钽酸钾(KTaO_3)晶体的生长、表征及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通讯、信息产业的迅速发展,各种光电子元件得到快速的发展并趋于高性能化。为此,对光电子元件的关键零件—基片的材料和加工精度提出了新的要求。要求基片晶体材料具有优良的压电、光电和热电性能;对元件基片加工精度的要求甚至达到纳米级;要求基片晶格具有无畸变的超光滑无损伤表面等。基片表面存在任何微小缺陷都会破坏晶体材料表面性能,甚至导致其特性的变化,影响元件的工作精度和可靠性。此外,还要求高的加工成品率。光电子元件基片为典型的超薄零件,如手机声表面波滤波器基片厚度350 um,刚性差,难以有效满足加工精度和加工质量要求。因此,要满足现代光电子元件苛刻的精度和表面质量要求,如何获得具有超光滑表面的基片,便成为从事该领域研究的人们多年来苦苦探寻的工艺问题。
     钽酸钾(KTaO_3)晶体是一种典型的钙钛矿型晶体,从室温到熔点间无相变,具有不潮解,热机械性能优良等优点,可以采用提拉法获得大尺寸高质量的单晶。此晶体与各种钙钛矿型氧化物超导薄膜具有良好的品格匹配和结构匹配,在高温下具有较好的化学稳定性、热传导性和绝缘性,在高额时具有很小的介电常数和损耗,是一种很有实际应用的高温超导(High Temperature Superconductor)薄膜的衬底材料。由于晶体加工表面严重地影响在其表面所生长的高温超导薄膜的性能,所以如何获得超光滑无损伤的基片表面是一个亟待解决的问题。目前,实际生产所采用的机械抛光工艺存在抛光效率低、加工质量不稳定、碎片率高等问题。目前对单晶KTaO_3超精密加工技术的研究较少,没有一套完整的专门适合于单晶KTaO_3的超精密加工工艺。因此,本文对KTaO_3晶体的生长、结构、缺陷、基本性质及其加工进行了系统的探索,其主要包括以下工作:
     一、KTaO_3晶体生长
     采用纯度为99.99%的K_2CO_3和Ta_2O_5通过固相反应合成出的KTaO_3多晶原料,利用熔体提拉法成地生长出了一系列大尺寸、无开裂、高质量的KTaO_3单晶。
     由于晶体生长是一个复杂的物理-化学过程,我们结合晶体生长热力学和动力学规律,系统讨论了影响晶体生长和晶体质量的主要因素。包括优质多晶原料的制备和建立合理温场的设计;控制合适的生长工艺参数,选用优质籽晶,消除外界因素的影响等。同时针对不同因素的产生原因和影响特点,提出了相应的解决办法。
     二、KTaO_3晶体组分、结构与缺陷
     利用JXA—8800型电子探针技术分别测量了K元素、Ta元素和O元素在生长的KTaO_3单晶不同位置的浓度。测量结果表明在富K体系所生长的KTaO_3单晶是非化学计量比的,组分均匀性良好不过仍存在氧空位缺陷。
     利用X射线粉末衍射和锥光干涉图对生长的KTaO_3晶体进行了结构研究。根据X射线粉末衍射结果,确定生长的KTaO_3晶体属于立方晶系,利用Dicvol91计算立方晶胞参数为:a=3.9884(?)。
     采用化学腐蚀法和高分辨X射线衍射观测了KTaO_3晶体缺陷的完整性,并结合晶体生长探讨了缺陷的形成机制,为生长优质晶体提供了依据。在KTaO_3晶体中存在的主要缺陷为位错和小角晶界。根据这些缺陷的形成机制,采取了相应措施,不断改进生长工艺条件,有效地减少或消除了晶体中的这些缺陷。
     三、KTaO_3晶体的基本性质
     测量了KTaO_3晶体的密度、硬度、线性光学性质和热学性质,并讨论了这些基本性质对晶体生长和应用的影响。
     采用浮力法测得KTaO_3晶体的密度为7.0146 g/cm~3。利用莫氏硬度计测得KTaO_3晶体的莫氏硬度为6左右。采用V型棱镜法测量了KTaO_3晶体在入射光波波长633 nm和1539 nm的折射率分别为2.2256和2.1520。利用Hitachi U—3500型IR—UV分光光度计,测量了室温下KTaO_3晶体在340~3500 nm波段范围内的透过光谱,晶体在此波段的透过率为70~80%,仅在波长2875 nm附近有一OH~-吸收峰。
     系统地研究了KTaO_3晶体的热学性质。通过高温差示扫描量热仪,在303.15K~843.15K的温度范围内测得KTaO_3晶体的比热为KTaO_3:0.371~0.385jg~(-1)K~(-1)(99.428~103.185 Jmol~(-1)K~(-1))。采用热膨胀仪在298.15~773.15K温度范围内测量获得a_c=6.44×10~(-6)/℃,a_a=a_b=6.63×10~_(-6)/℃。我们还测量了KTaO_3晶体的热扩散系数并计算了热导率。在室温附近,KTaO_3晶体的热扩散系数为3.259 mm~2s~(-1);而该晶体在室温下相应的热传导系数为8.551 Wm~(-1)K~(-1)。讨论了热学性质对KTaO_3晶体的生长和应用所产生的影响。
     四、KTaO_3基片的超光滑表面加工
     用化学机械抛光(Chemical Mechanical Polishing,CMP)方法加工单晶基片表面,通过化学和机械的交互作用去除表面损伤层,高效地获得超光滑无损伤的单晶KTaO_3基片表面。并在不同工艺参数下分别对单晶KTaO_3基片进行CMP实验,对比分析了不同工艺参数的作用机理及抛光效果,选择出一种适合单晶KTaO_3基片CMP的参数。通过正交实验,对CMP工艺参数进行优化,获得了较好的基片表面质量,表面粗糙度Ram值达到7.52(?)(AFM测量结果),提高了加工效率,降低了成本。在大量的CMP实验基础上,探讨了影响CMP过程的主要因素(如抛光垫、抛光液、抛光压力、抛光盘转速等)对单晶KTaO_3基片抛光效果的影响规律。
With the rapid development of communication and information,diversified photoelectronic devices develop at a tremendous speed and come to the trend of advanced performance.Therefore,the quality for the key part of photo-electronic devices-the materials of substrates and the degree of processing nicety-has to face newer and stricter standard.That is to say,substrates single crystal material must have excellent qualities of piezo-electricity,photo-electricity,thermo-electricity;the degree of processing nicety of device substrates must amount to the level of nanometer;the crystal lattices must have super-smooth surfaces without distortion or damage.Because any tiny flaw in surface of substrates will destroy the surface performance of crystal materials and even arouse to the change of the structure of crystal lattices,witch will affect the processing nicety and reliability of devices.Furthermore,high rate of finished products also be required.However,the substrate of photo-electronic devices,as typical ultra-thin part,such as the thickness of the substrate of the surface wave filter of cell-phone just amount to 350 um,has bad stiffness and cannot meet the requirement of processing nicety and quality.As a result,how to meet the requirement of the high nicety of modern photo-electronic devices and surface quality and how to gain the substrate with super-smooth surface are the very processing methods that people in this field have explored for many years.
     Potassium Tantalate single crystal(KTaO_3)which has no phase transition from room temperature to melting is a topically isostructural perovskite.This crystal is good thermal and mechanical properties,can be grown for high quality by using the Czochralski method.There is small crystal lattice mismatching and structure matching for extending kinds of perovskite oxide film.KTaO_3 crystal has such performances as good chemical stability,heat-conduction and insulation under the high temperature, very low dielectric constant and dissipation in high frequency.The substrate surface quality,such as surface roughness,micro-structure directly influences the quality of High Temperature Superconductor thin film grown on it.So,it is an important problem how to get KTaO_3 substrate with high surface quality.Now,there are some disadvantages in mechanical polishing of single crystal KTaO_3 substrates,such as low material removal rate(MRR),poor surface quality and high percent off ragment waste. Moreover,to the author's best knowledge,systematic study on ultra-precision polishing of KTaO_3 substrates has not been reported.Thereby,in this dissertation,the growth, structure,defects,properties and ultra-precision polishing of KTaO_3 crystal are systematiclly studied and discussed.The outline of this dissertation is as follows:
     1.Crystal Growth
     KTaO_3 polycrystalline material was synthesized by means of a solid-state reaction with 4N K_2CO_3 and Ta_2O_5.Free-cracked KTaO_3 single crystals with high optical quality and large dimensions were successfully grown by using Czochralski method.
     Single crystal growth is a complex process,the factors that affect quality of crystals during were analyzed,according to the theories of thermodynamics and dynamics.High quality polycrystalline material and a suitable filed of temperature are the precondition to grow an excellent crystal;the optimal technics is the key for crystal growth;using a good crystal seed and eliminating outside influence can ensure the quality of crystals.We also presented the resolvents according to the characteristics of these factors.
     2.Crystal Components,Structure and Defects
     The concentrations of K,Ta and O elements in the different parts of as-grown KTaO_3 single crystal were measured by the JXA-8800 electron probe analysis method. The measured results indicate that as-grown KTaO_3 in rich K melt is non stoichimetric KTaO_3 and has high homogeneousness in components,yet exist obvious O vacancy in crystals.
     The structure of as-grown KTaO_3 single crystal was studied by X-ray powder diffraction combined with conoscopic diagram method.The X-ray diffraction confirmed that as-grown KTaO_3 single crystal belongs to the cubic crystal system,and calculated unit cell dimensions a=3.9884(?)by Dicvol 91 software.
     Defects in the as-grown KTaO_3 single crystal have been studied by using the chemical etching method and high-resolution X-ray diffraction.The results of observations and discussion of growth defects and formation mechanisms in as-grown KTaO_3 single crystal were presented in this dissertation.It is important for us,since the investigation can guide the growth of single crystal with high perfection.The main defects in the as-grown KTaO_3 single crystal are dislocations and sub-grain boundaries. These defects seriously affected the perfection of crystals.In order to avoid or decrease these defects,we take some corresponding steps according to the above results.
     3.Basic Properties
     The density,hardness,linear optical properties and thermal properties of the as-grown KTaO_3 single crystal were measured,and influences of these properties on crystal growth and applications were also discussed.
     The density of KTaO_3 crystal was measured by using the buoyancy method at room temperature and its value is 7.0146 g/cm~3.The Mohs hardness of KTaO_3 was about 6 by using Mohs sclerometer.The refractive indices of KTaO_3 single crystal was measured by using V-prism method at Hg lamp e line(λ=633nm andλ=1539nm)and its value is 2.2256 and 2.1520.The transmission spectra were measured with Hitachi U-3500 FIIR spectrometer at room temperature and the results show that KTaO_3 crystal has a broad transparent wavelength band.The cut-off wavelength of the crystals is about 340 nm.From 340 nm to 3 500 nm,only an absorption band between 2 847 nm and 2 910 nm appears,and the peak is located at about 2 875 nm.
     The thermal properties of KTaO_3 single crystal were systemically studied.The specific heat were measured by the method of differential scanning calorimetry,which values is 0.371~0.385 jg~(-1)K~(-1)in the temperature range of 303.15 K~843.15 K.The thermal expansion of KTaO_3 single crystal was measured by using a thermal dialatometer and the average linear thermal expansion coefficient were calculated in the temperature from 298.15 to 773.15K,which values are ac=6.44×10~(-6)/℃,a_a=a_b= 6.63×10~(-6)/℃.The thermal diffusion coefficient of KTaO_3 single crystal was measured by the laser flash method in the temperature range from 298.15 K to 773.15 K and its value decreases with increasing temperature.At room temperature,the thermal diffusion coefficients are 3.259 mm~2s~(-1),the calculated thermal conductivities of KTaO_3 single crystal are 8.551 Wm~(-1)K~(-1).The influences of these thermal properties on crystal growth and applications were also analyzed.
     4.Crystal Ultra-precision Polishing
     The chemical mechanical polishing(CMP)technology of KTaO_3 substrate is studied in order to efficiently obtain the ultra smooth and free damage surface of KTaO_3 substrates by use of the chemical and mechanical interaction.A series of CMP experimental studies on different technics parameter on the surface quality of KTaO_3 substrate were carried out.According to analysis result of different parameter,we have compared to different polish mechanism and polish effect,summed up optimal CMP technics parameter for KTaO_3 crystal.Finally,the suitable CMP parameters for single crystal KTaO_3 are obtained by using the orthogonal experiment method.It is proved that the surface roughness of KTaO_3 substrate can reach Ram=0.752 nm and the MRR of KTaO_3 substrate is improved.A series of CMP experimental studies on the influences of the main factors(polishing pad,polishing slurry,polishing load,table rotational speed) on the surface quality of substrate were carried out.
引文
[1]GorterC J.S uperconductivityu ntil 1940 In Leidenad As Seen From There.Rev.Mod.Phys.,1964,Vol.36,No.1:3-7.
    [2]Mueller K A and Bednorz J G Discovery of a class of high-temperatures uperconductors.Science,1987,Vol.237,No.4819:1133-1139.
    [3]F,Lombardi,T,Bauch,J,Johansson,et al.,Quantum properties of d-wave YBa2Cu30_(7-&)Josephson junction.Physica C:Superconductivity and its Applications,2006,Vol.435,No.1-2:8-11.
    [4]E.Dantsker,D.Koelle,H.Miklicha,et al.,High-Tc three-axis de SQUID magnetometer for geophysical applications.Review of Scientific Instruments,1994,Vol.65,No.12:3809.
    [5]R.C.Black,F.C.Wellstood,E.Dantsker,et al.,High-frequency magnetic microscopy using a high-Tc SQUID.IEEE Transactions on Applied Superconductivity,1995,Vol.5,No.2 pt 3:2137-2141.
    [6]I.S.Kim,K.K.Yu,Y.H.Lee,et al.,High-Tc SQUID magnetometers for low noise Measurements of magnetocardiograms.IEEE Transactions on Applied Superconductivity,2005,Vol.15,No.2 PARTI:652-655.
    [7]I.S.Kim,K.K.Yu,Y.H.Lee,et al.,Performance of high-Tc dc SQUID magnetometers for useing magnetically disturbed environment.Physica Status Solidi(A)Applied Research,2004,Vol.201,No.8:1969-1972.
    [8]V.Selvamanickam,XieY Reeves J,et al.,MOCVD-based YBCO-coated conductors.MRS Bulletin,2004,Vol.29,No.8:579-582.
    [9]徐如人、庞文琴等.无机合成与制备化学.北京:高等教育出版社,2001:560-570
    [10]T.Maeda,S.B.Kim,T.Suga,et al.,IEEE Transaction on Applied Supe rconductivity 11,2001,2897.
    [11]J.Ramtrez-Castellanos,M.Valllet-Regi,J.M.Gonzalez-Calbet,Solid State Ionics 172,2004,539.
    [12]R.H.Hammond,Proceedings of the 8th Intennational Symposium on Supe rconductvity,Iss 95.
    [13]Yoshifumi Kumagai,UtakaY oshida,Morihiro Iwata,et al,Physics C304,1998,35.
    [14]Lee Hee,Gyoun C.G.,et al.,International Workshop on processing&Application of Superconductors,GatlinburgTennessee,USA,2002.
    [15]S.B.Abolmaali,J.B.Talbot,Journal of Electrochemiacial Society 140,199,443.
    [16]I.Van Driessche,B.Schoofs,E.Bruneel,et al.,Journal of the European Ceramic Societu 24,2004,1823.
    [17]N.E1 Hhokh,R.Papirnik,L.G.Huabert,et al.,Journal of Materia ls Science Letters 8,1989,762.
    [18]P.Catania,N.Hovnanian,L.Cot,et al.,Mat.Res.Bull.25,1990,631.
    [19]M.W.Rupich,Y.P.Liu,Ibechem,et al.,Applied Physics Letters 60,1992,1384.
    [20]金曾孙.薄膜制备技术及其应用.出版日期:1989年12月第1版
    [21]张其瑞 高温超导电性杭州:浙江大学出版社,1992
    [22]Wycof,R.W.G.Crystal Structures.Vol.2.New York:John Wiley & Sons.1964.
    [23]F.S.Gellaso,Structure Properties and Preparation of Peroiskite-Type Compounds,Oxford Pergamon Press,1969.
    [24]R.M.Hazen,"Perovskites." Sci Amer.Vol.258(6).1988:74-81
    [25]E.A.Gress,R.L.Sandstriom,W.J.Gallagher,A.Gupta,S.L.Shinder,R.F.Cook,E.I.Cooper,et al.,IBM J.Res.Develop.Vol.34 1990:916-925
    [26]李国祯、曹光丽等.高温超导薄膜的研制.红外技术第11卷第5期.1989:25-29
    [27]W.Prusseit,L.A.Boatner,D,Rytz.Appl.Phys.Lett.63(1993):3376-3378
    [28]R.Feentra,L.A.Boatner,J.D.Budai.,Appl.Phys.Lett.1989,54(11):1063-1065
    [29]A.F.Chow,D.J.Lichtenwalner,R.R.Woolcott,et al.,Appl.Phy.Lett.65(1994):1073-1075
    [30]R.Feenstra,J.D.Budai,L.A.Boatner,et al.,Physicac:Superconductivity 162 (1989):655-656
    [31]Bozinis,D.G.,Hurrell J.P.et al.,Phy Rev B 13(1976):3109-3111
    [32]L.F.Mattheis,et al.,Phys.Rev.B 6(1972):4718-4720
    [33]Xu Y-N,Ching W.Y and R.H.French.,Ferroelectrics 111(1990):23-26
    [34]A.V.Postnikov,T.Neumann,G.Borstel,M.Methfessel.,Phys.Rve.B 48(1993):5910
    [35]T.Neumann,G.Borstel,C.Scharfschwerdt,M.Neumann.,Phys.Rve.B 46(1992):10623
    [36]M.Grass,A.Postnikov,J.Braun,et al.,Surf.Sci.352-354(1996):760
    [37]E.E.Krasovskii,O.V.Krasovska,W.Schattke.,J.Electron Spectrosc.Relat.Phenom.83(1997):121
    [38]D.J.Singh.,Phys.Rev.B 53(1996):176-180
    [39]Y.Fujii,T.Sakudol.,Phys.Rve.B 13(1976):1161
    [40]Y.Fujii,T.Sakudol.,J.Phys.Soci.J.Vol.41(1976):888-893
    [41]S.H.Wemple.,Phys.Rve.137(1965)A1575
    [42]S.H.Wemple.,MIT Technical Report(Research Lab.Of Electronics)No.425(1964)
    [43]魏昕,杜宏伟,袁慧,解振华.晶片材料的超精密加工技术现状[J].组合机床与自动化加工技术,3(2004):75.
    [44]袁巨龙.功能陶瓷的超精密加工技术哈尔滨:哈尔滨工业大学出版社,2000.
    [45]袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社,1999.
    [46]黄文浩,张海军,褚家如等.超光滑表面的离子束抛光与微观形貌检测.仪器仪表学报,1995,16(1):201-205.
    [47]褚家如,黄文浩.离子束抛光硅片纳米级微观形貌的原子力显微镜研究.电子显微学报,1(1995):53-58.
    [48]F.Malik,M.Hasan,Manufacturability of the CMP process[J].Thin Solid Films,(1995)270:612-615.
    [49]R.Jairath,J.Farkas,C.K.Huang,et al.,Chemical-Mechenical Polishing:Process Manufacturability[J].Solid State Technology,(1994)7:71-75.
    [50]狄卫国.甚大规模集成电路制备中硅衬底精抛的研究.河北工业大学硕士学位 论文,2002.
    [51]郭东明,康仁科,苏建修等.超大规模集成电路制造中硅片平坦化技术的未来发展.半导体技术.2003.
    [52]雷红,雒建斌,马俊杰.化学机械抛光(CMP)技术的发展、应用及存在问题[J].润滑与密封,4(2002):73-76.
    [53]江瑞生.集成电路多层结构中的化学机械抛光技术.半导体技术.1998,23(1):6-7.
    [1]F.S.Chen,J.E.Geusic,S.K Kurtz,et al,Light modulation and beam deflection with potossium tantalate-niobate crystals[J].J Appl Phy.,1966,37:388-391
    [2]D.G.Bozinis,J.P.Hurrell,et al.,Optical modes and dielectric properties of ferroelectric orthorhombic KNbO_3[J].Phy Rev B.,1976,13:3109
    [3]V.Hans,U.Hiromoto,et al.,Hyper-Raman scattering from the incipient ferroelectric KTaO_3[J].Phy.Rev.B.,1984,29:1030
    [4]R.Feentra,L.A.Boatner,J.D.Budai;Appl.Phys.Lett.1989,54(11):1063-1065
    [5]D.Rytz,H.J,Scheel,Crystal Growth of KTa_(1-x)Nb_xO3(0<X≤0.04)Solid Solutions by a Slow-Cooling Method,J.Crystal Growth[J],1982,59:468
    [6]L.A.Boatner,U.T.Hochli,H.E.Weibel,Quantum Limit of Ferroelectric Phase Transitions in KTa_(1-x)Nb_xO_3[J],Helv.Acta,1977,50:620
    [7]孟宪林,孙友轩等;钽酸钟单晶的提拉法生长及某些性质的研究[J],科学通报,1994,39(17)
    [8]JCPDS diffiraction file:77-1133
    [9]张克丛等,晶体生长科学与技术,科学出版社,1997.
    [10]吕孟凯著,固态化学,山东大学出版社,1996.
    [1]W.A.Bonner,E.F.Dearborn,Van itert;In Crystal Growth,Pergamon,Oxfoxd,1967,437.
    [2]D.Rytz,H.J.Scheel;J.Crystal Growth,1982,59:468.
    [3]JCPDS diffraction file:77-1133.
    [4]林栋梁编著,晶体缺陷,上海交通大学出版社,1996.
    [5]姚连增,晶体生长基础,中国科学技术出版社,1995.
    [6]徐宝琨,阎卫平,刘明登,结晶学,吉林大学出版社,1991.
    [7]张克从,张乐惠主编,《晶体生长科学与技术》(下册)[M],科学出版社,第二版.
    [8]李超荣,吴立军,陈万春,物理学报,50(11)(2001)2185.
    [9]闵乃本,晶体生长的物理基础,上海科学技术出版社,1982.
    [10]王煜明编著,非晶体及晶体的X射线衍射,科学出版社,1988.
    [1](美)T.佐尔泰,矿物学原理,1992.
    [2]吕孟凯著,固态化学,山东大学出版社,1996。
    [3]杨迪,李福欣编著,显微硬度实验,中国计量出版社,1988.
    [4]闵乃本,晶体生长的物理基础,上海科学技术出版社,1982.
    [5]关振铎,张中太,焦金生编著,无机材料物理性能,清华大学出版社,1992.
    [6]M.Born,K.Huang,,Dynamical theory of crystal lattices,Oxford University Press,38(1954),printed in Great Britain.
    [7]江怀东,几种硼酸盐、钒酸盐光学晶体的生长及性能研究[M],山东大学博士学位论文(指导老师:王继扬教授)
    [8]葛文伟,钨酸钡拉曼激光晶体的生长及其性质研究[M],山东大学硕士学位论文(指导老师:张怀金教授)
    [9]Z.H.Yang,Q.C.Guan,J.Q.Wei and J.Y.Wang,Journal of Thermal Analysis.297,(1995)45
    [10]高磊,近化学计量比铌酸锂晶体的生长及性质研究[M],山东大学博士学位论文(指导老师:王继扬教授)
    [11]J.F.Nye,Physical properties of crystals,Oxford University Press,1985,printed in Great Britain.
    [12]秦连杰,孟宪林,杜晨林等,Nd:GdVO4热常熟的测量和激光性能研究,人工晶体学报,32(5)(2003)502-507
    [1]李锡善,戈鹤忠:超光滑表面加工技术,激光与光电子进展,1998,11.
    [2]W.Prusseit,L.A.Boatner,D.Rytz.,Appl.Phys.Lett.63(1993)3376-3378.
    [3]A.F.Chow,D.J.Lichtenwalner,R.R.Woolcott,et al;Appl.Phy.Lett.65(1994):1073-1075.
    [4]R.Feenstra,J.D.Budai,L.A.Boatner,et al.,Physicac:Superconductivity 162(1989):655-656.
    [5]K.Szot,W.Speier,M.Pawelczyk,et al.,J.Phys.:Condens.Matter,12(2000):4687-4697.
    [6]J.Hyung-jinBae,Sigman,D.P.Norton,L.A.Boatner.,Appl.Surf.Sci.241(2005):271-278.
    [7]J.R.Brews,W.Fichtner,Nicolian,et al;Generalized Guide to MOSFET Miniaturization[J].IEEE Electron Dev.Lett.1(1980):2.
    [8]夏宗仁,李春忠,崔坤;声表面器件用Y36°切LiTaO3晶片表面加工研究[J].人工晶体学报,2001,30(4):419-421.
    [9]周肇威。原子力显微镜,物理,17(16):351-352.
    [10]宁永功,姬洪,王志红;XRD摇摆曲线在单晶基片质量检测中的应用[J].现代仪器,1999(4):34-37.
    [11]郭春华,康仁科,单晶MgO基片化学机械抛光表面形貌的研究,大连理工大学学位论文,2005年第5期:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700