    130.Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved though extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genomics, 1998, 150: 1217-1228
    131 .Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181
    132.Lee M, Godshalk E B, Lamkdy K R and Woodman W W. Association of restriction fragment length polymorphisms among maize inbreeds with agronomic performance of their cross.Crop Sci, 1989, 29: 1067-1071
    133.Leflon M, Eber F, Letanneur J C, Chelysheva L, Coriton O, Huteau V, Ryder C D, Barker G, Jenczewski E, Chevre A M. Pairing and recombination at meiosis of Brassica rapa (AA) ×Brassica napus (AACC) hybrids. Theor Appl Genet, 2006,113 (8): 1467-1480
    134.Legesse B W, Myburg A A, Pixley K V, Twumasi-Afriyie S, Botha A M. Relationship between hybrid performance and AFLP based genetic distance in highland maize inbred lines. Euphytica, 2008, 162:313-323
    135.Lei S L, Yao X Q, Yi B, Chen W, Ma CZ, Tu J X, Fu T D. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007, 115 (5): 643-651
    136.Li M T, Li Z Y, Zhang C Y, Qian W, Meng J L. Reproduction and cytogenetic characterization of interspecific hybridsderived from crosses between Brassica carinata and B. rapa. Theor Appl Genet, 2005, 110:1284-1289
    137.Li Y Y, Ma C Z, Fu T D, Yang G S, Tu J X, Chen Q F, Wang T H, Zhang X G, Li C Y. Construction of a molecular functional map of rapeseed (Brassica napus L.) using differentially expressed genes between hybrid and its parents. Euphytica, 2006, 152: 25-39
    138.Lincoln S, Daly M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead institute technical report, 3rd edn. Whitehead Technical Institute, Cambridge, MA, 1992
    139.Liu Q G and Guo Z P. Molecular cloning and characterization of a profilin gene BnPFN from Brassica nigra that expressing in a pollen-specific manner. Mol Biol Rep, 2007, DOI 10.1007/s 11033-007-9161-8
    140.Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (B. napus ×B. campestris). Theor Appl Genet, 2002, 105: 1050-1057
    141.Liu S P, Li X , Wang C Y, Li X H, He Y Q. Improvement of resistance to rice blast in Zhenshan 97 by molecular marker-aided selection. Acta Botanica Sinica, 2003,45 (11): 1346-1350
    142.Liu Z W, Fu T D, Tu J X, Chen B Y. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110:303-310
    143.Lowe A J, Jones A E, Raybould A F, Trick M, Moule CJ, Edwards KJ. Transferability and genome speciWcity of a new set of microsatellite primers among Brassica species of the U triangle. Mol Ecol Notes, 2002, 2:7-11
    144.Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genic male sterility gene (Ms) in rapeseed (Brassica napus L.). Plant Breed, 2004, 123: 262-265
    145.Lydiate D, Sharpe A, Lagercrantz U, Parkin I. Mapping the Brassica genome. Outlook Agric, 1993, 22: 85-92
    146.McGrath J M, Quiros C F, Harada J J, Landry B S. Identification of Brassica oleracea monosomic alien chromosome addition lines with molecular markers reveals extensive gene duplication. Mol Gen Genetics, 1990,223: 198-204
    147.McGrath J M, Quiros C F. Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea. Theor Appl Genet, 1991, 82: 668-673
    148.Melchinger A E, Lee M, Lamkey K R and Woodman W W. Genetic diversity for restriction fragment length Polymorphisms and heterosis for two diallel sets of inbreds. Theor Appl Genet, 1990, 80b: 488-496
    149.Meng J, Shi S, Gan L, Li Z, Qun X. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campesrtis (AA) and B. carinata (BBCC) with B. napus. Euphytica, 1998,103:329-333
    150.Milborrow B V. A biochemical mechanism for hybrid vigour. Journal of Experimental Botany, 1998, 49: 1063-1071
    151 .Michelmore R W, Paran I, Kesseli R V. IdentiWcation of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci, 1991, 88: 9828-9832
    152.Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozak K. Receptor-like protein kinase 2 (RPK2) is a novel factor controlling anther development in Arabidopsis thaliana. The Plant Journal, 2007, 50: 751-766
    153.Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet, 2004, 108: 1378-1384
    154.Negi M S, Devic M, Delseny M, Lakshmikumaran M. IdentiWcation of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theor Appl Genet, 2000, 101: 146-152
    155.Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci, USA, 1979, 76: 569-573
    156.Palmer J D, Shields C D, Orton T J. Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet, 1983, 65: 181-189
    157.Palmer J D, Herbon L A. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol, 1988, 28: 87-97
    158.Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122-1131
    159.Parkin I A P, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002, 45: 356-366
    160.Paxson-Sowders D M, Dodrill C H, Owen H A, Makaroff C A. DEX1, a Novel Plant Protein, Is Required for Exine Pattern Formation during Pollen Development in Arabidopsis. Plant Physiology, 2001, 127: 1739-1749
    161.Pradhan A K, Prakash S, Mukhopadhyay A, Pental D. Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous. Theor Appl Genet, 1992, 85: 331-340
    
    162.Prakash S. Haploidy in Brassica nigra Koch. Euphytica, 1973, 22: 613-614
    163.Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114(1): 67-80
    164.Quiros C F, Ocnoa O, Douches D S. Exploring the role of X=7 species in Brassica evolution: hybridization with B.nigra and B.oleracea. J. Hered, 1988, 79: 351-358
    165.Quiros C F, Hu J, Truco M J. DNA-based marker Brassica maps. In, Phillips R L and Vasil I K.(eds.) Advances in Cellular and Molecular Biology of Plants. Vol.1: DNA based Markers in Plants. Dordrecht: Kluwer Academic Publ, 1994, 199-222
    166.Qian W, Sass O, Meng J L, Li M T, Frauen M, Jung C. Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines.Theor Appl Genet, 2007, 115: 27-34
    167.Riaz A, L i G, Quresh Z, Swati M S. Genetic diversity of oilseed Brassica napus inbred lines based on sequence-related amplified polymorph ism and its relation to hybrid performance [J ]. Plant Breeding, 2001, 120:411-415
    168.Robbelen G. Beitrage zur analysis des Brassica genomes. Chromosoma, 1960, 11: 205-228
    169.Robbelen G.Citation at the occasion of presenting the GC1RC Superior Scientist Award to Fu Tingdong. Proc 8th Int Rapeseed Cong (Sasktoon Canada), 1991, 1: 2-5
    170.Rousselle P. Study of a cytoplasmic male sterility after interspecific crosses between Brassica napus and Raphanus sativus. Proceedings of a Eucarpia-conference on Breeding of Cruciferous Crops (Wageningen), 1979, 100-101
    171.Snowdon R J, Kohler W, Kohler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet, 1997, 95: 1320-1324
    172.Sharma P, Akihidetorii, Shigeotakumi, Naokimori, Chiharunakamura. Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stal) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas, 2004, 140(1): 61-69
    173.Shen J X, Lu G Y, Fu T D, Yang G S. Relationship between heterosis and genetic distance basedon AFLPs in Brassica napus. Proc 11th Int Rapeseed Cong (Denmark), 2003, 124: 111-116
    174.Siebert P D, Chenchick A, Kellogg D E, Lukyanov KA, Lukyanov SA An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res, 1995, 23: 1087-1088
    175.Sillito D, Parkin I A, Mayerhofer R, Lydiate D J, Good A G. Arabidopsis thaliana: a source of candidate disease resistance gene for Brassica napus. Genome, 2000, 43 (3): 452-460
    176.Snowdon R J, Kohler W and Kohler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet, 1997,95: 1320-1324
    177.Snowdon R j, Friedrich T, Friedt W, Kohler W. Identifying the chromosomes of A and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet, 2002, 104: 533-538
    178.Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs):1.Genome evolution of diploid and amphidiploid species. Theor Appl Genet, 1988,75:784-794
    179.Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs): 3. Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet, 1990, 82: 296-304
    180.Song K M, Osborn T C. Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analysis. Genome, 1992, 35: 992-1001
    181 .Song K M, Lu P,Tang K, Osborn T C. Rapid genome change in synthetic polyploidys of Brassica and its implication for polyploidy evolution. PNAS, 1995, 92: 7719-7723
    182.Song L Q, Fu T D Tu J X, Ma C Z Yang G S. Molecular validation of multiple allele inheritance for dominantgenic male sterility gene in Brassica napus L, Theor Appl Genet, 2006, 113: 55-62
    183.Song R, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci USA, 2003, 100: 9055-9060
    184.Srivastava H K. Heterosis and intergenomic complementation mitochondria chloroplast, and nucleus, In: Frankel, R.(ed), Heterosis, reappraisal of theory and Practiee. Springer Berlin Heidelberg, NewYork, 1983,260-286
    185.Struss D, Quiros C F, Pliieske J. Construction of Brassica B Genome synteny groupsbased on chromosomes extracted from three different sources by phenotypic, isozyme and molecular marker. Theor Appl Genet, 1996, 93: 1026-1032
    186.Stuber C W, Lincoln S E, Wolff D W. Identification of genetic factors contribution to heterosis in a hybrid from two elite maize inbred lines using molecular markers [J]. Genetics, 1992, 132: 823-839
    187.Sun Q X. Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves [J ]. Euphytica, 1999, 106 (2) :117-123
    188.TanksIey S D, Ganal M W, Martin G B. Chromosome landing: A paradigm for map-based gene cloning in plant with large genome. Trends Genet, 1995, 11: 63-68
    189.Teutonico R A, Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica rapa andcomparison to linkage maps of B. napus, B. oleracea and Arabidopsis thaliana. Theor Appl Genet, 1994,89:885-894
    190.Tsftaris A S, Polldoros A N. In: proc X II eucarpia maize andsorghum conference[M], Bergamo, Italy, 1993,283-292
    
    191 .Tubrin N Y. Genetic Principles of Plnat breeding.(in Russina).nauka, 1971, 112-155
    192.Vizcay-Barrena G, Wilson Z A. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Biol, 2006, 57: 2709-2717
    193.Vos P, Hogers R, Bleeker M, Reijians M, VandeLee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA Wngerprinting. Nucleic Acids Res, 1995, 23: 4407-4414
    
    194.Warwick S I, Black L D. Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassicae) - chloroplast genome and cytodeme congruence. Theor Appl Genet, 1991, 82: 81-92
    
    195. Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1(MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J, 2001, 28 (1): 27-39
    
    196. Wright S. Evolution and Genetics of Populations. Chicago: Univ Chicago Press, 1968
    
    197.Xiao L, Yi B, Chen Y F, Huang Z, Chen W, Ma C Z, Tu J X, Fu T D. Molecular markers linked to Bn;rf: a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica, 2008 (in press), DOI 10.1007/s 10681-008-9679-4
    
    198.Xiao J H, Li J M, Yuan L P. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers [J]. Genetics, 1995, 140: 745-754
    199.Xiong L Z, Xu C G, MA S M, Zhang Q. Patternsof cytosine methylation in an elite rice hybrid and its parental lines detected by a methylation2 sensitive amplification polymorphism technique [J ] . Mol Gen Genet, 1999, 261: 439-446
    200.Yang J, Chen N H, Gao Y P. Molecular basis of heterosis in hybrid maize revealed by mRNA amplification [J]. International Rice Research Notes, 1996, 21: 1-12
    201.Yi B, Chen Y L, Lei S L, Tu J X, Fu T D. Fine mapping of the recessive genic male- sterile gene (Bnmsl) in Brassica napus L. Theor Appl Genet, 2006, 113 (4): 643-650
    202.Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226-9231
    203.Zhang Q, Gao Y J, Yang S H, Ragab R A, Saghai Maroof M A, Li Z B. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Thero Appl Genet, 1994, 89: 185-192
    204.Zhang Q, Gao Y J, Saghai Maroof M A, Yang S H, Li J X. Molecular divergence and hybrid performance in rice. Molecular Breeding, 1995, 1: 133-142
    205.Zhang Q, Zhou Z Q, Yang G P, Xu C G, Liu K D, Saghai Maroof M A, Saghai Maroof. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Thero Appl Genet, 1996, 93: 1218-1224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700