油菜亚基因组杂种和亲本的基因差异表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜(Brassica napus,A~nA~nC~nC~n2n=38)是一种重要的油料作物和生物能源载体,它起源于欧洲地中海地区,由白菜型油菜(Brassica.rapa,A~rA~r2n=20)和甘蓝(Brassica oleracea,C~oC~o2n=18)天然杂交,自然加倍而来。作为一种栽培作物,随着产量潜力的不断提升和品质性状的改良,其栽培面积和地域不断扩大,遍布亚洲,欧洲,北美和澳洲。然而,由于其较短的栽培历史和高强度的现代育种,使其遗传基础相对狭窄。育种工作者们试图通过各种途径来丰富其遗传基础,其中通过种间杂交渗入外源基因组的遗传成份来合成甘蓝型油菜就是一种行之有效的方法。事实上,在合成的甘蓝型油菜中已经发现一些新的遗传变异,如染色体重组、DNA序列丢失、DNA甲基化水平变化和基因表达的改变等。
     杂种优势在农业上被广泛地利用来提作物的高籽粒产量,而且利用杂种优势的作物数量在不断增加。在许多作物中的研究表明亲本和杂种间的基因差异表达是理解杂种优势分子基础的重要方法,如小麦,水稻和玉米。孙逢吉1943年在中国第一次报道了芸苔属物种间杂种的生物学产量杂种优势。随后的许多研究都对油菜籽粒产量的杂种优势程度进行了评价。近年来,又发现了新型甘蓝型油菜和常规甘蓝型油菜间存在着较强的杂种优势,进一步的研究表明其中一些从外源基因组渗入甘蓝型油菜的等位基因对油菜籽粒产量的增加有利。
     为了深入理解新型甘蓝型油菜及其亲本,新型甘蓝型油菜和甘蓝型油菜组合间基因表达谱的差异对杂种优势的影响,主要进行了以下6个方面的研究:
     1.利用5个含有白菜型油菜A~r基因组成分或埃塞俄比亚芥C~c基因组成分的新型甘蓝型油菜作母本,5个甘蓝型油菜品种作父本,按NCⅡ设计配制杂交组合得到25个亚基因组间杂种。这25个杂交种的平均中亲优势和超亲优势分别为33.3%和17.0%。其中7个杂种的中亲优势大于40%,10个杂种的超亲优势大于20%。
     2.选择3个新型甘蓝型油菜以及合成它们的原始亲本共计9份材料为研究对象,利用cDNA-AFLP基因表达差异显示技术分析新型甘蓝型油菜和它们的原始亲本间的一组基因表达谱,32对引物组合获得1167个转录获得片段(Transcript-derivedFragment,TDF)。通过分析表达谱发现,有超过60%的TDF在新型甘蓝型油菜及其甘蓝型油菜亲本间存在差异表达。
     3.从25个亚基因组间杂交组合中,选择了9个组合,同样利用cDNA-AFLP基因表达差异显示技术分析亚基因组间杂种和甘蓝型油菜亲本间的另一组基因表达谱,32对引物组合获得总计为1231个的TDF。通过对该组表达谱的分析,发现TDF只在亲本之一中出现的表达模式在7个不同的表达模式中占主导地位,另外显性、超显性和负显性表达模式次之,加性效应最少。
     4.通过分析单个差异表达的TDF与杂种产量表现,中亲优势和超亲优势的相关性,发现同一TDF对相同性状的不同数据类型,效应方向是一致的,但对不同的性状的相同数据类型,效应方向则不定。对于不同数据类型的分析发现:杂种和亲本的表现,TDF为负效应的数量多于正效应的,负效应TDF占58.1%;其它两类,则是正效应的数量多于负效应的,中亲优势的正效应TDF占54.8%,超亲优势的正效应TDF占75.4%。
     5.回收,克隆和测序了近40个差异表达的TDFs,并对其中20个TDFs的序列进行深入电子拼接分析。首先在NCBI和TAIR网站上搜索同源序列,下载同源序列,然后使用Bioedit软件构建contig,并设计引物验证预测结果。另外,根据对cDNA-AFLP的实验操作经验累积和理解的加深,本研究提出了一个比较可行的cDNA-AFLP改进方案。
     6.将杂种优势相关TDF转化为分子标记运用到QTL作图研究中验证所得TDF与产量性状相关QTL的相关性。7个杂种优势相关TDF定位在TN分子标记遗传连锁图的12个连锁群上。QTL扫描之后发现其中4个TDF转化的7个标记落于TN群体23个籽粒产量相关性状QTL的置信区间,预示着这些TDF确实可影响油菜的籽粒产量。
Brassica napus(AACC,2n=38) is an amphidiploid species that originated from spontaneous hybridization between B.rapa(AA) and B.oleracea(CC).The role of cultivated B.napus as a commercial oil crop in Asia,Europe,North America and Australia,has progressively increased due to better production potential and improvement in seed quality.However,the short cultivation history and intensive breeding of this species has led to a comparatively narrow genetic base.Considerable efforts have been made to enrich the genetic diversity of B.napus by the introgression of genomic components of its related species or by developing synthetic B.napus lines by hybridization between B.rapa and B.oleracea.Several interesting changes have been observed in synthetic B.napus,such as chromosomal rearrangements,deletions of DNA sequences,variations at DNA methylation loci and the alteration of gene expression patterns.
     Heterosis has been widely used in agriculture to increase the seed yield,and it has been applied to a large number of crops.Research has revealed that analysis of the differences in gene expression profiles between the hybrids and their parents is an important method for elucidating the molecular basis of heterosis in crops such as wheat, riceand maize.These results are consistent with the hypothesis that multiple molecular mechanisms contribute to heterosis.In Brassica,heterosis was first reported in biomass for Sun in China.Subsequently many studies have estimated the extent of heterosis for seed yield.Divergent evolution and isolation have led to differentiation within the same genome among different species.To distinguish different subgenomes in Brassica,the genomes of the three diploid species B.rapa,B.nigra and B.oleracea were designated as A~r,B~n and C~o while the genomes of the three amphidiploid species B.napus,B.juncea and B.carinata were designated as A~nC~n,A~jC~j and B~cC~c,respectively.A new-type B. napus,A~(r/n)A~(r/n)C~nC~n or A~(r/n)A~(r/n)C~(c/n)C~(c/n),was created by interspecific hybridization and artificial selection.A hybrid(A~(r/n)A~nC~nC~n or A~(r/n)A~nC~(c/n)C~n) was developed by crossing the new-type B.napus to B.napus and strong heterosis was observed in the hybrids.This typeof heterosis was considered as intersubgenomic heterosis and its existence showed that some alleles that were derived from related species could favourably contribute to increasing the seed yield of rapeseed.
     In this study,we compared the gene expression profiles of new-type B.napus lines with those of hybrids derived from crosses between new-type B.napus lines and B.napus cultivars,six objectives are addressed in this paper:
     1.Twenty-five hybrids developed between five lines of new-typed B.napus,two with A~r introgression from B.rapa and three with A~r and C~c introgression from both B. rapa and B.carinata as female parents and five cultivars of natural B.napus as male parents to hybridize each other.The average value of mid-parent heterosis(MPH) and high-parent heterosis(HPH) in hybrids was 33.3%and 17.0%,respectively.
     2.Three new-typed B.napus lines and their parents were chose,and cDNA-AFLP differential display technique was applied to obtain the first set of gene expression profiles between new-typed B.napus and their original parents.With 33 primer combination,we detected 1167 differential expressed TDFs.Over 50%transcript-derived fragment(TDF) altered their display pattern between new-typed B.napus and its parental natural B.napus.
     3.From 25 combinations,we chose nine combinations to obtain the second set of expression profiles between hybrids and their two B.napus parents by cDNA-AFLP differential display technique.With 32 primer combination,we detected 1210 differentially displayed TDFs.The type N_1~+H~-N~- and N_t~-H~-N~+,accounting for 51.4%of 1210 detected TDFs,were predominance among seven different patterns,followed by the dominant patterns and overdominant pattern.
     4.Through correlation analysis between presence or absence of single differential TDF and three types of data(HP,MPH,HPH) for six investigated agronomic traits,we found that the same differential TDF had consistent effect direction for same trait in three type heterosis data.However,for different traits,the effect direction was indefinite.For hybris performance,the negative effect TDFs were more than positive effect TDFs,they accounted for 58.1%;for MPH and HPH,the positive effect bands were much more,they accounted for 54.8%and 72.8%,respectively.
     5.Reused,cloned and sequenced 20 heterosis associated TDFs.We applied correlated internet servers and software to analyze these sequences information: downloading homologous sequences and assembling them into contigs.Then, EuGene'Hom was used to predict the functions of these genes with these contigs,and designed primers to confirm the assembled sequences.Based on the experience of manipulation and deeper understanding of cDNA-AFLP,we put forward a project to improve cDNA-AFLP technique.
     6.Transformed some heterosis-associated TDFs into molecular marker to validate the relationship with QTLs for the yield related traits.Seven heterosis-associated TDFs were mapped in TN linkage map by 12 SSR and TRAP markers.After QTL analysis,7 markers of them developed from 4 TDFs located in the confident intervals of 23 QTL for seed yield and yield related traits in TN population.
引文
1.陈凤祥,胡宝成,代秉勋,候树敏,李强生,吴新杰,费维新,张曼琳.甘蓝型油菜隐性上位互作核不育系9012A与6AB和S45AB遗传对比[J].安徽农业科学,1998,26:192-194
    2.刁丰秋.植物发育基因克隆技术的新进展[J].生物工程进展,1998,18:12-15
    3.费维新,吴新杰,侯树敏,陈凤祥,李强生,胡宝成.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育[J].安徽农业科学,2002,3:535-537
    4.傅廷栋,杨光圣.油菜细胞质雄性不育研究进展[J].农牧情报研究,1989,11:1-8
    5.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001,35-52
    6.高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,22.175-179
    7.郝晨阳,王兰芬,张学勇,尚勋武,游光霞,刘三才,董玉琛,贾继增,刘旭,曹永生.我国育成小麦品种的遗传多样性演变[J].中国科学C辑:生命科学,2005,35:408-415
    8.胡宝成.油菜细胞质雄性不育研究进展[J].中国农学通报,1994,10:15-18
    9.蒋梁材,王瑞,蒲晓斌.波里马(Pol CMS)胞质雄性不育+显性细胞核雄性不育系的选育[J].西南农业大学学报,1999,21:522-524
    10.蒋梁材,王瑞,蒲晓斌.甘蓝型油菜显性细胞核+细胞质雄性不育系的选育初报[J].四川农业大学学报,1999,19:333-335
    11.鞠传丽.玉米杂交种及其亲本苗期根系基因差异表达分析及差异表达EST定位[D].[博士学位论文],北京:中国农业大学图书馆,2005
    12.李殿荣.甘蓝型油菜三系选育初报[J].陕西农业科学,1980,1:26-29
    13.栗茂腾.甘蓝型油菜新类型创建及油菜亚基因组间杂种优势研究[D].[博士学位论文],武汉,华中农业大学图书馆,2003
    14.李树林,钱王秀,周熙荣.显性核不育油菜的遗传与利用[J].作物研究,1990,4:27-32
    15.林忠旭.棉花分子标记遗传连锁图构建和产量、纤维品质相关性状定位[D].[博士学位论文],武汉,华中农业大学图书馆,2005
    16.刘后利.油菜遗传育种学[M].北京:中国农业大学出版社,2000
    17.刘仁虎.油菜杂种优势分子标记剖析及菌核病抗性相关基因筛选[D].[博士学位论文],武汉,华中农业大学图书馆,2003
    18.龙桂友,饶力群.基因差异表达分析技术进展[J].生命科学研究,2004,8:48-52
    19.陆秋恒,罗志勇.抑制消减杂交(SSH)技术及在克隆基因方面的最新进展[J].国外医学分子生物学分册,2001,33:380-383
    20.倪中福,孙其信,吴利民.普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究[J].中国农业大学学报,2000,5:1-8
    21.牛应泽,汪良中,刘玉贞,郭世星,路阳.人工合成甘蓝型油菜特长果突变系选育初报[J].四 川农业大学学报,2002,20:212-215
    22.钱伟.甘蓝型油菜与白菜型油菜亚基因组间杂种优势的研究[D].[博士学位论文],武汉,华中农业大学图书馆,2003
    23.萨姆布鲁克J,拉赛尔D W(黄培堂 译).分子克隆实验指南(第三版)[M].科学出版社,2002,93-99
    24.孙逢吉.芸薹属之杂种优势[J].中华农学会会报,1943,175:35-38
    25.唐章林,李加纳,谌利,殷家明,张学昆,陈云坪.细胞核+细胞质双重不育系选育初报[J].西南农业大学学报,1994,16:403-405
    26.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势[J].科学通报,2002,47:1412-1416
    27.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料90-2441A的遗传及其等位性分析[J].华中农业大学学报,1997,16:255-258
    28.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记[J].作物学报,1997,26:575-578
    29.吴利民,倪中福,孙其信.小麦杂交种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究[J].遗传学报,2001,28:256-266.
    30.吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达[J].作物学报,2001,27:339-342
    31.邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础[D].[博士学位论文],武汉,华中农业大学图书馆,1999
    32.熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究[D].[博士学位论文],武汉,华中农业大学图书馆,1999
    33.严建兵.玉米杂种优势遗传基础及玉米与水稻比较基因组研究[J].[博士学位论文],武汉,华中农业大学图书馆,2003
    34.杨光圣,傅廷栋.环境条件对油菜细胞质雄性不育的影响[J].中国油料,1987,3:15-19
    35.杨光圣,傅廷栋.甘蓝型油菜陕2A细胞质不育的研究进展[J].华中农业大学学报,1990,9:141-147
    36.杨光圣,傅廷栋.油菜细胞质雄性不育恢保关系的研究[J].作物学报,1991,17:151-156
    37.杨光圣,傅廷栋,马朝芝.甘蓝型油菜细胞核+细胞质雄性不育三系的研究与利用[J].作物学报,1997,23:144-149
    38.姚颖垠.小麦杂交种与亲本之间差异表达基因的分离,克隆与功能鉴定[D].[博士学位论文],北京:中国农业大学图书馆,2005
    39.袁婺洲,官春云,廖爱玲.油菜收获指数对经济产量的贡献[J].湖南师范大学自然科学学报,1999,22:65-69
    40.詹克慧,孙洪,高翔,王林海,宋迎辉,吴少方.小麦亲本间分子遗传距离与F_1杂种优势的相关性分析[J].麦类作物学报,2006,26:27-3
    41.张涛,韩磊,徐建第,蒋开锋,吴先军,汪旭东,郑家奎.杂交香稻亲本遗传距离与产量杂种优势的相关性研究[J].中国农业科学,2006,39:831-835
    42.张洁夫,傅寿仲,戚存扣,浦惠明,陈新军,高建芹.细胞核雄性不育系杂交油菜选育研究初报[J].江苏农业科学,2002,1:29-31
    43.张书芬.甘蓝型油菜重要农艺和品质性状的杂种优势及遗传分析[D].[博士学位论文],武汉,华中农业大学图书馆,2003
    44.张宇伟,来茂德.非同位素反向Northern筛选法[J].遗传,2004,26:353-355
    45.朱靖,杜立新.反转录异显示技术及其方法的改进[J].动物医学进展,2005,26:19-21
    46.Adams K L,Cronn R,Percifield R,Wendel J F.Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing[J].Proc Natl Acad Sci USA,2003,100:4649-4654
    47.Adams K L,Percifield R,Wendel J F.Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid[J].Genetics,2004,168:2217-2226
    48.Adams K L,Wendel J F.Novel patterns of gene expression in polyploid plants[J].Trend Genet,2005,21:539-543
    49.Albertini E,Marconi G,Barcaccia G,Raggi L,Falcinelli M.Isolation of candidate genes for apomixis in Poa pratensis L[J].Plant Mol Biol,2004,56:879-894
    50.Ali M,Copeland L,Elias S,Kelley J.Relationship between genetic distance and heterosis for yield and morphological traits in winter canola(B.napus L.)[J].Ther Appl Genet,1995,91:118-121
    51.Aubry C,Morere-Le Paven M C,Chateigner-Boutin A L,Teulat-Merah B,Ricoult C,Peltier D,Jalouzot R,Limami A M.A gene encoding a germin-like protein,identified by a cDNA-AFLP approach,is specifically expressed during germination of Phaseolus vulgaris[J].Planta,2003,217:466-475
    52.Barbosa A M M,Geraldi I O,Benchimol L L,Garcia A A F,Souza Jr C L,Souza A P.Relationship of intra-and interpopulation tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers[J].Euphytica,2003,130:87-99
    53.Bachem C W,van der Hoeven R S,de Bruijn S M,Vreugdenhil D,Zabeau M,Visser R G.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development[J].Plant J,1996,9:745-753
    54.Baisakh N,Subudhi P K,Parami N P.cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel[J].Plant Sci,2006,170:1141-1149
    55. Bauer D, Muller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P, Strauss M. Identification of differentially expressed mRNA Species by an improved display technique (DDRT-PCR) [J]. Nucleic Acid Res, 1993,21 (18): 4272-4280
    56. Becker H C, Engqvist G M, Karlsson B. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers [J]. Theor Appl Genet, 1995, 91: 62-67
    57. Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inze'D, Zabeau M. Quantitative cDNA-AFLP analysis for genome-wide expression [J]. Mol Gen Genomics, 2003, 269: 173-179
    58. Brugiere N, Cui Y H, Bi Y M, Rothstein S J. The AtPP gene of the Brassica napus S locus region is specifically expressed in the stigma and encodes a protein similar to a methyltransferase involved in plant defense [J]. Sex Plant Reprod, 2001, 13: 309-314
    59. Bustos S A, Schaefer M R, Golden S S. Different and rapid responses of four cyanobacterial psbA transcripts to changes in light intensity [J]. J Bacteriol, 1990, 172: 1998-2004
    60. Butruille D V, Guries R P, Osborn T C. Increasing yield of spring oilseed rape hybrids (Brassica napus L) through introgression of winter germplasm [J]. Crop Sci, 1999a, 39: 1491-1496
    61. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L [J]. Genetics, 1999b, 153: 949-964
    62. Chandler V L, Radicella J P, Robbins T P, Chen J, Turks D. Two regulatory genes of the maize anthocyanin pathway are homologous-isolation of B utilizing R genomic sequences [J]. Plant Cell, 1991, 1:1175-1183
    63. Chen B Y, Heneen W K, Jonsson R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour [J]. Plant Breed, 1988, 101: 52-59
    64. Chen Z J, Pikaard C S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance [J]. Genes & Dev, 1997, 11: 2124-2136
    65. Chen Z J, Pikaard C S. Transcriptional analysis of nucleolar dominance in polyploid plants: Biased expression/silencing [J]. Proc Natl Acad Sci USA, 1997, 94: 3442-3447
    66. Cheres M T, Miller J F, Crane J M, Knapp S J. Gentic distance as a predictor of heterosis and hybrid performance within and heterotic groups in sunflower [J]. Theor Appl Genet, 2000, 100: 889-894
    67. Cockerham C. An extension of the concept of partitioning hereditary variance for analysis of covariance among relatives when epistasis is present [J]. Genetics, 1954, 39: 859-882.
    68. Comai L, Tyagi A P, Winter K, Holmes-Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis Allotetraploids [J]. Plant Cell, 2000, 12: 1551-1567
    69. Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Sacchamm spp.) ESTs cross transferable to erianthus and sorghum [J]. Plant Sci, 2001, 160(6): 1115-1123
    70. Crow J F. Alternative hypotheses of hybrid vigor [J]. Genetics, 1948, 33: 477-487.
    71. Diers B W, Osborn T C. Genetic diversity of oilseed Brassica napus germplasma based on restriction fragment length polymorphisms [J]. Theor Appl Genet, 1994, 88: 662-668
    72. Diers B W, Mcvetty P B, Osborn T C. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.) [J]. Crop Sci, 1996, 36: 79-83
    73. Durrant W E, Rowland O, Piedras P, Hammond-Kosack K E, Jones J D. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles [J]. Plant Cell, 2000, 12:963-977
    74. Duvick D N. Heterosis: feeding people and protecting natural resources. In: Coors G, Pandey S (eds.) Genetics and exploitation of heterosis in crops [M]. American Society of Agronomy, Madison, 1997, pp19-29
    75. Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel K H. Identification of powdery mildew-induced barley genes by cDNA-AFLP: Functional assessment of an early expressed MAP kinase [J]. Plant Mol Biol, 2004, 55: 1-15
    76. Edwards M D, Stuber C W, Wendel J F. Molecular-marker facilitated investigations of QTL in maize. I. Number, genomic distribution and types of gene action [J]. Genetics, 1987, 116: 113-125
    77. Eujay I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSR and genomic SSRs [J]. Euphytica, 2001, 119:39-43.
    78. Fan Z, Stefansson B R. Influence of temperature on sterile of two cytoplasnic male-sterileity system in rape (Brassica napus L.) [J]. Can J Plant Sci, 1986, 66: 221-227
    79. Faris J, Sirikhachornkit A, Haselkorn R, Gill B, Gornicki P. Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat [J]. Mol Biol Evol, 2001, 18: 1720-1733.
    80. Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalization requirement and flowering time in Brassica napus [J]. Theor Appl Genet, 1995, 90: 727-732
    81. Foissac S, Bardou P, Moisan A, Cros M J, Schiex T. Eugene'HOM: a generic similarity-based gene finder using multiple homologous sequences [J]. Nucleic Acids Res, 2003, 31(13): 3742-3745
    82. Franklin K A, Davis S J, Stoddart W M, Vierstra R D, Whitelam G C. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogenesis [J]. Plant Cell, 2003, 15: 1981-1989
    83. Gao L F, Tang J F, Li H W, Jia J Z. Analysis of microsatellites in major crops assessed by computational and experimental approaches [J]. Mol Breed, 2003, 123: 245-261
    84. Guo M, Rupe M A, Yang X, Crasta O, Zinselmeier C, Smith O S, Bowen B. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis [J]. Theor Appl Genet, 2006, 113: 831-845
    85. Garcia-Fernandez J M, Hess W R, Houmard J, Partensky F. Expression of the psbk Gene in the marine Oxyphotobacteria Prochlorococcus spp [J]. Arch Biochem Biophys, 1998, 359: 17-23
    86. Gaut B S, Le Thierry d'Ennequin M, Peek A S, Sawkins M C. Maize as a model for the evolution of plant nuclear genomes [J]. Proc Natl Acad Sci USA, 2000, 97: 7008-7015
    87. Gellatly K S, Ash G J, Taylor J L. Development of a method for mRNA differential display in filamentous fungi: comparison of mRNA differential display reverse transcription polymerase chain reaction and cDNA amplified fragment length polymorphism in Leptosphaeria maculans [J]. Can J Microbiol, 2001, 47: 955-960
    88. Gill B S. Nucleo-cytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants. In: Sasakuma T and Kinoshita T (Eds.) Nuclear and Organellar Genomes of Wheat Species [M]. Kihara Memorial Foundation, Yokohama, Japan, 1991, pp48-53
    89. Goupil P, Mahamoud Y S, Poulain J. cDNA-AFLP display for the isolation of differentially expressed genes during chicory root development [J]. Plant Physiol, 2003, 160: 303-309
    90. Gur A, Zamir D. Unused natural variation can lift yield barriers in plant breeding [J]. PLoS Biol, 2004,2(10): 1610-1615
    91. He P, Friebe B R, Gill B S, Zhou J M. Allopolyploidy alters gene expression in the highly stable hexaploid wheat [J]. Plant Mol Biol, 2003, 52: 401-414
    92. Heath D W, Earle E D. Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters. Theor Appl Genet, 1995, 91: 1129-1136
    93. Hu J G, Vick B A. Target region amplification polymorphism: a novel marker technique for plant genotyping [J]. Plant Mol Bio Rep, 2003, 21: 289-294
    94. Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid [J]. Proc Natl Acad Sci USA, 2003, 100: 2574-2579
    95. Huang Y, Zhang L D, Zhang J W, Yuan D J, Xu C G, Li X H, Zhou D X, Wang S P, Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs [J]. Plant Mol Biol, 2006, 62: 579-591
    96. Jaccard P. Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des lles [J]. Sci Nature, 1908,44: 223-270
    97. Jansen R C. Interval mapping of multiple quantitative trait loci [J]. Genetics, 1993, 135: 205-211
    98. Jorg N, Gerhard L. Nucleotide sequence of the mustard chloroplast genes trnH and rps19' [J]. Nucleic Acids Res, 1990, 18(4): 1051
    99. Ju C L, Zhang F, Gao Y F, Zhang W, Yan J B, Dai J R, Li J S. Cloning, chromosome mapping and expression analysis of an R2R3-MYB gene under-expressed in maize hybrid [J]. Mol Biol Rep. 2006,33: 103-110
    100. Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid [J]. Genetics, 2002, 160: 1651-1659
    101. Kashkush K, Feldman M, Levy A A. Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat [J]. Nature Genetics, 2003, 33: 102-106
    102. Kidwell K K, Osborn T C, In: Beckman J & Osbom T C, Plant Genomes: Methods for Genetic and Physical Mapping [M]. Kluever Academic Publishers Group. A.H. Dordrecht. The Netherlands, 2001, pp1-13
    103. Knapp S J, Bridges Jr W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps [J]. Theor Appl Genet, 1990, 79: 583-592
    104. Kota R, Varshney R K, Thiel T, Dehmer K J, Graner A. Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.) [J]. Hereditas, 2001, 135: 145-151
    105. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989, 121: 185-199
    106. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics, 1987, 1: 174-181
    107. Lee H S, Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids [J]. Proc Natl Acad Sci USA, 2003, 98: 6753-6758
    108. Lee K, Huang A H. Genomic nucleotide sequence of a Brassica napus 20-Kilodalton oleosin gene [J]. Plant Physiol, 1991, 96: 1395-1397
    109. Li M T, Chen X, Mcng J. Intersubgenomic heterosis in rapeseed production with a partial new-typed Brassica napus containing subgenome A~(?) from B.rapa and C~(?) from Brassica carinata [J]. Crop Sci, 2006. 46: 234-242
    110. Li M T, Li Z Y, Zhang C Y, Qian W, Meng J. Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa [J]. Theor Appl Genet, 2005, 110: 1284-1289
    111. Li M T, Qian W, Meng J, Li Z Y. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization [J]. Chromosome Res, 2004, 12: 417-426
    112. Lin X, Kaul S, Rounsley S, Shea T, Benito M I. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana [J]. Nature, 1999, 402: 761-767
    113. Liu B, Vega J M, Segal G, Abbo S. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops .I. Changes in low-copy coding sequences [J]. Genome, 1998a, 41: 272-277
    114. Liu B, Vega J M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy noncoding sequences [J]. Genome, 1998b, 41: 535-542
    115. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (B. napus × B. campestris) [J]. Theor Appl Genet, 2002. 105: 1050-1057
    116. Liu R H, Zhao J W, Xiao Y, Meng J L (2005) Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica-Arabidopsis comparative mapping [J]. Sci in China C Life Sci, 2005, 48(5): 460-470
    117. Liu X C, Wu J L. SSR heterogenic patterns of parents for marking and predicting heterosis in rice breeding [J]. Mol Breed, 1998, 4: 263-268.
    118. Lu C, Zhang B, Kakihara F, Kato M. Introgression of genes into cultivated Brassica napus through resynthesis of B. napus via ovule culture and the accompanying change in fatty acid composition [J]. Plant Breed, 2001, 120: 405-410
    119. Lukens L N, Pires J C, Leon E, Vogelzang R, Oslach L, Osborn T C. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids [J]. Plant Physiol, 2006, 140: 336-348
    120. Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization [J]. Genetics, 2000, 154: 459-473
    121. Madlung A, Masuelli R W, Watson B, Reynolds S H, Davison J, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids [J]. Plant Physiol, 2002, 129: 733-746
    122. Madlung A, Tyagi A P, Watson B, Jiang H M, Kagochi T, Doerge R W, Martienssen R, Comai L. Genomic changes in synthetic Arabidopsis polyploids [J]. Plant J, 2005, 41: 221-230
    123. Masterson J. Stomatal size in fossil plant: evidence for polyploidy in majority of angiosperms [J]. Science, 1994, 264: 421-424
    124. Mao C Z, Yi K, Yang L, Zheng B S, Wu Y R, Liu F Y, Wu P. Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components [J]. J Exp Bot, 2004, 55 (394): 137-143
    125. Meng J, Shi S, Gan L, Qun X. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. camperstis (AA) and B. carinata (BBCC) with B. napus [J]. Euphytica, 1998, 103: 329-333
    126. Mian M A R, Saha M C, Hopkins A A, Wang Z Y. Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses [J]. Genome, 2005, 48(4): 637-647
    127. Mochida K, Yamazak Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags [J]. Mol Gen Genomics, 2003, 270: 371-377
    128. Morgan C L, Bruce D M, Child R, Ladbrooke Z L, Arthur A E. Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus [J]. Field Crops Res, 1998,58: 153-165
    129. Muangprom A, Mauriera I, Osborn T C. Transfer of a dwarf gene from Brassica rapa to oilseed B. napus, effects on agronomic traits, and development of a 'perfect' marker for selection [J]. Mol Breed, 2006, 17: 101-110
    130. Mullan D J, Platteter A, Treakle N L, Appels R, Colmer T D, Anderson J M, Francki M D. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci [J]. Genome, 2005, 48(5): 811-822
    131. Nei M, Li W. Mathematical model for studying genetic variance in terms of restriction endonucleases [J]. Proc Natl Acad Sci USA, 1979, 76: 5269-5273
    132. Ogura H. Studies on the new male sterility in Japanese radish, with special references to the utilization of this sterility towards the practical raising of hybrids [J]. Men Fac Agric Kagoshima Univ, 1968,6:39-78
    133. Carlborg O, Chris S H. Epistasis: too often neglected incomplex trait studies? Nature Review, 2004,5:618-625
    134. Osborn T C, Kole C, Parkin I A P, Kuiper M, Lydiate D J, Trick M. Comparison of flowering time genes in Brassica rapa, B napus and Arabidopsis thaliana [J]. Genetics, 1997, 146: 1123-1129
    135. Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V, Martienssen R A. Understanding mechanisms of novel gene expression in polyploids [J]. Trends Genet, 2003, 19: 141-147
    136. Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group [J]. Plant Cell, 2001, 13: 1735-1747
    137. Prakash S, Takahata Y, Kirti P B, Chopra V L. Cytogenetics. In: C. Gomez-Campo (ed.), Biology of Brassica coenospecies [M]. Elsevier Science, Amsterdam, 1999, pp59-106
    138. Phillips R L, Kaepplert S M, Olhoft P. Genetic instability of plant tissue cultures: Breakdown of normal controls [J]. Proc Natl Acad Sci USA , 1994, 91: 5222-5226
    139. Pikaard C S. Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids [J]. Plant Mol Biol, 2000, 43: 163-167
    140. Pinto L R, Oliveira K M, Ulian E C, Garcia A A, de Souza A P. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats [J]. Genome, 2004, 47(5): 795-804
    141. Plieske J, Struss D, Robbelen G. Inheritance of resistance derived from the B-genome of Brassica against Phoma lingamin rapeseed and the development of molecular markers [J]. Theor Appl Genet, 1998,97:929-936
    142. Qian W, Chen X, Fu D, Zou J, Meng J. Heterosis in seed yield potential observed in a new type of B. napus introgressed with Brassica rapa genome [J]. Theor Appl Genet, 2005, 110: 1187-1194
    143. Qian W, Liu R, Meng J. Genetic effects on biomass yield in interspecific hybrids between B. napus and B. rapa [J]. Euphytica, 2003, 134: 9-15
    144. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Everett C, Weihmann T, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content [J]. Theor Appl Genet, 2006, 114: 67-80
    145. Quijada P A, Maureira I J, Osborn T C. Confirmation of QTL controlling seed yield in spring canola (Brassica napus) hybrids [J]. Mol Breed, 2004, 13: 193-200
    146. Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm [J]. Theor Appl Genet, 2006, 113: 549-561
    147. Rahman M H. Production of yellow-seeded Brassica napus through interspecific crosses [J]. Plant Breed, 2001, 120: 463-472
    148. Ramsey J, Schemske D W. Neopolyploidy in flowering plants [J]. Annu Rev Ecol Syst, 2002, 33: 589-639
    149. Rautengarten C, Steinhauser D, Bussis D, Stintzi A, Schaller A, Kopka J, Altmann T. Inferring hypotheses on functional relationships of genes: analysis of the Arabidopsis thaliana subtilase gene family [J]. PLoS comput Biol, 2005, 1: 297-312
    150. Ren J P, Dickson M H, Earle E D. Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea [J]. Theor Appl Genet, 2000, 100: 810-819
    151. Rohlf F J. NTSYS-pc version 1.80 [M]. Distribution by Exeter Software, Setauket, New York, 1993.
    152. Schranz M E, Osborn T C. Novel flowering time variation in the resynthesized polyploid Brassica napus [J]. J Hered, 2000, 91: 242-246
    153. Scott K D, Eggler P, Seaton G., Rossette M, Ablett E M, Lee L S, Henry R J. Analysis of SSRs derived from grape ESTs [J]. Theor Appl Genet, 2000, 100: 723-726
    154. Seyis F, Snowdon R J. Lu hs W. Friedt W. Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars [J]. Plant Breed, 2003, 122: 473-478
    155. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat [J]. Plant Cell, 2001, 13: 1749-1759
    156. Shieh G J, Thseng F S. Genetic diversity of Tainan-white maize inbred lines and prediction of single cross hybrid performance using RAPD markers [J]. Euphytica, 2002, 124: 307-313
    157. Shμll G H. The composition of maize [J]. Am Breed Assoc, 1908, 4: 298-301
    158. Song K M, Lu P, Tang K L, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its amplications for polyploidy evolution [J]. Proc Natl Acad Sci USA, 1995, 92: 7719-7723
    159. Srivastava A, Mukhopadhyay A, Arumugam N, Gupta V, Verma J K, Pental D, Pradhan A K. Resynthesis of Brassica juncea through interspecific crosses between B. rapa and B. nigra [J]. Plant Breed, 2004, 123: 204-206
    160. Stam P. Construction of integrated genetic linkage maps by means of a new computer package: JoinMap [M]. Plant J, 1993, 5: 739-744
    161. Stein J, Liang P. Differential display technology: a general guide [J]. Cell Mol Life Sci, 2002, 59: 1235-1240
    162. Stuber C W. Edwards M D, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits [J]. Crop Sci, 1987,27:639-648
    163. Sun Q X, Ni Z F, Liu Z Y. Differential gene expression between wheat hybrids and their parental inbreds in seedling leaves [J]. Euphytica, 1999, 106: 117-123
    164. Sun Q X, Wu L M, Ni Z F, Meng F R, Wang Z K, Lin Z. Differential gene expression patterns inleaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross [J]. Plant Sci, 2004, 166: 651-657
    165. Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F_1 hybrid and its inbred parents [J]. Proc Natl Acad Sci USA, 2006, 103: 6805-6810
    166. Swofford D L. PAUP4.0: Phylogenetic analysis using parsimony (and other methods) [M]. Sinauer Association, Sunderland MA, 1999
    167. Tanksley S D, Ganal M W, Prince P, de Vicente M C, Bonierbale M W, Broun P, Fulton T M, Giovannon J J, Grandillo S, Martin C B. Variation to detect and map genes controlling uantitative traits in an interspecific backcross of tomato [J]. Heredity, 1982, 49: 11-25
    168.Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) [J]. Theor Appl Genet, 2003, 106(3): 411-422
    169. U N Genomic analysis in Brassica with specific reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot, 1935, 7:389-452
    170. Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm [J]. Theor Appl Genet, 2006, 113: 597-609
    171.Van Zijll de Jong E, Guthridge K M, Spangenberg G C, Forster J W. Development and characterization of EST-derived simple sequence repeat (SSR) markers for pasture grass endophytes [J]. Genome, 2003, 46(2): 277-290
    172. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Res, 1995,23:4407-4414
    173. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL x environment interactions [J]. Theor Appl Genet, 1999, 99: 1255-1264
    174. Wang J, Tian L, Lee H S, Wei E N, Lee J J. Genome-wide nonadditive gene regulation in Arabidopsis allotetraploids [J]. Genetics, 2006, 172: 507-517
    175. Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer, Version2.5 [M]. Department of statistics, North Carolina State University, Raleigh, NC. 2005
    
    176.Weller J I, Misztal I, Gianola D. Genetic analysis of dystocia and calf mortality in Israeli-Holsteins by threshold and linear models [J]. J Dairy Sci, 1988, 71: 2491-2501
    
    177. Wu H, Mintz K P, Ladha M, Fives-Taylor PM. Isolation and characterization of Fapl, a fimbriae-associated adhesion of Streptococcus parasanguis FW213 [J]. Molecular Microbiol, 1998,28:487-500
    
    178. Xing C Z, Zhao Y L, Yu S X, Zhang X L, Guo L P, Miao C D. Study on gene differential expression in roots and leaves between hybrid CRI47 and its parents at seedling stage [J]. Sci Agri Sinica, 2005, 38: 1275-1281
    
    179. Xiong L Z, Yang G P, Xu C G, Zhang Q, Saghai Maroof M A. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross [J]. Mol Breed, 1998, 4: 129-136
    
    180. Xu Y, Ma R C, Xie H, Liu J T, Cao M Q. Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region [J]. Genome, 2004, 47(6): 1091-1104
    
    181. Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid [J]. Euphytica, 2006, 149: 121-131
    
    182. Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction [J]. Plant Mol Biol, 2005, 58: 367-384
    
    183. Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat [J]. Genome, 2004, 47(5): 805-818
    
    184. Yu J K, Sun Q, Rota M L, Edwards H, Tefera H, Sorrells M E. Expressed sequence tag analysis in tef (Eragrostis tef(Zucc) Trotter) [J]. Genome, 2006, 49(4): 365-372
    
    185. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q, MAROOFM A S. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid [J]. Proc Natl Acad Sci USA, 1997, 94:9226-9231
    
    186. Zeng Z B. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci [J]. Proc Natl Acad Sci USA, 1993. 90: 10972-10976
    
    187. Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics, 1994, 136: 1457-1468
    
    188. Zhang Z H, Dietrich FS. Mapping of transcription start sites in Saccharomyces cerevisiae using 5'SAGE [J]. Nucleic Acids Res, 2005, 33(9): 2838-2851
    
    189. Zheng X W, Chen X W, Zhang X H, Lin Z Z, Shang J J, Xu J C, Zhai W X, Zhu L H. Isolation and identification of a gene in response to rice blast disease in rice [J]. Plant Mol Biol, 2003, 0: 1-11
    
    190. Zhou Y, Scarth R. Microspore culture of hybrids between B. napus and B. campestris [J]. Acta Bot Sinica, 1995, 37: 848-855

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700