1.十八个中国地方猪品种遗传多样性分析  2.猪特定群体定位QTL的效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上猪品种资源最丰富的国家,联合国粮农组织家畜多样性信息系统中记载的中国家猪品种有128个。近几十年来,随着市场经济的发展,国外生长速度快、瘦肉率高的商用猪种大量引入中国市场,使各类养殖户对地方品种的偏爱下降,导致各地方品种的现有数量及纯度令人担忧,许多品种已处于濒危边缘。地方猪品种遗传多样性的研究和保护工作早已提上日程,利用联合国粮农组织和国际动物遗传学会推荐的微卫星标记对中国猪品种遗传多样性评估将为中国猪品种的保护提供理论依据,由此启动了“全国地方猪遗传距离测定”项目。本研究对十八个中国地方猪品种遗传多样性的分析作为该项目的重要组成部分,得到的结论有:
     (1) 联合国粮农组织和国际动物遗传学会所推荐的这套微卫星标记在本研究的18个地方猪品种中都具有丰富的多态性,等位基因数最少的有8个(SW951),最多的有31个(CGA和S0005),平均为19.34;多态性信息含量最低的是0.584(S0218),最高的是0.896(CGA),平均值为0.773;所有地方猪品种在22个座位上共享57个等位基因;没有发现品种特异的等位基因。
     (2) 以Cavalli-Sforza和Edwards的余弦距离D_C和Nei氏D_A遗传距离绘制的NJ聚类图完全一致;以Nei氏D_A距离构建的NJ和UPGMA聚类树不完全一致;用UPGMA得到的聚类树与品种实际的地理分布更接近,聚类结果与《中国猪品种》中的分类约有差异;
     (3) 在UPGMA聚类树中,形成了内部稳定的两大支和外围分支,外围分支包括华北型品种民猪、马身猪和华南型品种香猪、滇南小耳猪;内部两支分别以华中型品种及西南型品种为主,以华中型品种为主的分支包括华中型品种沙子岭猪、大围子猪、宁乡猪、桃源猪、西南型品种盆周山地猪和华北型品种河套大耳猪;以西南型品种为主的分支首先是西南型品种柯乐猪、富源大河猪、荣昌猪、成华猪、内江猪和高原型品种藏猪聚到一起,再与关岭猪和汉江黑猪相聚。
     (4) 将本研究的18个地方猪品种与“中国地方猪种遗传距离测定”项目中的所有品种一起聚类时,民猪与其它华北型品种相聚类,香猪和滇南小耳猪与其它华南型品种相聚类,与《中国猪品种》的分类不相符的是华北型品种汉江黑猪与西南型品种相聚类,华北型品种河套大耳猪与华中型品种相聚类。
     (5) 微卫星每代突变率取4.5×10~(-4)和8.0×10~(-5)时,使用Nei氏标准遗传距离,得到中国猪地方品种间分化时间分别位于413.8-2036.8年之间和2327.8-11457.2年之间;中国地方品种与三个商用品种间平均分化时间分别为2400.4年和13803.95年。
    
    华中农业大学博士学位论文
    (6)本研究的18个地方品种中,马身猪需要重点保护,其它品种内仍存在较大的遗
     传变异,且品种的群体数量大,可以在设立保种场的前提下,根据各品种的特点
     将保种和开发利用结合起来,实现品种保护的经费自给。
    (7)从21个品种中各自随机抽出20头个体作聚类分析,各品种都形成有主分支,
     主分支中的个体总计有387头:以个体对品种的基因频率和基因型似然比为标准
     时,对各地方品种的全部个体作品种判别,其准确率分别达到98.45%和99.91%,
     选用遗传距离类中的DPs,Ds,D,,岛及Dc时,判别的准确率分别达到97.16%,
     %.73%,%.82%,99.31%和98.88%。说明这套标记适合于地方猪品种个体判别
     分析。
    (8)对品种鉴定的基准群体大小和座位数作综合比较分析得到,基准群体大小与座
     位数的乘积达500(50头个体X10座位、加头x25个座位)以上时,判别的准确
     率可达94%以上。
Chinese was famous for the abundance of the indigenous pig breeds. There were 128 indigenous pig breeds recorded in the Domestic Animal Diversity Information System of FAO. However, lots of commercial pig breeds with high performance of growth and meat factor were introduced into China in the last decades for the market demand. The farmer would like to feed the crossbred between these breeds and indigenous pig breed or just the commercial breeds, rather than the indigenous pig breed, which leaded to the size of each indigenous pig breed decreased dramatically and many of them were endangered. Studying on the genetic diversity of Chinese indigenous pig breeds have been carried out in nowadays. The study result of genetic diversity of Chinese indigenous pig breeds with the microsatellite markers recommended by the FAO-ISAG would present the gist for conservation of these breeds. This study is one of the important parts of the project "Measurement of the genetic distance between Chinese indigenous pig breeds" l
    aunched in the autumn of 1999. The conclusion was followed as:
    (1) In this study, all of these markers were polymorphic in the 18 Chinese indigenous pig breed, the smallest number of alleles was 8 (SW951), the largest one was 31 (CGA and S0005), the average was 19.34; the lowest polymorphic information content was 0.584 (S0218), the highest one was 0.896 (CGA), the average was 0.773; all of these breeds shared 57 alleles in 22 loci, but there was no specific allele for a breed.
    (2) The Neighbor-Joining trees constructed from the Cavalli-Sforza and Edwards' chord distance Dc and Nei's genetic distance Da were consistent with each other; but the NJ and UPGMA trees produced from the Da genetic distance had some difference between them; the cluster tree of these breeds with the UPGMA was closer to the distribution of these breeds in geography, and it also had some difference from the classification of them in the book of Pig Breed in China.
    (3) The UPGMA tree was consisted of one small peripheral breeds and two steady inner branches, the peripheral breeds included the Min pig and Mashen pig of the North China Type and the Xiang pig and Diannan Small-ear pig of the South China Type; the two inner branches were mainly consisted of the Central China Type and Southwest Type respectively, the former branch included the breeds of the Shazhi Ling pig, Daweizhi pig, Ningxiang pig and Taoyuan pig from the Central China Type, the Pengzhou Mountanious pig from the Southwest Type and the Hetao Large-ear from the North China Type; in the later branch, the breeds of the Kele pig, Fuyuan pig, Rongchang pig, Chenghua pig and Neijiang pig and the Tibeta pig from the Plateau
    
    
    Type clustered together firstly, then met the Guanling pig from the Southwest Type and the Hanjiang Black pig from the North China Type.
    (4) When the 18 indigenous pig breeds analyzed with other breeds in the project "Measurement of the genetic distance between Chinese indigenous pig breeds", the Min pig clustered with other breeds from the North China Type, the Xiang pig and Diannan Small-ear pig clustered with other breeds from the South China Type. But the Hanjiang Black pig clustered with the breeds from the Southwest China Type and the Hetao Large-ear pig clustered with the breeds from the Central China Type, which was not consistent with the classification in the book of Pig Breed in China.
    (5) Supposed the mutation rate of the microsatellite was 4.5 x 10-4 and 8.0 x 10-5 per year, the estimated differentiation time among the Chinese indigenous pig breeds were ranged from 413.8 to 2036.8 and 2327.8-11457.2 year from the Nei's standard genetic distance, respectively. The average differentiation time between the indigenous pig breeds and the commercial breeds were 2400.4 and 13803.95 with different mutation rate of the microsatellite.
    (6) More attention on breed conservation should be given to the Mashen pig in the 18 Chinese indigenous pig breeds. There was great genetic variation stored in other breeds who had large population. The utlization
引文
1.丁向东,张勤.不连续性状QTL的谱系不平衡检验.见:陈瑶生主编,中国动物遗传育种研究进展—第十二次全国动物遗传育种学术会议论文集,2003,55-58
    2.马克平.试论生物多样性的概念。生物多样性,1993,1(1):20-21
    3.方美英,刘红林,姜志华,李齐贤,陈杰,吴彦宁.6个猪种胰岛素样生长因子-1(IGF-1)基因座位遗传多态性检测.畜牧与兽医,1999,31(1):12-13
    4.王林云.中国养猪业该如何发展?中国牧业通迅,2003,12:24-25
    5.王昕,曹红鹤,耿社民,李宏滨,马月辉,郑友民.用微卫星标记对中国4种小型猪的遗传多样性研究.畜牧兽医学报,2002,33(6):530-532
    6.王勇强.利用随机QTL效应模型定位QTL和估计QTL方差组分的研究.[博士学位论文].北京:中国农业大学图书馆,1998
    7.兰宏,王文,施立明.西南地区家猪和野猪的mtDNA遗传多样性研究.遗传学报,1995,22:28-33
    8.田志华,张成忠,钟金城,袁季广.藏猪血液蛋白多态性的研究.西南民族学院学报(自然科学版),1999,25(3):278-284
    9.任军,黄路生,艾华水,Gary E,高军,陈克飞,丁能水,邓素华.24个中外猪种的AFLP多态性及其群体遗传关系.遗传学报,2002,29(9):774-781
    10.任军,黄路生,高军,陈克飞,丁能水,林万华,罗明,江西地方猪种(群)的RAPD分析及其品种分类研究,中国农学通报,1999,15(3):21-25。
    11.刘中禄,魏泓,曾养志,王爱德,甘世祥.中国三种实验用小型猪线粒体DNAD-loop多态性分析.遗传,2001,23:123—127
    12.刘红林,姜志华,方美英,朱婉茹,陈杰.中国地方猪生长激素基因HhaⅠ酶切片段多态特征研究.江苏农业学报,1998,14(2):85-89
    13.刘武德,杨关福,李加琪.用RAPD方法分析六个品种猪的亲缘关系.华南农业大学学报,1997,18(增刊):85-89
    14.孙宗炎,唐煌辉,杨仕柳,孟安明.应用DNA指纹图谱法对湘白猪群体遗传结构的研究.畜牧兽医学报,1995,28(1):29-30
    15.许振英.中国一些地方猪生物及经济性状研究总结.见:许振英主编,中国地,方猪种种质特性,杭州:浙江科学技术出版社,1989,235-251
    16.何鑫,朱鼎,韩战营,刘晓明,王谷亮,初少莉,张伟忠,周怀发,茅守玉,庄启南,赵彦,黄薇.应用微卫星DNA基因分型技术进行双生子卵型鉴定.中华医学遗传学杂志,2001,18(6):421-426
    17.吴小秋,张亚平,丁波,陈永久,熊绿芸,何照范.中国主要地方品种猪血液蛋白遗传多样性研究.动物学矾究,1999,20:252-257
    18.吴小秋,张亚平.中国主要猪种蛋白多态及遗传多样性研究.西南地区遗传学研究,1992-1996,188
    19.吴丰春,魏泓,王爱德.AFLP技术用于巴马小型猪遗传多样性的研究.中国实验动物学杂志,2002,12(4):207-209
    20.吴开平,吴丰春,魏泓,王爱德,甘世祥,曾养志.五种品系猪亲缘关系的RAPD分析.遗传,2000,22:217—220
    21.吴东颖,马素参,刘明,王沿志,刘春芸.应用Y染色体多态标记对汉族王姓
    
    亲缘关系的研究.人类学学报,2000,19(2):132-138
    22.吴登俊,马丁.费尔斯特.家畜基因组遗传多态标记—微卫星标记研究进展(上),国外畜牧科技,1999,26(1):33-36
    23.吴登俊,马丁.费尔斯特.家畜基因组遗传多态标记—微卫星标记研究进展(下),国外畜牧科技,1999,26(2):37-40
    24.张立教,秦鹏春,段超英著:猪的解剖组织,1984,北京,科学出版社,49-53
    25.张仲葛,李炳坦,陈效华主编.中国猪品种志,上海:上海科学技术出版社,1986
    26.张志和,沈富军,孙姗,David VA,张安居,Broen SJ.应用微卫星分型方法大熊猫父亲鉴定.遗传,2003,25(5):504-510
    27.张沅,张勤编著.畜禽育种中的线性模型.北京农业大学出版社,1993
    28.张细权,李加琪,杨关福编著.动物遗传标记,中国农业大学出版社,1997
    29.张勤.动物遗传育种的计算方法讲义.北京:中国农业大学,2002
    30.张豪.标记辅助预选后测公牛研究.[博士学位论文].北京:中国农业大学图书馆,2002
    31.张德福,丁卫星.小型猪研究的现状及其进展.国外畜牧学,1997,1:28-32
    32.李孟华.中国地方品种山羊微卫星DNA遗传多态性及CLA—DRB3基因第二外显子研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    33.李雪梅,谷忠新,李奎,彭中镇,龚炎长.应用微卫星标记对中国10个品种猪遗传变异的研究.山东农业学报(自然科学版),2000,31(3):261-265
    34.苏玉虹,熊远著,张勤,蒋思文,雷明刚,余雳,郑嵘,邓昌彦.猪胴体脂肪沉积性状的QTL定位.遗传学报,2002,29(8):681-684
    35.邱家祥,喻春元.新疆白猪染色体的比较特征.仲恺农业技术学院学报,2001,14(1):26-31
    36.陈丙波,王传广,周建华,魏泓,王爱德,甘世祥.广西巴马小型猪和贵州小型香猪的DNA指纹分析.2003,25(7):620-622
    37.陈丙波,周建华,魏泓,曾养志.西双版纳小耳猪DNA指纹分析.遗传,2001,23(4):295-297
    38.周俊玲,彭中镇,李奎,赵书红,龚炎长,熊统安,刘平华,陈永久,张亚平, 罗明,黄路生.二花脸与杜洛克猪的RAPD分析.畜牧兽医学报,1998,29:392-396
    39.昔奋攻,戴茹娟,李宁,曹更生,赵要凤,吴常信.猪肥胖基因(ob)位点的RFLP多态性分析.农业生物技术学报,2000,8(2):123-124
    40.林万华,高军,陈克飞,丁能水,艾华水,郭源梅,李琳,黄路生.猪MyoG基因的PCR—RFLP多态分析.遗传,2003,25(1):22-26
    41.罗林广,王新望,罗绍春.分子标记及其在作物遗传育种中的应用.江西农业学报,1997,9(1):45-54
    42.施立明.宿兵,张亚平.遗传多样性研究的原理和方法概论.见:季维智,宿兵主编.遗传多样性研究的原理和方法,浙江科学技术出版社,1999,1
    43.施启顺,黄生强,柳小春,贺长青,蒋隽.不同猪种E.coli F18受体基因的多态性.遗传学报,2003,30(3):221-224
    44.胡文平,连林生,刘爱英,林世英,张亚平.云南地方猪种线粒体DNA多态性研究.畜牧兽医学报,1998,29:94-97
    45.胡文平,连林生,宿兵,聂龙,张亚平.云南地方猪血液蛋白多态性研究.遗
    
    传,1997,19(5):30-33
    46.徐宁迎,Thomsen H,Reinsch N,Looft C,Kalm E.利用微卫星进行奶牛数量性状基因位点定位的研究.遗传学报,2000,27(9):772-776
    47.秦春圃.中力地方猪种的研究现状和展望.中国畜牧杂志,1994,30(6):48-50
    48.聂龙,施立明.西南地区地方品种血猪液蛋白遗传多样性研究.生物多样性,1995,3(1):1-7
    49.陶士珩,张荣梅,储建华,刘晓明,杜丽萍,齐庆远,罗泽伟.混合群体连锁不平衡的群体遗传学模型.科学通报,2000,45(19):2041-2046
    50.陶钧,邹峄.湖南地方猪种群亲缘关系的生化遗传学研究.畜牧兽医学报,1992,23(1)13-21
    51.商海涛,牛荣,魏泓,黄中波,甘世祥,王爱德,曾养志.三品系小型猪35个微卫星基因座的遗传学研究.遗传,2001,23(1):17-20
    52.常青,周开亚,王义权,掌子凯,曹霄.太湖猪遗传多样性和系统发生关系的RAPD分析.遗传学报,1999a,26(5):480-488
    53.常青,周开亚,掌子凯,曹霄.野猪和几种家猪亲缘关系的RAPD分析.应用与环境生物学报,1999b,5(4):382-386
    54.常洪,米玛次仁,李相运,任战军,顿望,德吉央宗,常国赋.新遗传资源林芝猪调查.2002,中国农业科学,35(9):1114-1118
    55.常洪主编.家畜遗传资源学纲要.北京:中国农业出版社,1995
    56.曹胜炎.中国地方良种猪遗传资源的保存和利用.湖北农业科学,1992,6:34-38
    57.曹胜炎.中国地方良种猪遗传资源的保存和利用.湖北农业科学,1993,12:38-41
    58.曹胜炎.猪的育种目标与选择原则.见:彭中镇主编,猪的遗传改良,北京:农业出版社,1994,138-139
    59.盛志廉.中国猪多样性的保护与利用.见:陈瑶生,潘玉春主编,中国家畜遗传资源保护与利用-盛志廉先生80寿辰纪念文集,北京:中国农业科学技术出版社,2003c,29-35
    60.盛志廉.再论保护家畜多样性.见:陈瑶生,潘玉春主编,中国家畜遗传资源保护与利用-盛志廉先生80寿辰纪念文集,北京:中国农业科学技术出版社,2003b,21-28
    61.盛志廉.论保护家畜多样性.见:陈瑶生,潘玉春主编,中国家畜遗传资源保护与利用-盛志廉先生80寿辰纪念文集,北京:中国农业科学技术出版社,2003a,10-20
    62.章胜乔,徐继初,张亚平,傅衍,陈永久.浙江地方猪种线粒体DNA多态及遗传多样性研究.动物学研究,1998,19:125-130
    63.黄勇富,张亚平,邱祥聘,曾凡同,肖永祚.猪线粒体DNA多态性与中国猪种起源、分化的关系.遗传学报,1998,25:322-329
    64.黄原编著.分子系统学——原理、方法及应用.北京:中国农业出版社,1998
    65.黄路生,邹峄.中国部分猪种同种异名问题的研究Ⅱ.二头乌猪、小耳猪体型性状及生产性能的多元遗传分析.畜牧兽医学报,1990,20(3):215-220
    66.彭中镇.猪的血型与蛋白多态性.见:彭中镇主编,猪的遗传改良,北京:农业出版社,1994,15
    67.彭中镇.猪新品系的培育.见:彭中镇主编,猪的遗传改良,北京:农业出版
    
    社,1994,179-187
    68.蒋思文,Giuffra E,Andersson L,熊远著.6个中国猪地方品种和3个瑞典猪DNA分子系统发育相关分析.遗传学报,2001,28:1120-1128
    69.蒋曹德,邓昌彦,熊远著.6个中外猪品种的RAPD分析.遗传,2003,25(2):151-154
    70.詹铁生,袁志发,柳万生.银染核仁组成区(Ag—NOR)与家猪品种的起源进化.畜牧兽医学报,1998,20(1)1-6
    71.樊斌,刘榜,余梅,赵书红,朱猛进,熊统安,彭中镇,李奎.中国小型猪品种遗传多样性的RAPD研究.华中农业大学学报,2003,22(3):240-242
    72.樊斌.地方猪遗传多样性的微卫星DNA标记检测与评估方法研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    73. Abdel-Azim G, Freeman A E. A rapid method for computing the inverse of the genetic covarianee matrix between relatives for a marked Quantitative Trait Locus. Genet. Sel. Evol., 2001, 33:153-174
    74. Alfonso L, Haley C S. Power of different F2 schemes for QTL detection in livestock. Animal Science, 1998, 66:1-8
    75. Allison D B. Transmission-disequilibrium tests for quantitative traits. Am. J. Hum. Genet., 1997, 60:676-690
    76. Andersson L, Haley C S, Ellegren H, Knott S A, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I, Hakansson J, Lundstrm K. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science, 1994, 263 (25):1771-1774
    77. Andersson-Eklund L, Marklund L, Lundstrom K, Haley C S, Andersson K, Hansson I, Moller M, Andersson L. Mapping quantitative trait loci for carcass and meat quality traits in a wild boar x Large White intercross. Journal of Animal Science, 1998, 76:694-700
    78. Andersson-Eklund L, Uhlhorn H, Lundstrom K, Dalin G, Andersson L. Mapping quantitative trait loci for principal components of bone measurements and osteochondrosis scores in a wild boar x Large White intercross. Genetical Research, 2000, 75:223-230
    79. Ashton G C. Beta-globulin alleles in some zebu cattle. Nature, London, 1959, 184:1135-11366
    80. Ashton, G C. Serum protein differences in cattle by starch gel eletrophoresis. Nature, 1957, 180:917-9199
    81. Barendse W, Waimain D, Kemp SJ, Sugimoto Y, Armitage S M, A medium-density genetic linkage map of the bovine genome. Mammal Genome, 1997, 8:21-28
    82. Barker J S F, Moore S S, Hetzel D J S, Evans D, Tan S G, Byrne K. Genetic diversity of Asian water buffalo (Bubalus bulalis): microsatellite variation and a comparison with protein-coding loci. Animal Genetics, 1997, 28:103-115
    83. Barker J S F. A global protocol for determining genetic distance among domestic livestock breeds. Proc. 5th World Congr. Genet. Appl. Livest. Prod., 1994, 21:501-508
    84. Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Lagant H, Quintanilla R, Renard C, Gellin J, Ollivier L,
    
    Chevalet C. Detection of quantitative trait loci for growth and fatness in pigs. Genetics Selection Evolution, 2001a, 33:289-309
    85. Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Boscher M Y, Bourgeois F, Caritez J C, Gruand J, Le Roy P, Lagant H, Bonneau M, Lefaucheur L, Moruot J, Prunier A, Désautés C, Monnéde P, Renard C, Vainman M, Robic A, Gellin J, et. al. Dútection de locus á effects quantitatifs dans le croisement entre les races porcines large White et Meishan. Résultats et perspectives. Journées de la Recherche Porcine en France, 2000, 32:369-383
    86. Bidanel J P, Milan D, Renard C, Gruand J, Moruot J. Detection of quantitative trait loci for intramuscular fat content and lipogenic enzyme activities in Meishan x Large White F2 pigs. Proceedings of the 7th World Congress Applied to Livestock Production, 2002
    87. Bidanel J P, Prunier A, Iannuccelli N, Milan D. Detection of quantitative trait loci for male and female reproductive traits in Meishan x Large White F_2 pigs. Book of abstracts of the 51~(st) Annual meeting of the European Association for Animal Production, 2001b, Wageningen Pers, Wageningen, The Netherlands 7, 54
    88. Bidanel J P, Rothschild M. Current status of quantitative trait locus mapping in pigs. Pig News and Information, 2002b, 23(2): 39-53
    89. Bidanel J P. Potential use of prolific Chinese breeds in maternal lines of pigs. Proc. 4th World Cong. on Genet. Appl. to Livestk. Prod, 1990, XV: 481-484
    90. Bjrnstad G, Red K H. Breed demarcation and potential for breed allocation of horses assessed by microsatellite marders. Animal Genetics, 2001, 32:59-65
    91. Blxckbum E H. Structure and function of telomerses. Nature, 1991, 350:569-573
    92. Bodnar J W, Ward D C. Highly recurring sequence elements identified in eukaryotic DNAs by computer analysis one often homologous to regulatory sequences or protein binding sites. Nucleic Acids Res., 1987, 15:1835-1850
    93. Boehnke M. Estimating the power of a proposed linkage study: a practical computer simulation approach. Am. J. Hum. Genet., 1986, 39:513-527
    94. Bost B, Vienne D D, Hospital F, Moreau L, Dillmann C. Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects. Genetics, 2001, 157:1773-1787
    95. Botstein D, White R L, Skolnick M, Davis R. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 1980, 32:314-331
    96. Bowcock A M, Ruiz-Linaraes A, Tomfohrde J, Minch E, Kidd J R, Cavalli-Sforza L L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 1994, 368:455-457
    97. Braten D C, Thomas J R, Little R D. Location and contexts of sequences that hybridize to poly(GT)/(CA) in mammalian rebosomal DNAs and two x-linked genes. Nucleic Acids Res., 1988, 16:865-879
    98. Bretten R J, Kohne D E. Repeated sequences in DNA. Science, 1968, 161:529-540
    99. Casas-Carillo E, Prill-Adams A, Price S G, Clutter A C, Kirkpatrick B W. Mapping genomic regions associated with growth rate in pigs. Journal of Animal Science, 1997, 75:2047-2053
    
    
    100. Cassady J P, Johnson R K, Pomp D, Rohrer G A, Van Vleck L D, Spiegel E K, Gilson K M. Identification of quantitative trait loci affecting reproduction in pigs. Journal of Animal Science, 2001, 79:623-633
    101. Cavalli-Sforza L L, Menozzi P, Piazza A. The History and Geography of Human Genes. Princeton University Press, Princeton, NJ, 1994
    102. Cornuet J M, Pity S, Luikart G, Estoup A, Solignac M. 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics. 153:1989-2000
    103. Crooijmans R P, Graen A F, van Kampen A J, van der Beek S, van der.Poel J J, Groenen M A. Mierosatellite polymorphism in commercial broiler and larger lines estimated using pooled blood samples. Poultry Science, 1996, 75:904-909
    104. Darvasi A, Soller M. Advanced intercross lines: an experimental population for fine genetic mapping. Genetics, 1995, 141:1199-1207
    105. Darvasi A, Weinreb A, Minke V, Weller J I, Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map position using a saturated genetic map. Genetics, 1993, 134:943-951
    106. De Koning D J, Harlizius B, Rattink A P, Groenen M A M, Brascamp E W, van Arendonk J A M. Detection and characterization of quantitative trait loci for meat quality traits in pigs. Journal of Animal Science, 2001b, 79:2812-2819
    107. De Koning D J, Janss L L G, Rattink A P, van Oers P A M, de Vries B J, Groene M A M n, van der Poel J J, de Groot P N, Brascamp E W, Groenen J A M, Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Genetics, 1998, 152:1679-1690
    108. De Koning D J, Rattink A P, Harlizius B, Groenen J A M, Brascamp E W, Groenen M A M. Genome wide scan for body composition in pigs reveals important role of imprinting. Proceedings of the National Academy of Science, USA, 2000, 97:7949-7950
    109. De Koning D J, Rattink A P, harlizius B, Groenen M A M, Brascamp E W, van Arendonk J A M. Detection and characterization of quantitative trait loci for growth and reproduction in pigs. Livestock Production Science, 2001a, 72:185-198
    110. Désautés C, Milan D, Bidanel J P, Iannuccelli N, Amigues Y, Bourgeois F, Caritez J C, Renard C, Chevalet C, Morméde P. Genetic mapping of quantitative trait loci for behavioural and neuroendocrine traits in pigs. Journal of Animai Science, 2002
    111. Diez T, Littlejohn R P, Almeida P A R. Genetic variation within the Merino sheep breed: analysis of closely related populations using microsatellites. Animal Genetics, 2000, 31:243-251
    112. Doris B, Steren V, Barbara Z, Brem G, Schlotterer C. Distribution of dinucleotide microsatellites in the drosophila melanogaster genome. Mol. Biol. Evol., 1999, 16(5):602-610
    113. Edfors-Lilja I, Wattrang E, Andersson L, Fossum C. Mapping quantitative trait loci for stress induced alterations in porcine leukocyte numbers and functions. Animal Genetics, 2000, 31: 186-193
    114. Edfors-Lilja I, Wattrang E, Marklund L, Moller M, Andersson-Eklund L, Andersson L, Fossum C. Mapping quantitative trait loci for immune capacity in the pig. Journal
    
    of Immunology, 1998, 160:829-835
    115. Ellegren H. Mutation rates at porcine microsatellite loci. Mamm Genome, 1995, 6(5):376-377
    116. Elston R C, Forthofer R. Testing for Hardy-Weinberg equilibrium in small samples. Biometrics, 1977, 33:536-542
    117. Evans G J, Giuffra E, Sanchez A, Kerje S, Davalos G, Vidal O, Illai S, Noguera J L, Varona L, Velander I, Southwood O I, de Koning D J, Haley C S, Plastow G S, Andersson L. Identification of Quantitative Trait Loci for Production Traits in Commercial Pig Populations. Genetics, 2003, 164:621-627
    118. Falconer D S, Mackey T F C. Introduction to Quantitative Genetics, 4th ed. Addison Wesley Longman Limited, Essex, England, 1996
    119. Fan B, Wang Z G, Li Y J, Zhao X L, Liu B, Zhao S H, Yu M, Li M H, Chen S L, Xiong T A, Li K. Genetic variation analysis within and among Chinese indigenous swine populations using microsatellite loci. Animal Genetics, 2002, 33(6):422-427
    120. Fan B, Yang S L, Lit B, Yu M, Zhao S H, Li K. Characterization of the genetic diversity on natural po(?)ulations of Chinese miniature pig breeds. Animal Genetics, 2003, 34:465-466
    121. Famir F, Grisart B, Cop ieters W, Riquet J, Berzi P, Cambisano N, Karim L, Mni M, Moisio S, Simon P, Wagenaar D, Vilkki J, Georges M, Simultaneous mining of linkage and linkage disequilibrium to fine map Quantitative Trait Loci in outbred half-sib pedigrees: revisiting the location of a Quantitative Trait Locus with major effecton milk production on bovine chromosome 14. Genetics, 2002, 161:275-287
    122. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.57c. Department of Genetics, University of Washington, Seattle, 1993
    123. Fernando R L, Grossman M. Marker-asssisted selection using best linear unbiased prediction. Genet. Sel. Evol., 1989, 21:467-477
    124. Flint J, Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat. Rev. Genet., 2001, 2:437-455
    125. Georges M, Nielsen D, Mackinnon M Mishra A, Okimoto R, Pasquino A T, Sargeant L S, Sorensen A, Steele M R, Zhao X, Womack J E, Hoeschele I. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics, 1995, 139:907-920
    126. Goldstein D B, Ruiz-Linares A R, Cavalli-Sforca L L. Genetic absolute dating based on microsatellites and the origin of modem humans. Proc.Natl.Acad.Sci.USA, 1995, 92:6723-6727
    127. Gotz K U, Hamann H. Detection of QTLs in populations with hierarchical structures. 2nd European Workshop on Advanced Biometrical Methods in Animal Breeding. Salzburg, Austria, 1995, June 12-20
    128. Graser H U, Smith S P, Tier B. A derivative-free approach for estimating variance components in animal models by restricted maximum likelihood. J. Anim. Sci., 1987, 64:1362-1370
    129. Grignola F E, Hoeschele I, Tier B. Mapping quantitative trait loci via Residual Maximum Likelihood: I. Methodology. Genet. Sel. Evol. 1996a, 28:479-490
    130. Grignola F E, Hoeschele I, Zhang Q, Tier B. Mapping quantitative trait loci via
    
    Residual Maximum likelihood: Ⅱ. A simulation study, Genet. Sel, Evol., 1996b, 28:491-804
    131. Grignola F E, Zhang Q, Hoeschele I. Mapping linked quantitative trait loci via Residual Maximum Likelihood. Genet. Sel. Evol. 1997,29:529-544
    132. Grindflek E, Szyda J, Liu Z, Lien S. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mammalian Genome, 2001, 12:299-304
    133. Haldane J B S. The combination of linkage values and the calculation of diatances between the loci of linked factors. J. Genet., 1919, 8:299-309
    134. Haley C S, Knott S A, Elsen J M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics, 1994, 136:1195-1207
    135. Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 1992, 69:315-324
    136. Hampe J, Wienker T, Schreiber S, Narnberg P. POPSIM: a general population simulation program. Bioinformatics, 1998, 14(5): 458-464
    137. Harlizius B, Rattink A P. De Koning D J, Faivre M, Joosten R G, van Arendonk J A M, Groenen M A M. The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Mammalian Genome, 2000, 11:800-802
    138. Haseman J K, ELSTON R C. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet., 1972, 2:3-19
    139. Hayes B, Goddard M E. The distribution of the effects of genes affecting quantitative traits in livestock. Genet. Sel. Evol., 2001, 33:209-229
    140. Hernánde-Sánchez J, Visscher P, Plastow G, Haley C. Candidate gene analysis for quantitative traits using the transmission disequilibriaum test: the example of the melanocortin 4-receptor in pigs. Genetics, 2003, 164:637-644
    141. Hill W G. Selection with recurrent backcrossing to develop congenic lines for quantitative trait loci analysis. Genetics, 1998,, 148:1341-1352
    142. Hill W G. The use of selection experiments for detecting quantitative trait loci. Genet. Res., 1997, 69:227-232
    143. Hirooka H, De Koning D J, Harlizius B, Van Arendonk J A M, Rattink A P, Groenen M A M, Brascamp E W, BovenhuisH. A whole-genome scan for quantitative trait loci affecting teat number in pigs. Journal of Animal Science, 2001, 79:2320-2326
    144. Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 1988, 75:800-802
    145. Hoeschele I, Uimari P, Grignola F E, Zhang Q, Gage K M. Advances in statistical methods to map quantitative trait loci in outbred population. Genetics, 1997, 147:1445-1457
    146. Hoeschele I. Elimination of quantitative trait loci equations in an animal model incorporating genetic marker data. J. Dairy Sci., 1993, 76:1693-1713
    147. Huijser P, Hennig W, Dijkhof R. Poly (CA)/(GT) repeats in the Drosophila genome: a key function for dosage compensation and position effects? Chromosomes, 1987, 95:209-215
    148. Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136:1447-1455
    
    
    149. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135:205-211
    150. Jeffreys A J, Wilson V, Thein S L. Hypervariable 'minisatellite' regions in human DNA. Nature, 1985, 314:67-73
    151. Jeon J T, Carlborg O, Trnsten A, Giuffra E, Amarger V, Chardon P, Anersson-Eklund L, Andersson K, Hansson I, Lundstrm K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics, 1999, 21:157-158
    152. John S, Taylor, Jonathan M, Darkin H. The death of a microsatellite: A phylogenetic perspective on microsatelliteinterruptions. Mol. Biol. Evol., 1999, 16(4): 567-572
    153. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152:1203-1216
    154. Kennedy B W. Chapter 3: Selected Populations, Quantitative genetics. 1993 http://www.aps.uoguelph.ca/~lrs/kennedy/chap3/chap3.pdf
    155. Kimura M, Crow J F. The number of alleles that can be maintained in a finite population; Genetics, 1964, 49:725-738
    156. Kimura M, Crow J F. The number of alleles that can be maintained in a finite population. Genetics, 1964, 49:725-738
    157. Kimura M, Crow J F. The number of alleles that can be maintained in a finite population. Genetics, 1964, 49:725-738
    158. Knott S A, Elsen J M, Haley C S. Multiple marker mapping of quantitative trait loci in halfsib populations. Proc. 5th World Congr. Genetics Appl. Livest. Prod. Sci., 1994, Guelph, Canada, 21:33-36
    159. Kruglyak S, Darrett R, Schug M D, Aquadro C F. 2000. Distribution and abundance of microsatellite in the Yeast genome can be expected by a balance between slippage events and point mutations. Mol. Biol. Evol. 17(8): 1210-1219.
    160. Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199
    161. Latter B D H. Selection. in finite populations with multiple alleles. Ⅲ. Genetic divergence with centripetall selection and mutation. Genetics, 1972, 70:475-490
    162. Laval G, Iannuccelli N, Legault C, Milan D, Groenen M A M, Giuffra E, Andersson L, Nissen P H, Jrgensen C B, Beechmann P, Geldermarm H, Fouliey J L, Chevalet C, Ollivier L. Genetic diversity of eleven European pig breeds. Genet Sel Evol, 2000, 32:187-203
    163. Legault C, Gruand J. Improvement of litter size in sows by creation of a 'hyperprolific' line and use of artificial insemination: theory and preliminary results. Journees Recherche Porcine France, 1976, 8:201-206
    164. Levene H. On a matching problem arising in genetics. Ann. Math. Stat., 1949, 20:91-94
    165. Li K, Chen Y, Moran C, Fan B, Peng Z. Analysis of diversity and genetic relationship between four Chinese indigenous pig breeds and one Australia commercial pig breeds. Animal Genetics, 2000, 31:322-325
    166. Litt M, Luty J Z. A hypervariable microsatellite revealed by in vetro amplification of
    
    a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet., 1989, 44:397-401
    167. Longmire J L, Hahn D C, Roach J L. Low abundance of mierosatellite repeats in the genome of the Brow-headed cowbird. The Journal of Heredity, 1999, 90(5):574-578
    168. Lowenkaupt K, Rich A, Pardue M L. Nonrendam distrbrtion of long mono-and dinucteotide repeats in Propsophila chromosomes: correlations with dosage compensation, heterochromatin, and recombination. Mol Cell Biol., 1989, 9:1173-1182
    169. Luo Z W, Wu C I, Kearsey M J. Precision and high - resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics, 2002, 161:915-929
    170. Lynch M, Walsh B. Genetics and Analysis of Quantitative Traits. 1998, Sunderland, Mass.:Sinauer Associates
    171. MacHugh D E, Loftus R T, Cunningham P, Bradley D G. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Animal Genetics, 1998, 29:333-340
    172. Mackinnon M J, Weller J I. Methodology and accuracy of estimation of quantitative trait loci parameters in a halfsib design using maximum likelihood. Genetics, 1995, 141 : 755-770
    173. Maddox J. Triplet repeats genes raise question. Nature, 1994, 368 (647) :685
    174. Majewski J, Ott J. GT repeats are assoceated with recombination on human chromosome 22. Genome Researchl 2000, 10:1108-1114
    175. Malek M, Dekkers J C M, Lee H K, Bass T J, M F Rothschild. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mammalian Genome, 2001 a, 13:630-636
    176. Malek M, Dekkers J C M, Lee H K, Bass T J, Prusa K, Huff-Lonergan E, Rothschild M F. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. Ⅱ. Meat and muscle composition. Mammalian Genome, 2001b, 12:637-645
    177. Marklund L, Nystrom P E, Stern S, Andersson-Eklund L, Andersson L. Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity, 1999, 82 : 134~141.
    178. Martin E R, Kaplan N L, Weir B S. Tests for linkage and association in nuclear families. Am J Hum Genet, 1997, 61:439-448
    179. Martin E R, Monks S A, Warren L L, Kaplan N L. A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am. J Hum Genet., 2000, 67:146-154
    180. Martinez A M, Delgado J V, and Rodero A, Vega-Pla J L. Genetic structure of the Iberian pig breed using microsatellites, Anim. Genet., 2000, 31:295-301.
    181. Messier W, Li S, Stewart C. The birth of microsatellites. Nature, 1996, 381 : 483
    182. Meuwissen T H E, Goddard M E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics, 2000, 155:421-430
    183. Meuwissen T H E, Hayes B J, Goddard M E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics, 2001, 157:1819-1829
    
    
    184. Meuwissen T H E, Karlsen A, Lien S, Olsaker I., Goddard M E. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics, 2002, 161:373-379
    185. Milan D, Iannuccelli N, Riquet J, Amigues Y, Caritez J C, Gruand J, Le Roy P, Lagant H, Renard C, Chevalet C, Bidanel J P. Detection of quantitative trait loci for carcass composition traits in pigs. Genetics Selection Evolution, 2002, 34:705-728
    186. Minch E. MICROSAT Version 1.5b (Macintosh). University of Stanford. Stanford, CA. 1998
    187. Moser G, MUller E, Beeckmann P, Yue G, Geldermann H. Mapping of QTLs in F_2 generations of Wild Boar. Piétrain and Meishan pigs. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, 1998, 26:478-481
    188. Mott R, Flint J. Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics, 2002, 160:1609-1618
    189. Mott R, Talbot CJ, Turri M G, Collins A C, Flint J. From the cover: a method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA, 2000, 97:12649-12654
    190. Nagamine Y, Haley C S, Sewalem A, Visscher P M. Quantitative Trait Loci variation for growth and obesity between and within lines of pigs. Genetics, 2003, 164:629-635
    191. Nandu I, Neitzel H, Sperting K.. Simple GAT/CA repeats characterize the x chromosomal heterochromatin of microtus agrestis. European field vole chromosoma, 1988, 96:213-219
    192. Nei M, Tajima R, Tateno Y. Accuracy of estimated phylogenetic trees from moleculars data. J. Mol. Evol. 19:153-170
    193. Nei M. Estimation of averagee heterozygousity and genetic distance from a small number of individuals. Genetics, 1978, 89:583-590
    194. Nei M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet., 1977, 41:225-233
    195. Nei M. Genetic distance between populations, Amer. Naturalist, 1972, 106:283-293
    196. Nei M. Mathematical models of speciation and genetic distance. In: Karlin S, Nevo E (eds) Population genetics and ecology. 1976, Academic Press, New York, 723-766
    197. Nei M. Molecular evolutionary genetics. Columbia Univ. Press New York, 1987
    198. Nezer C, Collette C, Moreau L, Brouwers B, Kim J J, Giuffra E, Buys N, Andersson L, Georges M. Haplotype sharing refines the location of an imprinted quantitative trait locus with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Genetics, 2003, 165:277-285
    199. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics, 1999, 21: 155-156
    200. Nystrom P E, Andersson-Eklund L, Stem S, Marklund L, Andersson L, Haley C S. Use of astochastic method for interval mapping of quantitative trait loci on porcine chromosome 4. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production, Armidale, N.S.W., 11-16 January, 1998
    
    
    201. Ota T. DISPAN: Genetic Distance and Phylogenetic Analysis. Pennsylvania State University, University Park, 1993
    202. Ovilo C, Pérez-Ensico M, Barragan C, Clop A, Rodriguez C, Oliver M A, Toro M A, Noguera J L. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mammalian Genome, 2000, 11:344-346
    203. Paszek A A, Flickinger G H, Fontanesi L, Beattie C W, Rohrer G A, Alexander L, Schook 1 B. Evaluating evolutionary divergence with microsatellites. J Mol Evol, 1998, 46:121-126
    204. Paszek A A, Wilkie P J, Flickinger G H, Rohrer G A, Alexander L J, Beattie C W, Shook L B. Interval mapping of growth in divergent swine cross. Mammalian Genome, 1999, 10:117-122
    205. Patterson H D, Thompson R. Recovery of inter-block information when block sizes are unequal. Biometrika, 1971, 58:545-554
    206. Pérez-Ensico M, Clop A, Noguera J L, Ovilo C, Coll C, Folch J M, Babot D, Estany J, Oliver M A, Diaz I, Sanchez A. A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from an Iberian by Landrace intercross. Journal of Animal Science, 2000, 78:2525-2531
    207. Peter Vogt. Potential genetics functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Human Genetics, 1990, 84:301-336.
    208. Prevosty A, Ocana J, Alonzo G. Distances between populations for Drosophila subobscura based on chromosome arrangement frequeneyes. Theor. Appl. Genet., 1975, 45:231-241
    209. Primmer C R, Randsepp T, Chowdhary B P, Moller A P, Ellegren H. 1997. Low frequency of microsatellites in the avian genome. Genome Research. 7:471-482.
    210. Pritchard C1, Cox D R, Myers RM. The end in sight for Huntington disease, Am. J. Hum. Genet., 1991,49:1-6
    211. Quintanilla R, Demeure O, Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Gruand J, Renard C, Chevalet C, Bonneau M. Detection of quantitative trait loci for fat androstenone levels in pigs. Journal of Animal Science, 2003, 81:385-394
    212. Quintanilla R, Milan D, Bidanel J P. A further look at quantitative trait loci affecting growth and fatness in a cross between Meishan and Large White pig populations. Genetics Seleciton Evolution, 2002a, 34:193-210
    213. Rathje T A, Rohrer G A, Johnson R K. Evidence for quantitative trait loci affecting ovulation rate in pigs. Journal of Animal Science, 1997, 75:1486-1494
    214. Raymond M, Rousset F. GENEPOP (Version 3.3): Population genetics software for exact tests and ecumenicism. J. Hered., 1995, 86:248-249
    215. Riquet J, Coppieters W, Cambisano N, Arranz J, Berzi P, Davis S K, Grisart B, Farnir F, Karim L, Mnim M, Simon P, Taylor J F, Vanmanshoven P, Wagenaar D, Womack J E, Georges M. Fine-mapping of quantitative trait loci by identity by descent in outbred populations: Application to milk production in dairy cattle. Proc. Natl. Acad. Sci. USA, 1999, 96:9252-9257
    216. Rogers J S. Measures of genetic similarity and genetic distance. In: Studies in Genetics Ⅶ. 145-153, University of Texas Publication 7213, Austin, TX, 1972
    
    
    217. Rohrer G A, Ford J J, Wise T H, Vallet J L, Christenson R. K. Identification of quantitative trait loci affecting female reproductive traits in a multigeneration Meishan-White composite swine population. Journal of Animal Science, 1999, 77:1385-1391
    218. Rohrer G A, Keele J W. Identification of quantitative trait loci affecting carcass composition in swine: Ⅰ. Fat deposition traits. Journal of Animal Science, 1998a, 76:2247-2254
    219. Rohrer G A, Keele J W. Identification of quantitative trait loci affecting carcass composition in swine: Ⅱ. Muscling and wholesale product yield traits. Journal of Animal Science, 1998b, 76:2255-2262
    220. Rohrer G A, Wise T H, Lunstra D D, Ford J J. Identification of genomic regions controlling plasma FSH concentrations in Meishan White composite boars. Physiological Genomics, 2001, 6:145-151
    221. Rohrer G A. Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White composite resource population. Journal of Animal Science, 2000, 78:2547-2553
    222. Rothschild M F, Liu H C, Tuggle C K, Yu T P, Wang L. Analysis of pig chromosome 7 genetic markers for growth and carcass performance traits. Journal of Animal Breeding and Genetics, 1995, 112:463-510
    223. Sax K. The association of size differences with seed-coat pattern and pigmentation in phaseorus vulgaris. Genetics, 1923, 8:552-560
    224. Scherf B D. World watch list for domestic animal diversity 3~(rd) edition. Food and Agriculture Organization of United Nations, Rome, 2000
    225. Schlttere C, Ritter R, Harr B, Brem G. High mutation rates of long microsatellites alleles in Drosophila melanogaster provide evidence for allele specific mutation rates. Mol. Biol. Evol., 1998, 15:1269-1274
    226. Shriver M, Jin L, Boerwinkle E, Deka R., Ferrell R E. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol. Biol. Evol., 1995, 12:914-920
    227. Skinner D M, Bettie W G, Blattner F R. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (TAGG)_n/(ATCC)_n. Biochemistry, 1984, 13:3930-3937
    228. Smith C, Smith D B. The need for close linkages in marker-assisted selection for economic merit in livestock. Animal Breeding Abstract, 1993, 61(4): 197
    229. Smithies O. Zone Electrophoresis in Starch Gels: Group Variations in the Serum Proteins of Normal Human Adults. Biochem. J., 1955, 61:629-641
    230. Spielman R S, Ewens W J. The TDT and other family traits based tests for linkage disequilibrium and association. Am. J. Hum. Genet., 1996, 59:983-989
    231. Spielman R S, McGinnis R E, Ewens W J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet., 1993, 52:506-516
    232. Sun F, Zhang Y, Wang Z, Yang S H, Study on the genetic relationship among 18 Chinese local breeds using microsatellite DNA markers, 7th World Congress on Genetics Applied to Livestock Production, August 19-23, 2002, Montpellier, France
    
    
    233. Takezaki N, Nei M. Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 1996, 144:389-399
    234. Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl Acids Res., 1984, 12:4127-4138
    235. Terwilliger J D, Ott J. Handbock of Human Genetic Linkage. The Johns Hopkins University Press, Baltimore, MD, 245-250, 1994
    236. Thoday J M. Location of polygenes. Nature, 1961, 191:368-370
    237. Wada Y, Akita T, Awata T, Furukawa T, Sugai N, Inage Y, Ishii K, Ito Y, Kobayashi E, Kusumoto H, Matsumoto T, Mikawa S, Miyake S, Murase A, Shimanuki S, Sugiyama T, Uchida Y, Yanai S, Yasue H. Quantitative trait loci analysis in a Meishan x Gaingen cross population. Animal Genetics, 2000, 31:376-384
    238. Wahls W P. Meiotic recombination hot spots: shapping the genome and insight into hypervariable minisatellite DNA change. Curr. Top. Dev. Biol., 1998, 37:37-75
    239. Walling G A, Archibald A L, Cattermole J A, Downing A C, Finlayson H A, Nicholson D, Visscher P M, Walker C A, Haley C S. Mapping of quantitative trait loci on porcine chromosome 4. Animal Genetics, 1998a, 29:415-424
    240. Walling G A, Archibald A L, Visscher P M, Walker C A, Haley C S. Mapping genes for growth rate and fatness in a Large White x Meishan F_2 pig population. Proceedings of the British Society of Animal Science, 1998b, 7
    241. Walsh B. Applications of index selection. Evolution and Selection of Quantitative Traits, 2000, http://nitro.biosci.arizona.edu/zdownload/Volume2/Chapter24.pdf
    242. Walsh B. Theory of index selection. Evolution and Selection of Quantitative Traits, 2000, http://nitro.biosci.arizona.edu/zdownload/Volume2/Chapter23,pdf
    243. Wang L, Yu T P, Tuggle C K, Liu H C, Rothschild M F. A directed search for quantitative trait loci on chromosome 4 and 7 in pigs. J Anim. Sci., 1998, 76:2560~2567
    244. Wang L, Yu T P, Tuggle C K, Liu H C, Rothschild M F. A directed search for quantitative trait loci on chromosomes 4 and 7 in the pig. Journal of Animal Science, 1998, 76:2560-2567
    245. Wang T, Femando R L, Van der Beek S, Grossman M, Van Arendonk J A M. Covariance between relatives for a marked quantitative trait locus. Genet. Sel. Evol., 1995, 27:251-274
    246. Weeks D E, Ott J, Lathrop G M. SLINK: a general simulation program for linkage analysis. Am. J. Hum. Genet., 1990, 47(Suppl.):204
    247. Weir B S. Genetics Data Analysis Ⅱ. Sunderland, Mass. Sinauer Associates
    248. Wilkie P J, Flickinger G H, Paszek A A, Schook L B. Scan of eight chromosomes for growth, carcass and reproductive traits reveals two likely quantitative trait loci. Anim Genet, 1996, 27(supp12): 117-118
    249. Wilkie P J, Paszek A A, Beattie C W, Alexander L J, Wheeler M B, Schook L B. A genomic scan of porcine reproductive traits reveals possible quantitative trait loci (QTLs) for number of corpora lutea. Mammalian Genome, 1999, 10:573-578
    250. Williams J G, Kubelik A R, Livad J P, et al. Nucleic Acids Research, 1990, 18:6513~6535
    251. Williams J S, Eckduhl T T, Anderson J N. Bent DNA function as a replication
    
    enhancer in saccharomyces cerevisine. Mol Cell Biol., 1988, 8:2763-2769
    252. Wilson A F, Alexa J M, Sorant A M. The Genometric Analysis Simulation Program (GASP): a software tool for testing and investigating methods in statistical genetics. Am. J. Hum. Genet., 1996, 59(Suppl.): 193
    253. Wilson S R. On extending the transmission/disequilibrium test (TDT). Annals of Human Genetics,1997, 61:151-161
    254. Wright S. Coefficients of inbreeding and relationship. Am. Naturalist, 1922, 56:330-338
    255. Wright S. Evolution and the genetics of population, Vol. 3. Experimental results and evolutionary deductions. University of Chicago Press, Chicago, 1977
    256. Wright S. The theory of gene frequencyes. Evolution and the genetics of populations, Vol. 2., University of Chicago Press, Chicago, 1969
    257. Xu S Z, Yi N J. Mixed model analysis of quantitative trait loci. Proc. Natl. Acad. Sci. USA, 2000.97(26):14542-14547
    258. Yang J, Wang J, Kijas J, Liu B, Han H, Yu M, Yang H, Zhao S, Li K, Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs, 2003, 94(5):381-385
    259. Yang L, Zhao H S, Li K, Peng Z Z. Montgomery G W. Determination of relationship among five indigenous Chinese goat breeds with six microsatellite markers. Animal Genetics, 1999, 30:452-456
    260. Yi N J, Xu S Z. Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics, 2001, 157:1759-1771
    261. Zeng Z B. Precision mapping of quantitative trait loci, Genetics, 1994, 136:1457-1468
    262. Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA, 1993, 90:10972-10976
    263. Zhivotovsky L A, Bennett L, Bowcock A M, Feldman M W. Human population expansion and microsatellite variation. Mol. Biol.Evol., 2000, 17 (5):57~767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700