红色有机电致发光材料的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光材料一直是国际上的一个研究热点。经过多年的研究,开发纯度高和效率好的红光发光材料依然是国内外科研工作者努力的方向,本文从开发和设计新型高性能的红光材料的角度出发,采用现代量子化学理论计算方法,研究了三种类型的红光材料的电致发光性能,包括这些化合物的基态和激发态的平衡几何结构、前线分子轨道、载流子的注入和传输、吸收和发射光谱,这为探索红色发光材料的结构-性质之间的关系奠定了理论基础,并且也为进一步开发高效率的红光材料提供了有价值的依据。
     研究工作主要包括以下三个方面的内容:
     1.研究了新型的具有化学键能量(TB)传递特性的卟啉衍生物的电子结构和光学性质。在对实验分子的研究基础上,理论设计了一系列的卟啉衍生物,首先验证这些分子是否存在TB能量传递特性,并进一步探索这类红光材料具有高效率的原因。
     2.研究了含有缺电子基团2-pyran-4-ylidene-malononitrile(PM)的低聚物的电子结构、载流子注入和传输能力、以及光谱性质。计算结果表明,引入PM基团可有有效的提高低聚物的电子注入能力,这为解决高效率的电子注入材料提供了一个有用的线索。
     3.研究了引入苯胺基团的数量和位置对Ir化合物的电子结构、载流子注入和传输能力以及光学性质的影响。计算结果表明,逐渐增加苯胺基团可以有效的提高空穴注入能力。并且在Ir的对位引入苯胺比在间位更有效。通过电离能(IP)、电子亲和势(EA)、重组能(λ)的研究,我们发现Ir-(g1′)3, g1′=N-(3-(2,3-dihydro-2-methylisoquinolin-1-yl)-4-methylphenyl)-N-phenylbenzenamine可以作为好的红色磷光材料。
For full-color displays, three primary colors, i.e., blue, green, and red light-emitting materials are required. Green and blue light-emitting materials have al-ready met the requirements for commercial application. However, the red light-emitting materials with high brightness and efficiency are scarce. Nowadays, the rapid developments of science and technology have greatly contributed to the devel-opment of computational chemistry. Theoretical calculations show that by chemical modification the physical properties of materials could greatly be improved.
     In this paper, we systematically investigated three types of red emitting materials, including porphyrin relatives with through-bond energy transfer character, oligomer with electron-deficient group, phenylamine substitued Ir compounds, by quantum chemistry methods, namely, DFT, TDDFT, TDHF, CIS methods. We systematically investigated the ground state and lowest excited state conformations, frontier molecu-lar orbital, ionization potential (IP), electronic affinities (EA), reorganization ener-gies(λ), absorption and emission spectra. The theoretical study is intended to establish the structure-photophysical property relationship for designing efficient red emitters for OLEDs. The following is the main results:
     1. A series of porphyrin relatives with through-bond energy transfer character is investigated. The calculated results show that the TB energy transfer character has been detected in some extent by the analyses of electronic structure, frontier molecu-lar orbital and electronic spectra. Moreover, the reasons for their high efficiency as red emitting materials have been revealed by the investigations of the ionization po- tential (IP), electron affinity (EA), reorganization energy (λ), and exciton binding en-ergy (Eb). After introducing the 2-[thiophen-2-yl]thiophene to porphyrin-ring, the electronic injection and transfer abilities of porphyrin relatives are greatly enhanced. 5?10?15?20-tetra(carbazole)porphyrin(TCP) and Zn-5?10?15?20-tetra(carbazole) or-phyrin (ZCP) have faster carrier injection and transport rate, better carrier transport balance, and relatively smaller exciton binding energy than experimental sythesized molecules, rendering great potential of these red emitting materials with high fluores-cence quantum yield in the development of red OLEDs.
     2. A series of fluorene-based oligomers containing 2-pyran-4-ylidene malononitrile (PM) unit is investigated. The calculated results the electronic structure and photoproperties have been greatly improved by PM unit. It is found that the in-troduction of thiophene and 2-methoxyphenol in this type of copolymers have low-ered the LUMO energy, lifted the HOMO energies, and narrowed HOMO-LUMO gaps. Furthermore, Among these compounds, {2-[2-{2-[5-(9H-Fluoren-3-yl)- thio-phen-2-yl]-vinyl}-6-(2-thiophen-2-yl-vinyl)-pyran-4-ylidene]-malononitrile}n has de-creased IP, increased EA, and decreasedλhole values, suggesting that it is a excellent red emitting materials with high charge injection and transportation.
     The effect of phenylamine chromophore on the structure, optical properties, charge injection as well as charge transport features of a series of iridium(III) com-plexes is investigated. Our calculation results indicate that the hole injection ability have been greatly altered by the aromatic amine units. By introducing the diphenyl-amine unit, the contribution of 5d orbital from Ir center to the HOMO of both the ground and triplet states is decreased. From the consideration of IP, EA,λ, the pa-ra-substituted derivative Ir-(g1')3 where g1'=N-(3-(2,3-dihydro-2-methylisoquinolin-1- yl)-4-methylphenyl)-N-phenyl benzenamine has great potential to serve as a high performance red triplet emitter.
引文
[1] POPE M, KALLMANN H, MAGNANTE P J,Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38: 2042-2044.
    [2] HELFRICH W, SCHNEIDER W G, Recombination rediation in anthracene crystals [J]. Phys. Rev. Lett., 1965, 14: 229-231.
    [3] HELFRICH W,SCHNEIDER W G,Transient of Volume-controlled current and recombination radiation in anthracene [J]. J. Chem. Phys.,1966, 44: 2902-2909.
    [4] Dresner J. Double injection electroluminescence in anthravene [J]. RCA Rev., 1969, 30: 322-334
    [5] VINCETT P S, BARLOW W A, HANN R A, et al. Electrical conduction and low Voltage blue electroluminescence in Vacuum-deposited organic films [J]. Thin Solid Film, 1982, 94: 171-183.
    [6] TANG C W, VANSLYKE S A, Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51: 913-915.
    [7] ADACHI C, TOKITO S, TSUTSUI et al. Electroluminescence in organic films with a 3-layer structure [J]. Jpn. J. Appl. Phys., 198, 27: 269-271.
    [8] ADACHI C, TOKITO S, TSUTSUI et al. Organic electroluminescent de-vices with a 3-layer structure [J]. Jpn.J.Appl.Phys.,1988,27:713-715.
    [9] BURROUGHES J H, BRADLEY D D C, BROWN A R, et. al. Light-emitting diodes based on conjugated polymers, [J]. Nature 1990,347: 539-541.
    [10] BRAUN D, HEEGER A J, Visible light emission from semiconducting po-lymer diodes [J]. Appl. Phys. Lett., 1991, 58: 1982-1984.
    [11] CHEN C H, SHI J, TANG C W, Recent developments in molecular organic electroluminescent materials [J]. Macromol. Symp., 1998, 125: 1-48.
    [12] VANSLYKE S Y, CHEN C H, TANG C. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett. 1996, 69: 2160-2162.
    [13] SHIROTA Y, KOBATA T, NOMA N. Starburst Molecules for Amorphous Molecular Materials. And 4, 4′,4″-Tris[N- (3-methylphenyl)-N-phenylamino] tripheny lamine [J]. Chem. Lett., 1989, 18: 1145-1148.
    [14] KIDO J, Matsumoto T, Bright organic electroluminescent devices having a metal-doped electron-injecting layer [J]. Appl. Phys. Lett., 1998, 73: 2866-2868.
    [15] ADACHI C, NAGAI K, TAMOTO N. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes [J]. Appl. Phys. Lett., 1995, 66: 2679-2681.
    [16] XIN H, LI F Y, SHI M, Efficient Electroluminescence from a New Terbium Complex [J]. J. Am. Chem. Soc., 2003, 125: 7166-7167.
    [17] LO S C, MALE N A H, MARKHAM J P J, et al., Green Phosphorescent Dendrimer for Light-Emitting Diodes [J]. Adv. Mater.,2002, 14: 975-979.
    [18] ADACHI C, TSUTSUI T, SAITO S, Organic electroluminescent device having a hole conductor as an emitting layer [J]. Appl. Phys. Lett., 1989, 55: 1489-1491.
    [19] TANG C W, VANSLYKE S A, CHEN C H, Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65: 3610-3616.
    [20] GREENHAM N C, MORATTI S C, FRIEND R H, et al.Efficient light-emitting-diodes based on polymers with high electron-affinities [J]. Nature, 1993, 365: 628-630.
    [21] BALDO M A, O′BRIEN D F, YOU Y, et al. Highly efficient phosphores-cent emission fromorganic electroluminescent devices [J]. Nature, 1998, 395: 151-154.
    [22] TSUTSUI T, YANG M J, YAHIRO M. et al. High quantum efficiency in organic light-emitting devices with iridum-complex as a triplet emissive center [J]. Jan J. Appl. Phys., 1999, 38: 1502-1504.
    [23] LEE J K, YOO D S, HANDY F S. et al. Thin film light emitting devices from an electroluminescent ruthenium complex [J]. Appl. Phys. Lett., 1996, 69: 1686-1688.
    [24] HOHENBERG P, KOHN W. Inhomogeneous electron gas [J]. Phys. Rev. B, 1964, 136: 864-871
    [25] KOHN W, SHAM L J, Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. A, 1965, 140: 1133-1138.
    [26] BAUERNSCHMITT R, AHLRICHS R, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J]. Chem. Phys. Lett., 1996, 256:454-464.
    [27] FURCHE F, On the density matrix based approach to time-dependent den-sity functional response theory [J] J. Chem. Phys., 2001, 114: 5982-5992.
    [28] RICCIARDI G, ROSA A, BAERENDS E J, Ground and excited states of zinc phthalocyanine studied by density functional methods [J]. J. Phys. Chem. A 2001, 105: 5242-5454.
    [29] FURCHE F, AHLRICHS R, SOBANSKI A, et al. Circular dichroism of he-licenes investigated by time-dependent density functional theory [J]. J Am. Chem. Soc., 2000, 122: 1717-1724.
    [30] RAGHAVACHARI K,POPLE J A.Calculation of one-electron properties using limited configuration interaction techniqu[J]. Int. J. Quant. Chem., 1981, 20: 1067-1071.
    [31] FORESMAN J B, HEAD-GORDON M, POPLE J A. Toward a systematic molecular orbital theory for excited state[J]. J. Phys. Chem., 1992, 96: 135-149.
    [32] CASIDA M E,JAMORSKI C,CASIDA K C,et al. Molecular excitation en-ergies to high-lying bound states from timedependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Chem. Phys., 1998, 108: 4439-4449.
    [33] M?LLER C,PLESSET M S. Note on an Approximation Treatment for Many-Electron Systems [J]. Phys. Rev., 1934, 46: 618-622.
    [34] CONDON E U. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules [J].Phys. Rev., 1928, 32: 858-872.
    [35] FRANCK J. Elementary processes of photochemical reactions [J].Trans. Faraday Soc.,1925, 21: 536-542.
    [36]陆维敏,陈芳,谱学基础和结构分析[M].北京:高等教育出版社,2005.
    [37] HEITLER W, LONDON F.Interaction of neutral atoms and homopolar binding according to the quantum mechanics [J]. Z Phys,1927,44:455-472.
    [38] HARTREE D R, The calculations of Atomic Structure, [M]. New York, John Wiley&Sons,Inc, 1957.
    [39] PAULING L, WILSON E B, Introduction to Quantum Mechanics [M]. New York: McGraw-Hill Book Company, 1935.
    [40] SLATER J C, A note on Hartree′s Method [J]. Phys. Rev., 1930, 35: 210-211.
    [41] ROOTHAAN C C J, New developments in molecular orbital theory[J]. Rev. Mod. Phys. 1951, 23: 69-89.
    [42]徐光宪,黎乐民,王德民,量子化学基本原理和从头计算法,[M].北京科技出版社,1985.
    [43] LOWDIN P O,Correlation Problem in Many-Electron Quantum Mechanics [J] Adv. Chem. Phys. 1959, 2:207-322.
    [44] SLATER J C, Quantum theory of molecular and solids, Vol. 4: the self- consistent field for molecular and solids [M]. McGraw-Hill: New York, 1974.
    [45] SALAHUB D E, ZERNER M C. The challenge of d and f electrons, [M]. ACS: Washington, D.C. 1989.
    [46] PARR R G, YANG W. Density-functional theory of atoms and molecules [M].Oxford Univ, Press: Oxford, 1989.
    [47] LABANOWSKI J K, ANDZELM J W. Density functional methods in che-mistry [M]. Springer-Verlag: New York, 1991.
    [48] POPLE J A, GILL P W M, JOHNSON B G. Kohn-Sham density- functional theory within a finite basis set [J]. Chem. Phys. Lett., 1992, 199: 557-560.
    [49] JPHNSON B G, FRISCH M J, An implementation of analytic second de-rivatives of the gradient-corrected density functional energy [J]. J. Chem. Phys. 1994, 100: 7429-7442.
    [50] HEGARTY D, ROBB M A, Application of unitary group methods to con-figuration interaction calculations [J]. Mol. Phys. 1979, 38: 1795-1812.
    [51] EADE R H E, ROBB M A, Direct minimization in mc scf theory. The qua-si-newton method [J]. Chem. Phys. Lett. 1981, 83: 362-368.
    [52] Frisch M J, Ragazos I N, Robb M A, et al. An evaluation of 3 direct MCSCF procedures [J]. Chem. Phys. Lett. 1992, 189: 524-528.
    [53] YAMAMOTO N, VREVEN T, ROBB M A, et al. A direct derivative MC-SCF procedure [J]. Chem. Phys. Lett. 1996, 250: 373-378.
    [54] PEUKERT V, A new approximation method for electron systems [J]. J. Phys. 1978, 11: 4945-4956.
    [55] THEOPHILOU A K, The energy density functional formalism for excited states [J]. J. Phys. 1979, 12: 5419-5430.
    [56] HADJISAVVAS N, THEOPHILOU A K. Rigorous formulation of the Kohn and Sham theory [J]. Phys. Rev. 1984, A30: 2183-2186.
    [57] THEOPHILOU A K, GIDOPOULOSi N I. Density functional theory for excited states [J]. Int. J. Quantum Chem. 1995, 56: 333-336.
    [58] JAMORSKI C, CASIDA M E, SALAHUB D R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time- dependent density-functional response theory: N2 as a case study [J]. J. Chem. Phys. 1996, 104: 5134-5147.
    [59] G.赫兹堡著,王鼎昌译,分子光谱与分子结构-双原子分子光谱,[M].科学出版社,1983.
    [60]周公度,段连运编著,结构化学基础,[M].北京大学出版社,1995.
    [61] VIRGILI T, LIDZEY D G, BRADLEY D D C, Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin-Doped Poly(9,9-dioctylfluorene) Light-Emitting Diodes [J]. Adv. Mater. 2000, 12: 58-62.
    [62] BULOVIC V. SHOUSTIKOV A, BALDO M A, et al. Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-inducedspectral shifts [J]. Chem. Phys. Lett., 1998, 287: 455-460.
    [63] HAMADA Y, KANNO H, TSUJIOKA T, et al. Red organic light-emitting diodes using an emitting assist dopant [J]. Appl. Phys. Lett., 1999, 75: 1682-1684.
    [64] CHEN C T, Evolution of Red Organic Light-Emitting Diodes: Materials and Devices [J]. Chem. Mater., 2004, 16: 4389-4400.
    [65] JIAO G S, THORESEN L, BURGESS K H, Fluorescent, Through-Bond Energy Transfer Cassettes for Labeling Multiple Biological Molecules in One Experiment [J]. J. Am. Chem. Soc., 2003, 125: 14668-14669.
    [66] LI B S, LI J, FU Y Q, et al. Porphyrins with Four Monodisperse Oligofluo-rene Arms as Efficient Red Light-Emitting Materials [J]. J. Am. Chem. Soc., 2004, 126: 3430-3431.
    [67] LI B S, XU X J, SUN M H, et al. Porphyrin-Cored Star Polymers as Effi-cient Nondoped Red Light-Emitting Materials [J]. Macromolecules, 2006, 39: 456-461.
    [68] PAUL-ROTH C O, WILLIAMS J A G, LETESSIER J, et al. New tetra-aryl and bi-aryl porphyrins bearing 5,15-related fluorenyl pendants: the influ-ence of arylation on fluorescence [J]. Tetrahedron Lett. 2007, 48: 4317-4322.
    [69] PAUL-ROTH C O, SIMONNEAUX G, Porphyrins with fluorenyl and flu-orenone pendant arms as red-light-emitting devices [J]. Chimie, C. R. 2006, 9: 1277-1286.
    [70] SPEISER S, Photophysics and Mechanisms of Intramolecular Electronic Energy Transfer in Bichromophoric Molecular Systems: Solution and Su-personic Jet Studies [J]. Chem. Rev., 1996, 96: 1953-1976.
    [71] GEORGE R G, PADMANABHAN M, Studies on some new meso-aryl substituted octabromo-porphyrins and their Zn(II) derivatives [J]. Polyhe-dron, 2003, 22: 3145-3154.
    [72] BECKE A D, Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A, 1988, 38: 3098-3100.
    [73] BECKE A D, Density-functional thermochemistry.Ⅲ. The role of exact exchange [J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [74] LEE C, YANG W, PARR R G, Development of the Colle-Salvetti correla-tion-energy formula into a functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785-789.
    [75] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03, Revi-sion B.04, Gaussian, Inc.: Pittsburgh, PA, 2003.
    [76] JIAO G S, THORESEN L H, KIM T G, et al. Syntheses, Photophysical Properties, and Application of Through-Bond Energy-Transfer Cassettes for Biotechnology [J]. Chem. Eur. J., 2006, 12: 7816-7826.
    [77] Gouterman M, Study of the effects of substitutions on the absorption spec-tra of porphin [J]. J. Chem. Phys. 1959, 30: 1139-1161.
    [78] MARCUS R A, Electron transfer reasons in chemistry. Theory and experi-ment [J]. Rev. Mod. Phys. 1993, 65: 599-610.
    [79] NELSEN S F, BLOMGREN F, Estimation of Electron Transfer Parameters from AM1 Calculations [J]. J. Org. Chem. 2001, 66: 6551-6559.
    [80] HUTCHISON G R, RATNER M A, MARKS T J, Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Sub-stituent Effects [J]. J. Am. Chem. Soc. 2005, 127: 2339-2350.
    [81] LIN B C, CHENG C P, YOU Z Q, et al. Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): Why It Is an Electron Trans-porter [J]. J. Am. Chem. Soc. 2005, 127: 66-67.
    [82] EDWARDS W D, WEINER B, ZERNER M C, On the low-lying states and electronic spectroscopy of iron(II) porphine [J]. J. Am. Chem. Soc. 1986, 108: 2196-2204.
    [83] LECOURS S M, DIMAGNO S G, THERIEN M J, Exceptional Electronic Modulation of Porphyrins through meso-Arylethynyl Groups. Electronic Spectroscopy, Electronic Structure, and Electrochemistry of [5,15-Bis[(aryl)ethynyl]-10,20-diphenyl porphinato]zinc(II) Complexes. X-ray Crystal Structures of[5,15-Bis[(4‘-fluorophenyl)ethynyl]-10,20-diphenyl porphinato]zinc(II) and 5,15-Bis[(4′-methoxyphenyl)ethynyl]- 10,20-diphenylporphyrin [J]. J. Am. Chem. Soc. 1996, 118: 11854-11864.
    [84] EVANS J S, MUSSELMAN R L, Red Shifting Due to Nonplanarity in Al-kylporphyrins: Solid-State Polarized UV?Vis Spectra and ZINDO Calcu-lations of Two Nickel(II)octaethylporphyrins [J]. Inorg. Chem. 2004, 43: 5613-5629.
    [85] ZHOU X, REN A M, FENG J K, et al. Theoretical investigation on the one- and two-photon absorption properties of a series of porphyrazines with an-nulated 1,2,5-thiadiazole and 1,4-dimethyloxybenzene moieties [J]. J. Photochem. Photobiol. A: Chem. 2005, 172: 126-134.
    [86] KOSE M E, MITCHELL W J, KOPIDAKIS N, et al. Theoretical Studies on Conjugated Phenyl-Cored Thiophene Dendrimers for Photovoltaic Ap-plications [J]. J. Am. Chem. Soc. 2007, 129: 14257-14270.
    [87] AHLRICHS R, BAR M, BARON H P, et al. TURBOMOLE V5-7.; Uni-versity of Karlsruhe,Germany:Karlsruhe, Quantum Chemistry Group,2004.
    [88] LIU F Y, ZUO P, MEMG L P, On the optical properties of thiophene oli-gomers: configuration interaction study on their ground (S0) and first singlet excited (S1) states [J]. J. Mol. Struct. -Theochem. 2005, 726: 161-169.
    [89] SEIXAS DE MELO J, BURROWS H D, SVENSSON M, et al. Photophys-ics of thiophene based polymers in solution: The role of nonradiative decay processes [J]. J. Chem. Phys., 2003, 118: 1550-1556.
    [90] REN X F, REN A M, FENG J K, et al. A density functional theory study on photophysical properties of red light-emitting materials: Meso-substituted porphyrins [J]. J. Photochem. Photobiol. A-Chem., 2009, 203: 92-99.
    [91] BRéDAS J L, SILBEY R, BOUDREAUX D S, et al. Unusual ligand re-placement: displacement of .eta.5-cyclopentadienyl by .eta.6-arenes in the syntheses of H3(.eta.6-X)RhOs3(CO)9 (X = C6H6, PhMe). Crystal and molecular structure of H3(.eta.6-PhMe)RhOs3(CO)9 [J]. J. Am. Chem.Soc., 1983, 105: 655-656.
    [92] JIA W L, FENG X D, BAI D R, et al. Mes2B (p-4,4‘-biphenyl-NPh(1-naphthyl)): A Multifunctional Molecule for Elec-troluminescent Devices [J]. Chem. Mater., 2005, 17: 164-170.
    [93] NüESCH F, BERNER D, TUTI? E, et al. Doping-Induced Charge Trap-ping in Organic Light-Emitting Devices [J]. Adv. Funct. Mater. 2005, 15: 323-330.
    [94] ADHIKARI R M, MONDAL R, SHAH B K, et al. Synthesis and Photo-physical Properties of Carbazole-Based Blue Light-Emitting Dendrimers [J]. J. Org. Chem., 2007, 72: 4727-4732.
    [95] ZHANG X H, CHEN B J, LIN X Q, et al. A New Family of Red Dopants Based on Chromene-Containing Compounds for Organic Electrolumines-cent Devices [J]. Chem. Mater. 2001, 13: 1565-1569.
    [96] BONESI S M, ERRA-BALSELLS R, Electronic spectroscopy of carbazole and N- and C-substituted carbazoles in homogeneous media and in solid matrix [J]. Journal of Luminescence 2001, 93: 51-74.
    [97] OTSUKI J, KANAZAWA Y, KAITO A, et al. Through-Bond Excited En-ergy Transfer Mediated by an Amidinium-Carboxylate Salt Bridge in Zn-Porphyrin Free-Base Porphyrin Dyads [J]. Chem. Eur. J., 2008, 14: 3776-3784.
    [98] DEXTER D L, A theory of sensitized luminescence in solids [J]. J. Chem. Phys. 1953, 21: 836-850.
    [99] EDWARDS L, DOLPHIN D H, GOUTERMAN M, et al. Porphyrins XVII. Vapor absorption spectra and redox reactions: Tetraphenylporphins and porphin [J]. J. Mol. Spectrosc. 1971, 38: 16-32.
    [100] OWENS J W, SMITH R, ROBINSON R, et al. Photophysical proper-ties of porphyrins, phthalocyanines, and benzochlorins [J]. Inorg. Chim. Acta. 1998, 279: 226-231.
    [101] LIN B C, CHENG C P, LAO Z P M, Reorganization Energies in the Transports of Holes and Electrons in Organic Amines in Organic Elec-troluminescence Studied by Density Functional Theory [J]. J. Phys. Chem. A 2003, 107: 5241-5251.
    [102] WONG K T, CHIEN Y Y, CHEN R T, et al. Ter(9,9-diarylfluorene)s: Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability [J]. J. Am. Chem. Soc. 2002, 124: 11576-11577.
    [103] HANCOCK J M, GIFFORD A P, ZHU Y, et al. n-Type Conjugated Oligoquinoline and Oligoquinoxaline with Triphenylamine Endgroups: Ef-ficient Ambipolar Light Emitters for Device Applications [J]. Chem. Mater. 2006, 18: 4924-4932.
    [104] GRELL M, BRADLEY D D C, INBASEKARAN M, et al. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications [J]. Adv. Mater. 1997, 9: 798-802.
    [105] GRELL M, KNOLL W, LUPO D, Blue Polarized Electroluminescence from a Liquid Crystalline Polyfluorene [J]. Adv. Mater. 1999, 11: 671-675.
    [106] SCHERF U, LIST E J W, Semiconducting Polyfluorenes - Towards Re-liable Structure-Property Relationships [J]. Adv. Mater. 2002, 14: 477-487.
    [107] YU W L, CAO Y, PEI J, et al. J. Blue polymer light-emitting diodes from poly(9,9-dihexylfluorene-alt-co-2, 5-didecyloxy-para- phenylene) [J]. Appl. Phys. Lett. 1999, 75: 3270-3272.
    [108] PENG Q, LU Z Y, HUANG Y, Synthesis and Characterization of New Red-Emitting Polyfluorene Derivatives Containing Electron-Deficient 2-Pyran-4-ylidene?Malononitrile Moieties [J]. Macromolecules 2004, 37: 260-266.
    [109] CHEN H, CAI X R, XU Z G, et al. Novel Fluorene-based Conjugated Copolymers with Donor-acceptor Structures for Photovoltaic Applications Polymer Bulletin 2008, 60: 581-590.
    [110] BELLETêTE M, BEAUPRéS, BOUCHARD J, et al. Theoretical and Experimental Investigations of the Spectroscopic and Photophysical Prop-erties of Fluorene-Phenylene and Fluorene-Thiophene Derivatives: Pre-cursors of Light-Emitting Polymers [J]. J. Phys. Chem. B 2000, 104: 9118-9125.
    [111] Ma J, Li S H, JIANG Y S, A Time-Dependent DFT Study on Band Gaps and Effective Conjugation Lengths of Polyacetylene, Polyphenylene, Polypentafulvene, Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, and Polythiophene [J]. Macromolecules 2002, 35: 1109-1115.
    [112] ZHANG G L, MA J, JIANG Y S, et al.Effects of Silole Content and Doping on the Electronic Structures and Excitation Energies of Si-lole/Thiophene Cooligomers [J]. Macromolecules 2003, 36: 2130-2140.
    [113] CAO H, MA J, ZHANG G L, et al. Borole/Thiophene Cooligomers and Copolymers with Quinoid Structures and Biradical Characters [J]. Macro-molecules 2005, 38: 1123-1130.
    [114] ZHOU X, REN A M, FENG J K, Theoretical investigation on the ground- and excited-state properties of novel octupolar oligothio-phene-functionalized truxenes and dipolar analogs [J]. Polymer 2004, 45: 7747-7757.
    [115] WANG J F, FENG J K, REN A M, et al. Theoretical Studies of the Absorption and Emission Properties of the Fluorene-Based Conjugated Po-lymers [J]. Macromolecules 2004, 37: 3451-3458.
    [116] GAO Y, LIU C G, JIANG Y S, Electronic Structure of Thiophene Oli-gomer Dications: An Alternative Interpretation from the Spin-Unrestricted DFT Study [J]. J. Phys. Chem. A 2002, 106: 5380-5384.
    [117] CORNIL J, GUELI I, DKHISSI A, et al. Electronic and optical proper-ties of polyfluorene and fluorene-based copolymers: A quantum-chemical characterization [J]. J. Chem. Phys. 2003, 118: 6615-6623.
    [118] FORD W K, DUKE C B, SALANECK W R, Electronic structure of polypyrrole and oligomers of pyrrole [J]. J. Chem. Phys. 1982, 77: 5030-5039.
    [119] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 98,Revision A7, Gaussian, Inc.: Pittsburgh, PA, 1998.
    [120] DE OLIVEIRA M A, DUARTE H A, PERNAUT J M, et al. Energy Gaps ofα,α‘-Substituted Oligothiophenes from Semiempirical, Ab Initio, and Density Functional Methods [J]. J. Phys. Chem. A 2000, 104: 8256-8262.
    [121] BRéDAS J L, SILBEY R, BOUDREAUX D S, et al. Chain-length de-pendence of electronic and electrochemical properties of conjugated sys-tems: polyacetylene, polyphenylene, polythiophene, and polypyrrole [J]. J. Am. Chem. Soc. 1983, 105: 6555-6559.
    [122] YANG L, FENG J K, REN A M, et al. The electronic structure and op-tical properties of carbazole-based conjugated oligomers and polymers: A theoretical investigation [J]. Polymer 2006, 47: 1397-1404.
    [123] YANG L, FENG J K, REN A M, J. Mol. Struct. (THEOCHEM) Theo-retical study on electronic structure and optical properties of novel do-nor–acceptor conjugated copolymers derived from benzothiadiazole and benzoselenadiazole [J]. 2007, 816: 161-170.
    [124] NELSEN S F, TRIEBER D A, ISMAGILOV R F, et al. Solvent Effects on Charge Transfer Bands of Nitrogen-Centered Intervalence Compounds [J]. J. Am. Chem. Soc. 2001, 123: 5684-5694.
    [125] REN X F, BO D S, REN A M et al. Theoretical investigation of oli-go(fluorene) derivatives containing electron-deficient unit 2-pyran-4-ylidene-malononitrile moiety [J]. J. Mol. Struct. (THEO-CHEM) 2009, 904: 91-97.
    [126] CLARKE T M, GORDON K C, OFfiCER D L, et al. Theoretical and Spectroscopic Study of a Series of Styryl-Substituted Terthiophenes [J]. J. Phys. Chem. A 2003, 107: 11505-11516.
    [127] PAL B, YEN W C, YANG J S, et al. Substituent Effect on the Opto-electronic Properties of Alternating Fluorene?Cyclopentadithiophene Co-polymers [J]. Macromolecules 2008, 41: 6664-6671.
    [128] RAN X Q, FENG J K, REN A M, et al. Theoretical Study on Photo-physical Properties of Ambipolar Spirobifluorene Derivatives as Efficient Blue-Light-Emitting Materials [J]. J. Phys. Chem. A, 2009, 113: 7933-7939.
    [129] STUFKENS D J, AARNTS M P, ROSSENAAR B D, et al. Ligand-dependent excited state behaviour of Re(I) and Ru(II) car-bonyl–diimine complexes [J]. Coord. Chem. Rev. 1998, 177: 127-179.
    [130] BARIGELLETTI F, SANDRINI D, MAESTRI M, et al. Temperature dependence of the luminescence of cyclometalated palladium(II), rho-dium(III), platinum(II), and platinum(IV) complexes [J]. Inorg. Chem. 1988, 27: 3644-3647.
    [131] BALDO M A, LAMANSKY S, BURROWS P E, et al. Very high-efficiency green organic light-emitting devices based on electrophos-phorescence [J]. Appl. Phys. Lett. 1999, 75: 4-6.
    [132] SU Y J, HUANG H L, LI C L, Highly Efficient Red Electrophospho-rescent Devices Based on Iridium Isoquinoline Complexes: Remarkable External Quantum Efficiency Over a Wide Range of Current [J]. Adv. Ma-ter. 2003, 15: 884-888.
    [133] BALDO M A, LAMANSKY S, BURROWS P E, et al. Very high-efficiency green organic light-emitting devices based on electrophos-phorescence [J]. Appl. Phys. Lett. 1999, 75: 4-6.
    [134] CASPER J V, MEYER T J, Application of the energy gap law to non-radiative, excited-state decay [J]. J Phys. Chem. 1983, 87: 952-957.
    [135] TSUBOYAMA A, IWAWAKI H, FURUGORI M, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphores-cence and Application to Organic Light-Emitting Diode [J]. J. Am. Chem. Soc. 2003, 125: 12971-12979.
    [136] ZHOU G, WONG W Y, YAO B, et al, Triphenylamine-Dendronized Pure Red Iridium Phosphors with Superior OLED Efficiency/Color Purity Trade-Offs [J]. Angew. Chem. Int. Ed. 2007, 46: 1149-1151.
    [137] YANG C H, CHENG Y M, CHI Y, et al. Blue-Emitting Heteroleptic Iridium(III) Complexes Suited for High Efficiency Phosphorescent OLEDs[J]. Angew. Chem. Int. Ed. 2007, 46: 2418-2421.
    [138] LEE Y H, KIM Y S, Theoretical study of Ir(III) complexes with cyc-lometalated alkenylquinoline ligands [J]. Current Applied Physics 2007, 7: 504-508.
    [139] LIU T, ZHANG H X, Zhou X, et al. Theoretical Studies on [Ru(bpy)2(N∧N)]2+ [N∧N = Hydrazone and Azine]: Ground- and Ex-cited-State Geometries, Electronic Structures, Absorptions, and Phospho-rescence Mechanisms [J]. Eur. J. Inorg. Chem. 2008, 8: 1268-1276.
    [140] NIU S, ZARIC S, BAYSE C A, et al. Theoretical Studies of Inorganic and Organometallic Reaction Mechanisms. 14.β-Hydrogen Transfer and Alkene/Alkyne Insertion at a Cationic Iridium Center [J].Organometallics 1998, 17: 5139-5147.
    [141] LIU T, XIA B H, ZHENG Q C, et al. DFT/TD-DFT Investigation on Ir(III) Complexes with N-Heterocyclic Carbene Ligands: Geometries, Elec-tronic Structures, Absorption, and Phosphorescence Properties [J]. J. Com-put. Chem. 2010, 31: 628-638.
    [142] STRATMANN R E, SCUSERIA G E, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys. 1998, 109: 8218-8225.
    [143] LIU Y L, FENG J K, REN A M, Structural, electronic, and optical properties of phosphole-containing -conjugated oligomers for light-emitting diodes [J]. J. Comput. Chem. 2007, 28: 2500-2509.
    [144] Ran X Q, Feng J K, Ren A M, et al. Theoretical Study on Photophysical Properties of Ambipolar Spirobifluorene Derivatives as Efficient Blue-Light-Emitting Materials [J]. J. Phys. Chem. A, 2009, 113: 7933-7939.
    [145] COSSI M, SCALMANI G, REGAR N, et al. New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution [J]. J. Chem. Phys. 2002, 117: 43-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700