有机小分子半导体薄膜的制备与光电性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酞菁类(Pc)和苝酰亚胺类(PDI)有机小分子半导体具有优良的光热稳定性,其分别作为空穴和电子传导材料,在现代有机光电功能器件的应用中具有重要作用。但从目前的研究来看,制约其应用发展的主要因素是:刚性分子结构导致的难溶解性;低成本且简单易控的成膜方法的欠缺;体系中光物理过程研究的不成熟性。本论文针对这些问题主要研究了如下内容:
     (1)合成了电子给体-受体(D-A)结构的三苯胺(TPA)类空穴传导材料,4,7-二(4-三苯胺基)-2,1,3-苯并噻二唑(TBT),研究了其与三氟乙酸(TFA)的质子化反应,并提出了质子化-电沉积法(PED)的TBT薄膜制备方法,探讨了成膜机理。制得的薄膜由直径可控(20~200 nm)的纳米球紧密排列组成。与旋涂法得到的TBT薄膜相比,PED法制备的薄膜不仅具有较高的结晶度,而且还具有相对较窄的带隙,表明该法可以得到良好空穴传导性质的TPA类结晶薄膜。
     (2)在-0.4 ~ -3.0 V的低电压范围内和低的TFA相对含量条件下,利用PED法制备得到了形貌可控的纳米线、纳米棒及微米带结构的CuPc薄膜。发现在70℃的沉积温度下CuPc能够形成规整的超长纳米线,进而研究了这种超长纳米线的形成过程。
     (3)利用质子化-共电沉积(PCD)的方法制备了TBT:CuPc的本体异质结薄膜。在此共电沉积的过程中,TBT与CuPc影响了彼此的结晶行为。复合薄膜形貌受组分相对含量及沉积时间控制。从TBT的相对摩尔百分含量(TBT%)为70%的TBT:CuPc混合溶液中沉积得到的复合薄膜具有纳米线与纳米球的双连续互穿网络结构。根据薄膜的吸收和发射光谱以及分子能级的匹配性,推测在TBT/CuPc异质结界面能够发生分子间能量和光诱导电荷转移,后者可由从TBT%=50%和70%的TBT:CuPc混合溶液中得到的复合薄膜存在强的表面光电压(SPV)增强效应得到证明。
     (4)研究了N,N’-二(4-甲氧基苄基)-3,4,9,10-苝四羧酸酰亚胺(PDI-32)和N,N’-二(4-乙氧基苯基)-3,4,9,10-苝四羧酸酰亚胺(PDI-123)这两种PDI衍生物与水合肼(HZH)的还原反应,并在此基础上分别利用阴离子自由基-电沉积法(AED)和阴离子自由基-共电沉积法(ACD)制备得到了两种PDI的单一和共混复合薄膜。AED薄膜形貌及分子聚集态受DMF溶液中PDI溶解程度大小影响,而此溶解程度除了与HZH加入量有关外,还受体系存放时间的影响。另外,薄膜的SPV性质表明,PDI-123的纳米颗粒薄膜由于其纳米粒子的表面态及表面O2吸收作用,使得其较PDI-32的纳米带/棒薄膜具有更强的光电压响应。PDI-32:PDI-123复合薄膜在600~700 nm和330~425 nm的吸收带均呈现出光电压增强效应,前者归因于PDI-123纳米粒子的表面态和表面吸附作用使与之相邻的PDI-32分子中的光生激子解离效率提高,而后者为这种表面态和表面吸附与分子间的光诱导电荷转移共同作用的结果。
     (5)基于对TBT和CuPc的PED,及PDI的AED薄膜制备方法的研究,采用逐层电沉积法制备了p/n型的双层异质结薄膜: TBT/PDI-32, TBT/PDI-123, CuPc/PDI-32,CuPc/PDI-123,TBT:CuPc/PDI-32和CuPc/PDI-32:PDI-123。此类双层膜中呈现的SPV增强效应说明在异质结界面存在分子间的光诱导电荷转移作用。且此电荷转移作用对不同类型的光生激子的解离具有不同的影响方式,导致双层膜之间的SPV增强效应具有互补性。另外,对于含有本体复合结构的双层膜,既存在单一双层膜中的界面效应,又存在其本体复合体系中的光电压增强效应。
     本论文不仅为TPA、Pc及PDI类有机小分提供了操作简单、可控性强的单一和复合薄膜的制备方法,而且利用SPV技术对此类光电功能薄膜中的不同类型光生激子的解离机制进行了研究。本论文为这类小分子半导体在有机光电器件中的应用提供了理论依据和研究基础。
Derivatives of phthalocyanine (Pc) and perylene diimide (PDI) as excellent organic semiconductors, have been studied extensively in the organic photoelectric devices. But there still are some obstacles to their applications, such as low solubility, lack of simple and controllable film formation method, and immature theory of the photoelectrical transformation. In this dissertation, the research progresses on these organic semiconductors are summarized firstly. On the base of these, the film formation methods to them and the photoelectrical properties of their films are studied as follows:
     (1) The electron donor-acceptor (D-A) molecules, 4,7-bis(4-triphenylamino)benzo- 2,1,3-thiadiazole (TBT), is synthesized via Stille cross-coupling reaction. And the nanocrystalline films of TBT have been firstly formed by a facile protonation- electrodeposition (PED) method from the nitromethane solution of protonated TBT, in which trifluoroacetic acid (TFA) is used as the protonation reagents. The films are composed of nanospheres which diameters are controllable from 20 to 200 nm. Compared with the spin-coating films, PED films possess higher degree crystallization and lower band gap, with respect to superior intermolecular charge-transfer ability and more excellent hole-transporting property.
     (2) Films composed of various nanostructured copper phthalocyanine (CuPc) are controllably prepared by the method of PED, under the low voltage and the small molar ratio of TFA to CuPc. The ultralong nanowires of CuPc are grown at a high deposition temperature of 70℃.
     (3) The composite films of TBT:CuPc are fabricated via protonation-coelectro- deposition (PCD) from the nitromethane solutions of the TBT:CuPc mixture in the presence of TFA. The crystallization behavior of the two components is interacted by each other. Furthermore, the morphology of the composite films are controlled by relative content and codeposition time. The nanosphere-nanowire interpenetrating network structured films are obtained when the molar percentage of TBT being 70% in the precursor solutions. Based on the absorption and emission spectra as well as the match of molecular energy, there theoretically exists energy/charge transfer at the interface of TBT/CuPc heterojunctions. And the deduction of the charge transfer is proven by the obvious enhanced effect of the surface photovoltage (SPV) in the composite films which codeposited from the TBT:CuPc blending solutions of 50% and 70%TBT, respectively.
     (4) The reduction reactions of the two PDI derivatives, N,N’-di(4-methoxybenzyl)- 3,4,9,10-perylene diimide (PDI-32) and N,N’-di(4-ethoxyphenyl)-3,4,9,10-perylene diimide (PDI-123), with hydrazine hydrate (HZH), are thoroughly studied in the DMF solutions, respectively. On the base of this, the single-component and blending composite films of the two PDI are fabricated from the anionic radicals-contained solutions via anionic radical-electrodeposition (AED) and anionic radical-coelectrodeposition (ACD), respectively. The morphology of the AED films is controlled by the dissolving of PDI followed with the reduction reactions. And the dissolving is not only influenced by the content of HZH, but also dependent on the storing time. The surface photovoltage spectra (SPS) of the two single-component films indicate that, PDI-123 film composed of nanoparticles present stronger photovoltage response than the nanobelt/rod-composed PDI-32 films, due to the surface states and absorption of O2 on the PDI-123 nanoparticels. The SPS of the PDI-32:PDI-123 composite films show the SPV enhanced effect at the two absorption bands of 600~700 nm and 330~425 nm, respectively. And the former one is ascribed to the surface states and absorption of O2 on the PDI-123 nanoparticles, which make the photoinduced excitons in the neighbouring PDI-32 molecules be dissociated effectively, the later one is attributed to the coactions of the mentioned surface effect and the intermolecular charge transfer on the PDI-32/PDI-123 interface.
     (5) Based on the film formation methods of PED and AED, the p/n-type double-layer heterojunction composite films of TBT/PDI-32, TBT/PDI-123, CuPc/PDI-32, CuPc/PDI- 123,TBT:CuPc/PDI-32 and CuPc/PDI-32:PDI-123, are fabricated by means of layer-by- layer electrodeposition. The SPV enhanced effect presented in these double-layer films indicates that there exist the photoinduced intermolecular charge transfer at the heterojunction interface. And also, this charge transfer possesses different influence on the different type of exciton dissociation, which induces the complementarity of the SPV enhanced effect among various films. In addition, the double-layer films containing the bulk blending layer, not only show the interface effect in the simple double systems, but also present the photovoltage enhancement in the bulk composite films.
     This dissertation provides the flexible and controllable film formation methods for the derivatives of TPA, Pc and PDI, and obtained their composite films with SPV enhanced effect. Meanwhile, the dissociation mechanism of the different type of photoinduced exciton in the films is studied by SPV technology. This work provides abundant experiment data which will be significant for the fabrication of photoelectrical devices based on these derivatives.
引文
[1]王季陶,刘明登.半导体材料.北京:高等教育出版社. 1990.
    [2] Forrest, S.R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428(6986):911-918.
    [3]莫雄.苝类衍生物有机电子传输材料的研究[博士论文].杭州:浙江大学. 2006.
    [4]何开元.功能材料导论.北京:冶金工业出版社. 2000.
    [5] Shirota, Y.; Kageyama, H. Charge carrier transporting molecular materials and their applications in devices. Chem. Rev. 2007, 107(4):953-1010.
    [6] Kageyama, H.; Ohishi, H.; Tanaka, M.; Ohmori, Y.; Shirota, Y. High performance organic photovoltaic devices using amorphous molecular materials with high charge-carrier drift mobilities. Appl. Phys. Lett. 2009, 94(6):063304/1-063304/3.
    [7] Ohishi, H.; Tanaka, M.; Kageyama, H.; Shirota, Y. Amorphous molecular materials with high carrier mobilities: Thiophene- and selenophene-containing tri(oligoarylenyl)amines. Chem. Lett. 2004, 33(10):1266-1267.
    [8] Cheung, C.H.; Kwok, K.C.; Tse, S.C.; So, S.K. Determination of carrier mobility in phenylamine by time-of-flight, dark-injection, and thin film transistor techniques. J. Appl. Phys. 2008, 103(9): 093705/1-093705/5.
    [9] Imai, Y.; Ishida, M.; Kakimoto, M.-A. Synthesis and properties of new triphenylamine- containing aromatic polyimides based on N,N'-bis(4-aminophenyl)-N,N'-diphenyl-4,4'-biphenyldiamine. High Perform Polym. 2003, 15(3):281-290.
    [10]徐清,陈红征,汪茫.三芳胺类空穴传输材料研究新进展.功能材料, 2005, 36(11):659-1663.
    [11] Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, Sh.; Imai, K. Multilayered organic electroluminescent device using a novel starburst molecule, 4,4',4''-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Appl. Phys. Lett. 1994, 65(7):807-809.
    [12] Van Slyke, S.A.; Chen, C.H.; Tang, C.W. Organic electroluminescent devices with improved stability, Appl. Phys. Lett. 1996, 69(15):2160-2162
    [13] Fujikawa, H.; Ishii, M.; Tokito, I.; Taga, Y. Organic light-emitting diodes using triphenylamine based hole transporting materials. Mat. Res. Soc. Symp. Proc. 2001, 621, Q3.4.1-Q3.4.11.
    [14] Maiti, B.C.; Wang, S.Z.; Cheng, C.P.; Huang, D.J.; Chao, C.I. Organic amorphous material N,N,N,N-tetraaryl(Ar12Ar22)-1,1-biphenyl-4,4'-diiamine. J. Chin. Chem. Soc. 2001, 48(6):1059.
    [15] O'Brien, D.F.; Burrows, P.E.; Forrest, S.R.; Koene, B.E.; Loy, D.E.; Thompson, Ma.E. Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices. Adv. Mater. 1998, 10(14):1108-1112.
    [16] Higuchi, A.; Inada, H.; Kobata, T.; Shirota, Y. Amorphous molecular materials: synthesis and properties of a novel starburst molecule, 4,4',4''-tri(N-phenothiazinyl) triphenylamine. Adv. Mater. 1991, 3(11):549-550.
    [17] Shirota, Y.; Okumoto, K.; Inada, H. Thermally stable organic light-emitting diodes using newfamilies of hole-transporting amorphous molecular materials. Synth. Met. 2000, 111-112, 387-391.
    [18] Tanaka, H.; Yamaguchi, Y.; Yokoyama, M. Molecular design for better charge transporting organic materials. (II). Hole drift mobility and chemical structure of arylamine derivatives. Denshi Shashin Gakkaishi 1990, 29(4):366-372.
    [19] Takahashi, R.; Kusabayashi, S.; Yokoyama, M. Guiding concept for developing better charge transporting organic materials. Denshi Shashin Gakkaishi 1986, 25(3):236-242.
    [20] Pai, D.M.; Yanus, J.F.; Stolka, M.; Renfer, D.; Limburg, W.W. Hole transport in solid solutions of substituted triarylmethanes in bisphenol-A-polycarbonate. Philos. Mag. B 1983, 48(6):505-522.
    [21] Adachi, C.; Nagai, K.; Tamoto, N. Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl. Phys. Lett. 1995, 66(20):2679-2681.
    [22] Saragi, T. P. I.; Fuhrmann-Lieker, T.; Salbeck, J. High ON/OFF ratio and stability of amorphous organic field-effect transistors based on spiro-linked compounds. Synth. Met. 2005, 148(3):267- 270.
    [23] Sonntag, M.; Kreger, K.; Hanft, D.; Strohriegl, P.; Setayesh, S.; De Leeuw, D. Novel star-shaped triphenylamine-based molecular glasses and their use in OFETs. Chem. Mater. 2005, 17(11):3031- 3039.
    [24] Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M. Spin-coated highly efficient phosphorescent organic light-emitting diodes based on bipolar triphenylamine-benzimidazole derivatives. Adv. Funct. Mater. 2008, 18(4):584-590.
    [25] Alévêque, O.; Leriche, P.; Cocherel, N.; Frère, P.; Cravino, A.; Roncali, J. Star-shaped conjugated systems derived from dithiafulvenyl-derivatized triphenylamines as active materials for organic solar cells. Sol. Energy Mater. Sol. Cells 2008, 92(9):1170-1174.
    [26] Inada, H.; Shirota, Y. 1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its methyl-substituted derivatives as a novel class of amorphous molecular materials. J. Mater. Chem. 1993, 3(3):319- 320.
    [27] Katsuma, K.; Shirota, Y. A novel class ofπ-electron dendrimers for thermally and morphologically stable amorphous molecular materials. Adv. Mater. 1998, 10(3):223-226.
    [28] Pang, J.; Tao, Y.; Freiberg, S.; Yang, X.-P.; D'Iorio, M.; Wang, S. Syntheses, structures, and electroluminescence of new blue luminescent star-shaped compounds based on 1,3,5-triazine and 1,3,5-trisubstituted benzene. J. Mater. Chem. 2002, 12(2):206-212.
    [29] Yang, Z.; Xu, B.; He, J.; Xue, L.; Guo, Q.; Xia, H.; Tian, W. Solution-processable and thermal-stable triphenylamine-based dendrimers with truxene cores as hole-transporting materials for organic light-emitting devices. Org. Electron. 2009, 10(5):954-959.
    [30] Spanggaard, H.; Krebs, F.C. A brief history of the development of organic and polymeric photovoltaics. Sol. Energy Mater. Sol. Cells 2004, 83(2-3):125-146.
    [31] Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48(2):183-185.
    [32] Forrest, S.R.; Leu, L.Y.; So, F.F.; Yoon, W.Y. Optical and electrical properties of isotype crystalline molecular organic heterojunctions. J. Appl. Phys. 1989, 66(12):5908-5914.
    [33] Hiramoto, M.; Fukusumi, H.; Yokoyama, M. Organic solar cell based on multistep charge separation system. Appl. Phys. Lett. 1992, 61(21):2580-2582.
    [34] Liu, G.; Li, B.; Na, C.; Mao, K. Complexes of rare earth nitrate with Schiff base derived from vanillin and p-toluidine. Chin. Chem. Lett. 1990, 1(2):119-120.
    [35] Hiramoto, M.; Suezaki, M.; Yokoyama, M. Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell. Chem. Lett. 1990, 19(3):327-330.
    [36] Peumans, P.; Bulovic, V.; Forrest, S.R. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl. Phys. Lett. 2000, 76(19):2650- 2652.
    [37] Peumans, P.; Forrest, S.R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 2001, 79(1):126-128.
    [38] Fostiropoulos, K.; Vogel, M.; Mertesacker, B.; Weidinger, A. Preparation and Investigation of Phthalocyanine/C60 Solar Cells. Proc. SPIE-Int. Soc. Opt. Eng. 2003, 4801(Org. Photovol. III):1-6.
    [39] Hiromitsu, I.; Murakami, Y.; Ito, T. Electroabsorption study of the inner electric field in phthalocyanine/perylene solar cells. Synth. Met. 2003, 137(1-3):1385-1386.
    [40] Hiromitsu, I.; Murakami, Y.; Ito, T. Electric field in phthalocyanine/perylene heterojunction solar cells studied by electroabsorption and photocurrent measurements. J. Appl. Phys. 2003, 94(4):2434 -2439.
    [41] Hiromitsu, I.; Kinugawa, G.; Photoinduced alteration of the inner electric field in a Zn-phthalocyanine/C6 0 heterojunction solar cell. Synth. Met. 2005, 153(1-3):73-76.
    [42] Chu, C.-W.; Shrotriya, V.; Li, G.; Yang, Y. Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells. Appl. Phys. Lett. 2006, 88(15): 153504/1-153504/3.
    [43] Terao, Y.; Sasabe, H.; Adachi, C. Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Appl. Phys. Lett. 2007, 90(10): 103515/1-103515/3.
    [44] Yoshida, Y.; Tanaka, S.; Hiromitsu, I.; Fujita, Y.; Yoshino, K. Ga-doped ZnO film as a transparent electrode for phthalocyanine/perylene heterojunction solar cell. Jpn. J. Appl. Phys. 2008, 47(2, Pt. 1):867-871.
    [45] Aich, R.; Ratier, B.; Tran-van, F.; Goubard, F.; Chevrot, C. Small molecule organic solar cells based on phthalocyanine/perylene-carbazole donor-acceptor couple. Thin Solid Films 2008, 516(20):7171-7175.
    [46] Kim, I.; Haverinen, H.M.; Wang, Z; Madakuni, S; Li, J; Jabbour, G.E. Effect of molecular packing on interfacial recombination of organic solar cells based on palladium phthalocyanine and perylene derivatives. Appl. Phys. Lett. 2009, 95(2):023305/1-023305/3.
    [47] Benten, H.; Kudo, N.; Ohkita, H.; Ito, S. Layer-by-layer deposition films of copper phthalocyanine derivative; their photoelectrochemical properties and application to solution-processed thin-film organic solar cells. Thin Solid Films 2009, 517(6):2016-2022.
    [48] Bruder, I.; Ojala, A.; Lennartz, C.; Sundarraj, S.; Schoeneboom, J.; Sens, R.; Hwang, J.; Erk, P.; Weis, J. Theoretical and experimental investigation on the influence of the molecular polarizability of novel zinc phthalocyanine derivatives on the open circuit voltage of organic hetero-junction solar cells. Sol. Energy Mater. Sol. Cells 2010, 94(2):310-316
    [49] Gebeyehu, D.; Maennig, B.; Drechsel, J.; Leo, K.; Pfeiffer, M. Bulk-heterojunction photovoltaic devices based on donor-acceptor organic small molecule blends. Sol. Energy Mater. Sol. Cells 2003, 79(1):81-92.
    [50] Xue, J.; Rand, B.P.; Uchida, S.; Forrest, S.R. A hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv. Mater. 2005, 17(1):66-71.
    [51] Xue, J.; Uchida, S.; Rand, B.P.; Forrest, S.R. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 2004, 85(23):5757-5759.
    [52] Malenfant, P.R.L.; Dimitrakopoulos, C.D.; Gelorme, J.D.; Kosbar, L.L.; Graham, T.O.; Curioni, A.; Andreoni, W. N-type organic thin-film transistor with high field-effect mobility based on a N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 2002, 80(14): 2517-2519.
    [53]白茹,有机给体-受体异质结纳米有序复合光电材料[博士论文].杭州:浙江大学. 2008.
    [54] Law, K.Y. Organic photoconductive materials: recent trends and developments. Chem. Rev. 1993, 93(1):449-86.
    [55] Hayes, R.T.; Wasielewski, M.R.; Gosztola, D. Ultrafast Photoswitched Charge Transmission through the Bridge Molecule in a Donor-Bridge-Acceptor System. J. Am. Chem. Soc. 2000, 122 (23):5563-5567.
    [56] Davis, W.B.; Svec, W.A.; Ratner, M.A.; Wasielewski, M.R. Molecular-wire behavior in p-phenylenevinylene oligomers. Nature 1998, 396(6706):60-63.
    [57] Würthner, F. Plastic transistors reach maturity for mass applications in microelectronics. Angew. Chem. Int. Ed. 2001, 40(6):1037-1039.
    [58] Dimitrakopoulos, Christos D.; Malenfant, Patrick R. L. Organic thin film transistors for large area electronics. Adv. Mater. 2002, 14(2):99-117.
    [59] Steinberg-Yfrach, G,; Liddell, P.A.; Hung, S.-C.; Moore, A.L.; Gust, D.; Moore, T.A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centers. Nature 1997, 385(6613):239-241.
    [60] Katz, H.E.; Bao, Z.; Gilat S.L. Synthetic chemistry for ultrapure, processable, and high-mobility organic transistor semiconductors. Acc. Chem. Res. 2001, 34(5):359-369.
    [61] Belfield, K. D.; Schafer, K. J.; Alexander, M. D. Jr. Synthesis and characterization of a perylene- based luminescent organic glass. Chem. Mater. 2000, 12(5):1184-1186.
    [62] Ranke, P.; Bleyl, I.; Simmerer, J.; Haarer, D.; Bacher, A.; Schmidt, H. W. Electroluminescence and electron transport in a perylene dye. Appl. Phys. Lett. 1997, 71(10):1332-1334.
    [63] Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Horhold, H.-H. Polymer- perylene diimide heterojunction solar cells. Appl. Phys. Lett. 2002, 81(16):3085-3087.
    [64] Nakamura, J.-I.; Suzuki, S.; Takahashi, K.; Yokoe, C.; Murata, K. The photovoltaic mechanism of a polythiophene/perylene pigment two-layer solar cell. Bull. Chem. Soc. Jpn. 2004, 77 (12):2185- 2188.
    [65] Takahashi, K.; Nakajima, I.; Imoto, K.; Yamaguchi, T.; Komura, T.; Murata, K. Sensitization effect by porphyrin in polythiophene/perylene dye two-layer solar cells. Sol. Energy Mater. Sol. Cells 2003, 76(1):115-124.
    [66] Shibano, Y.; Imahori, H.; Adachi, C. Organic thin-film solar cells using electron-donating perylene tetracarboxylic acid derivatives. J. Phys. Chem. C 2009, 113(34):15454-15466.
    [67] Nakamura, J.-I.; Yokoe, C.; Murata, K.; Takahashi, K. Efficient organic solar cells by penetration of conjugated polymers into perylene pigments. J. Appl. Phys. 2004, 96(11): 6878-6883.
    [68] Li, J.; Dierschke, F.; Wu, J.; Grimsdale, A.C.; Muellen, K. Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. J. Mater. Chem. 2006, 16(1):96-100.
    [69] Pandey, A.K., Unni, K.N.N., Nunzi, J.-M. Pentacene/perylene co-deposited solar cells. Thin Solid Films 2006, 511-512, 529-532.
    [70] Wang, M.; Wang, X. P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative. Sol. Energy Mater. Sol. Cells 2007, 91(19):1782-1787.
    [71] Wang, M.; Wang, X. P3HT/ZnO bulk-heterojunction solar cell sensitized by a perylene derivative. Sol. Energy Mater. Sol. Cells 2008, 92 (7):766-771.
    [72] Jeong, S.; Han, Y. S.; Kwon, Y.; Choi, M.-S.; Cho, G.; Kim, K.-S.; Kim, Y. Effects of n-type perylene derivative as an additive on the power conversion efficiencies of polymer solar cells. Synth. Met. 2010, 160(19-20):2109-2115.
    [73]黄春辉,李富友,黄岩谊.光电功能超薄膜北京:北京大学出版社. 2001.
    [74] Wang, X.; Shi, G.; Liang, Y. Low potential electropolymerization of thiophene at a copper oxide electrode. Electrochem. Commun. 1999, 1(11):536-539.
    [75] Hwang, B.-J.; Santhanam, R.; Wu, C.-R.; Tsai, Y.-W. Nucleation and growth mechanism of electropolymerization of aniline on highly oriented pyrolytic graphite at a low potential. Electroanalysis 2001, 13(1):37-44.
    [76] Moghaddam, A.B.; Ganjali, M.R.; Dinarvand, R.; Mohammadi, A.; Norouzi, P. Electrochemical and scanning electron microscopic studies of the influence of anatase TiO2 nanoparticles on the electropolymerization of aniline. Mendeleev Commun. 2008, 18(2):90-91.
    [77] Anjos, T.; Charlton, A.; Coles, S.J.; Croft, A.K.; Hursthouse, M.B.; Kalaji, M.; Murphy, P.J.; Roberts-Bleming, S.J. Electropolymerization studies on a series of thiophene-substituted 1,3-dithiole-2-ones: Solid-state preparation of a novel TTF-derivatized polythiophene. Macromolecules 2009, 42(7):2505-2515.
    [78] McEntee, G.J.; Skabara, P.J.; Vilela, F.; Tierney, S.; Samuel, I.D.W.; Gambino, S.; Coles, S.J.; Hursthouse, M.B.; Harrington, R.W.; Clegg, W. Synthesis and electropolymerization of hexadecyl functionalized bithiophene and thieno[3,2-b]thiophene end-capped with EDOT and EDTT Units. Chem. Mater. 2010, 22(9):3000-3008.
    [79] Yang, C.-H.; Chen, H.-L.; Chen, C.-P.; Liao, S.-H.; Hsiao, H.-A.; Chuang, Y.-Y.; Hsu, H.-S.; Wang, T.-L.; Shieh, Y.-T.; Lin, L.-Y.; Tsai, Y.-C. Electrochemical polymerization effects of triphenylamine-based dye on TiO2 photoelectrodes in dye-sensitized solar cells. J. Electroanal. Chem. 2009, 631(1-2):43-51.
    [80] Mohan Kumar, G.; Raman, V.; Kawakita, J.; Ilanchezhiyan, P.; Jayavel, R. Fabrication of polypyrrole/ZnCoO nanohybrid systems for solar cell applications. Dalton Transactions 2010, 39(35):8325-8330.
    [81] Wang, D.; Ye, Q.; Yu, B.; Zhou, F. Towards chemically bonded p-n heterojunctions through surface initiated electrodeposition of p-type conducting polymer inside TiO2 nanotubes. J. Mater. Chem. 2010, 20 (33):6910-6915.
    [82] Latonen, R.-M.; Kvarnstr?m, C.; Ivaska, A.; Electrochemical preparation of oligo(azulene) on nanoporous TiO2 and characterization of the composite layer. J. Appl. Electrochem. 2010, 40 (9):1583-1591.
    [83] Koyuncu, S.; Zafer, C.; Koyuncu, F.B.; Aydin, B.; Can, M.; Sefer, E.; Ozdemir, E.; Icli, S. A New donor-acceptor double-cable carbazole polymer with perylene bisimide pendant group: Synthesis, electrochemical, and photovoltaic properties. J. Polym. Sci. A 2009, 47(22):6280-6291.
    [84] Tang, C. W.; Albrecht, A. C. Electrodeposition of films of chlorophyll-a microcrystals and their spectroscopic properties. Mol. Cryst. Liq. Cryst. 1974, 25(1-2):53-62.
    [85] Tang, C. W.; Albrecht, A. C. Photovoltaic effects of metal-chlorophyll a-metal sandwich cells. J. Chem. Phys. 1975, 62(6):2139-2149.
    [86] Dodelet, J.P.; Pommier, H.P.; Ringuer, M. Characteristics and behavior of electrodeposited surfactant phthalocyanine phtovoltaic cells. J. Appl. Phys. 1982, 53(6):4270-4277.
    [87] Sato, N.; Saji, T. Formation of copper phthalocyanine films by electrophoretic deposition. Chem. Lett. 1998, 27(7):647-648.
    [88] Hasobe, T.; Imahori, H.; Fukuzumi, S.; Kamat, P.V. Nanostructured assembly of porphyrin clusters for light energy conversion. J. Mater. Chem. 2003, 13(10):2515-2520.
    [89] Hasobe, T.; Imahori, H.; Kamat, P.V.; Ahn, T.K.; Kim, S.K.; Kim, D.; Fujimoto, A.; Hirakawa, T.; Fukuzumi, S. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 2005, 127(4):1216-1228
    [90] Yamanouchi, H.; Irie, K.; Saji, T. Electrophoretic deposition of copper phthalocyanine from trifluoroacetic acid-dichloromethane mixed solution. Chem. Lett. 2000, 29 (1):10-11.
    [91] Bai, R.; Shi, M.; Ouyang, M.; Cheng, Y.; Zhou, H.; Yang, L.; Wang, M.; Chen, H. Erbium bisphthalocyanine nanowires by electrophoretic deposition: Morphology control and optical properties. Thin Solid Films 2009, 517(6):2099-2105.
    [92]孙景志,杨新国,汪茫,电化学沉积卟啉-苝酰亚胺分子阵列薄膜.科学通报, 2005, 50(14): 1450-1453.
    [93] Xu, H.-B.; Chen, H.-Z.; Xu, W.-J.; Wang, M. Fabrication of organic copper phthalocyanine nanowire arrays via a simple AAO template-based electrophoretic deposition. Chem. Phys. Lett. 2005, 412(4-6):294-298
    [94]张智.铜酞菁-苝二酰亚胺分子体系的电转换特性研究[硕士论文].北京:清华大学. 2005.
    [95] Zheng, Y.; Xue, J. Organic photovoltaic cells based on molecular donoracceptor heterojunctions. Polym. Rev. 2010, 50(4):420-453.
    [96] Koehler, A.; Gruener, J.; Friend, R. H.; Muellen, K.; Scherf, U. Photocurrent measurements on aggregates in ladder-type poly(p-phenylene). Chemical Physics Letters (1995), 243(5, 6), 456-461.
    [97] Lagowski, J. Semiconductor surface spectroscopies: the early years. Surf. Sci. 1994, 299-300 (1-3):92-101.
    [98]林燕红,ZnO纳米粒子的制备及其表面光电特性的研究[博士论文].吉林:吉林大学. 2006. 29
    [99] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 1999, 37(1-5):1-206.
    [100] Tou?ek, J.; Tou?ková, J.; K?ivka, I.; Pavla?ková, P.; Vyprachticky, D.; Cimrová, V. Surface photovoltage method for evaluation of exciton diffusion length in fluorene-thiophene based copolymers. Org. Electron. 2010, 11(1):50-56.
    [101] Zidon, Y.; Shapira, Y.; Shaim, H.; Dittrich, Th. Interactions at tetraphenyl-porphyrin/InP interfaces observed by surface photovoltage spectroscopy. Appl. Sur. Sci. 2008, 254 (11):3255-3261.
    [102]李子享有机/无机异质结光生电荷迁移行为研究[博士论文].吉林:吉林大学. 2005.
    [103] Musser M.E.; Dahlberg, S.C. The surface photovoltage of polymethine semiconducting Films. J. Chem. Phys. 1980, 72(7):4084-4088.
    [104] Mishori, B.; Katz, E.A.; Faiman, D.; Shapira, Y. Studies of electron structure of C thin films by surface photovoltage spectroscopy60. Solid State Commun. 1997, 102 (6):489-492.
    [105] Moons, E.; Goossens, A.; Savenije, T. Surface photovoltage of porphyrin layers using the Kelvin probe technique. J. Phys. Chem. B 1997, 101(42):8492-8498.
    [106] Moons, E.; Eschle, M.; Gratzel, M. Determination of the energy diagram of the dithioketopyrrolopyrrole/SnO2:F heterojunction by surface photovoltage spectroscopy. Appl. Phys. Lett. 1997, 71(22):3305-3307.
    [107]王宝辉,王德军,曹云伟,张杰,李铁津,酞著铜与Q-CdS超微粒子界面的光致电荷转移研究.物理化学学报,1996, 12(2):177-180.
    [108] Xie, T.; Wang, D.; Zhu, L.; Wang, C.; Li, T.; Zhou, X.; Wang, M. Application of surface photovoltage technique to the determination of conduction types of azo pigment films. J. Phys. Chem. B 2000, 104(34):8177-8181.
    [109] Cao, J.; Sun, J.; Wang, M.; Chen, H,; Zhou, X,; Wang, D. Effect of different substituents on conducting character of azos and local states of azo/TiOPc composites. Thin Solid Films 2003, 429(1-2):152-158.
    [110] Cao, J.; Sun, J; Wang, M.; Chen, H.; Zhang, Q.; Wang, D. Surface photovoltaic properties of AlClPc/Me-PTC composite films. Synth. Met. 2003, 137(1-3):1539-1541.
    [111] Han, Y.; Wu, G.; Chen, H.; Wang, M. Preparation and optoelectronic properties of N,N'-diphenyl- N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine/TiO2 nanostructured hybrids. J. Mater. Sci. 2008, 43(3):1044-1049.
    [1] Karikomi, M.; Kitamura, C.; Tanaka, S.; Yamashita, Y. New narrow-bandgap polymer composed of benzobis(1,2,5-thiadiazole) and thiophenes. J. Am. Chem. Soc. 1995, 117(25):6791-6972.
    [2] Van Mullekom, H.A.M.; Vekemans, J.A.J.M.; Meijer, E.W. Band-gap engineering of donor- acceptor-substitutedπ-conjugated polymers. Chem. Eur. J. 1998, 4(7):1235-1243.
    [3] Yang, J.; Bai, F.; Lin, H.; Zheng, M.; Zhang, Y.; Li, Y.; Sun, J.; Liu, Y.; Zhu, D. Direct evidence of photoinduced charge transfer from alternating copolymer to buckminsterfullerene. Macromol. Chem. Phys. 2001, 202(9):1824-1828.
    [4] He, Q.; He, C.; Sun, Y.; Wu, H.; Li, Y.; Bai, F. Amorphous molecular material containing bisthiophenyl-benzothiadiazole and triphenylamine with bipolar and low-bandgap characteristics for solar cells. Thin Solid Films 2008, 516(18):5935-5940.
    [5] Thomas, K.R.J.; Lin, J.T.; Velusamy, M.; Tao, Y.-T.; Chuen, C.-H. Color tuning in benzo[1,2,5] thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diodes. Adv. Funct. Mater. 2004, 14(1):83-90.
    [6] Smith, W.T., Jr.; Chen, W.-Y. Preparation of 2,1,3-benzothiadiazoles using dimethylformamide- sulfur dioxide reagent. J. Org. Chem. 1962, 27(2):676-678.
    [7] Smith, W.C.; Tullock, C.W.; Smith, R.D.; Engelhardt, V.A. The chemistry of sulfur tetrafluoride. III. Organoiminosulfur difluorides. J. Am. Chem. Soc. 1960, 82(3), 551-555.
    [8] Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Deep-red electroluminescent polymers: synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices. Macromolecules 2005, 38(2):244- 253.
    [9] Zoombelt, A.P.; Fonrodona, M.; Wienk, M.M.; Sieval, A.B.; Hummelen, J.C.; Janssen, R.A. J. Photovoltaic performance of an ultrasmall band gap polymer. Org.Lett. 2009, 11(4):903-906.
    [10] Kato, S.-I.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Ishi-i, T.; Mataka, S. Novel 2,1,3-benzothiadiazole-based red-fluorescent dyes with enhanced two-photon absorption cross-sections. Chem. Eur. J. 2006, 12(8):2303-2317.
    [11] Kitamura, C.; Tanaka, S.; Yamashita, Y. Design of Narrow-Bandgap Polymers. Syntheses and properties of monomers and polymers containing aromatic-donor and o-quinoid-acceptor units. Chem. Mater. 1996, 8(2):570-578.
    [12] Roncali, J. Synthetic principles for bandgap control in linear-conjugated systems. Chem. Rev. 1997, 97(1):173-205.
    [13] Bundgaard, E.; Krebs, F.C. Low band gap polymers for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2007, 91(11):954-985.
    [14] Kato, S.-I.; Matsumoto, T.; Ishi-i, T.; Thiemann, T.; Shigeiwa, M.; Gorohmaru, H.; Maeda, S.; Yamashita, Y.; Mataka, S. Strongly red-fluorescent novel donor-π-bridge-acceptor-π-bridge-donor (D-π-A-π-D) type 2,1,3-benzothiadiazoles with enhanced two-photon absorption cross-sections.Chem. Commun. 2004, (20):2342-2343.
    [15] Cravino, A.; Roquet, S.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. A star-shaped triphenylamineπ-conjugated system with internal charge-transfer as donor material for heterojunction solar cells. Chem. Commun. 2006, (13):1416-1418.
    [16] Tonzola, C.J.; Alam, M.M.; Kaminsky, W.; Jenekhe, S.A. New n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines. J. Am. Chem. Soc. 2003, 125(44):13548 -13558.
    [17] Alam, M. M.; Jenekhe, S.A. Conducting ladder polymers: insulator-to-metal transition and evolution of electronic structure upon protonation by poly(styrenesulfonic acid). J. Phys. Chem. B 2002, 106(43):11172-11177.
    [18] Chen, S.; Xu, X.; Liu, Y.; Yu, G.; Sun, X.; Qiu, W.; Ma, Y.; Zhu, D. Synthesis and characterization of n-type materials for non-doped organic red-light-emitting diodes. Adv. Funct. Mater. 2005, 15(9):1541-1546.
    [19] Yang, C.-J.; Jenekhe, S.A. Conjugated aromatic polyimines. 2. Synthesis, structure, and properties of new aromatic polyazomethines. Macromolecules 1995, 28(4):1180-1196.
    [20] Smith, P.B.; Dye, J.L.; Cheney, J.; Lehn, J.M. Proton cryptates. Kinetics and thermodynamics of protonation of the [1.1.1] macrobicyclic cryptand. J. Am. Chem. Soc. 1981, 103(20):6044-6048.
    [21] Fraser, M.A. 2. Nitrogen N-5 and carbon C-1 and C-3 protonation of 1,3-disubstituted 5-azaindolizines. J. Org. Chem. 1972, 37(19):3027-3030.
    [22] Ou, Z.; Shen, J.; Shao, J.; E, W.; Galezowski, M.; Gryko, D.T.; Kadish, K.M. Protonated free-base corroles: acidity, electrochemistry, and spectroelectrochemistry of [(Cor)H4]+, [(Cor)H5]2+, and [(Cor)H6]3+. Inorg. Chem. 2007, 46(7):2775-2786.
    [23] Ogunsipe, A.; Nyokong, T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. J. Mol. Struct. 2004, 689(1-2): 89-97.
    [24] Pinto, M.R.; Takahata, Y.; Atvars, T.D.Z. Photophysical properties of 2,5-diphenyl-thiazolo[5,4-d] thiazole. J. Photochem. Photobiol.A 2001, 143(2-3):119-127.
    [25] Srivastava, K.P.; Kumar, A. UV spectral studies in protonation of Cu-phthalocyanine and phthalocyanine in sulphuric acid-solvent. Asian J. Chem. 2001, 13(4):1539-1543.
    [26] Ou, Z.; Sun, H.; Zhu, W.; Da, Z.; Kadish, K.M. Solvent and acidity effects on the UV-visible spectra and protonation-deprotonation of free-base octaethylcorrole. J. Porphyrins Phthalocyanines 2008, 12(1):1-10.
    [27] Petrik, P.; Zimcik, P.; Kopecky, K.; Musil, Z.; Miletin, M.; Loukotova, V. Protonation and deprotonation of nitrogens in tetrapyrazino-porphyrazine macrocycles. J. Porphyrins Phthalocyanines 2007, 11(7), 487-495.
    [28] Janic, I.; Kakas, M. Electronic configuration and spectra of the neutral and protonated forms of triphenylamine. J. Mol. Struct. 1984, 114, 249-252.
    [29] Kasha, M.; Rawls, H.R.; El-Bayoumi, M. Exciton model in molecular spectroscopy. Pure Appl. Chem. 1965, 11(3-4):371-392.
    [30] Colladet, K.; Fourier, S.; Cleij, T.J.; Lutsen, L; Gelan, J.; Vanderzande, D.; Nguyen, L. H.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E. Low band gap donor-acceptor conjugated polymers toward organic solar cells applications. Macromolecules 2007, 40(1):65-72.
    [31] Lu, J.; Shen, P.; Zhao, B.; Yao, B.; Xie, Z.; Liu, E.; Tan, S. Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives: synthesis, photo- and electroluminescent properties. Eur. Polym. J. 2008, 44(7):2348-2355.
    [32] Shirota, Y. Photo- and electroactive amorphous molecular materials-molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem. 2005, 15(1):75-93.
    [33] Doi, H.; Kinoshita, M.; Okumoto, K.; Shirota, Y. A novel class of emitting amorphous molecular materials with bipolar character for electroluminescence. Chem. Mater. 2003, 15(5):1080-1089.
    [34] Sonntag, M.; Kreger, K.; Hanft, D.; Strohriegl, P.; Setayesh, S.; De Leeuw, D. Novel star-shaped triphenylamine-based molecular classes and their use in OFETs. Chem. Mater. 2005, 17(11):3031-3039.
    [35] Roncali, J.; Leriche, P.; Cravino, A. From one- to three-dimensional organic semiconductors: in search of the organic silicon? Adv. Mater. 2007, 19(16):2045-2060.
    [36] Niu, H.; Luo, P.; Zhang, M.; Zhang, L.; Hao, L.; Luo, J.; Bai, X.; Wang, W. Multifunctional, photochromic, acidichromic, electrochromic molecular switch: Novel aromatic poly(azomethine)s containing triphenylamine group. Eur. Poly. J. 2009, 45(11):3058-3071.
    [37] Tan, F.; Qu, S.; Zeng, X.; Zhang, C.; Shi, M.; Wang, Z.; Jin, L.; Bi, Y.; Cao, J.; Wang, Z.; Hou, Y.; Teng, F.; Feng, Z. Photovoltaic effect of tin disulfide with nanocrystalline/amorphous blended phases. Solid State Commun. 2010, 150(1-2):58-61.
    [38] Lepoutre, S.; Julian-Lopez, B.; Sanchez, C.; Amenitsch, H.; Linden, M.; Grosso, D. Nanocasted mesoporous nanocrystalline ZnO thin films. J. Mater. Chem. 2010, 20(3):537-542.
    [39] Tada, K.; Onoda, M. Nanostructured conjugated polymer films by electrophoretic deposition. Adv. Funct. Mater. 2002, 12(6-7):420-424.
    [40] Verde, M.; Caballero, A. C.; Iglesias, Y.; Villegas, M.; Ferrari, B. Electrophoretic deposition of flake-shaped ZnO nanoparticles. J. Electrochem. Soc. 2010, 157(1):H55-H59.
    [1] Law, K.Y. Organic photoconductive materials: recent trends and developments. Chem. Rev. 1993, 93(1):449-86.
    [2] Jenekhe, S.A.; Yi, S. Highly photoconductive nanocomposites of metallophthalocyanines and conjugated polymers. Adv. Mater. 2000, 12(17):1274-1278.
    [3] Wang, H.B.; Zhu, F.; Yang, J.L.; Geng, Y.H.; Yan, D.H. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Adv. Mater. 2007, 19(16):2168-2171.
    [4] Kudo, K.; Shimada, K.; Marugami, K.; Iizuka, M.; Kuniyoshi, S.; Tanaka, K. Organic static induction transistor for color sensors. Synth. Met. 1999, 102(1-3):900-903.
    [5] Van Slyke, S. A.; Chen, C. H.; Tang, C. W. Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 1996, 69(15):2160-2162.
    [6] Szuber, J.; Grzadziel, L. Photoemission study of the electronic properties of in situ prepared copper phthalocyanine (CuPc) thin films exposed to oxygen and hydrogen. Thin Solid Films 2001, 391(2):282-287.
    [7] Komolov, A. S.; Moller, P. J. Photo and gas sensitivity of thin Cu-phthalocyanine films studied by spectroscopy of unoccupied electron states. Synth. Met. 2001, 123(2):359-363.
    [8] Ouyang, M.; Bai, R.; Chen, L.; Yang, L.; Wang, M.; Chen, H. Highly photoconductive copper phthalocyanine-coated titania nanoarrays via secondary deposition. J. Phys. Chem. C 2008, 112(30) 11250-11256.
    [9] Borras, A.; Aguirre, M.; Groening, O.; Lopez-Cartes, C.; Groening, P. Synthesis of supported single-crystalline organic nanowires by physical vapor deposition. Chem. Mater. 2008, 20(24):7371-7373.
    [10] Chen, W.-H.; Ko, W.-Y.; Chen, Y.-S.; Cheng, C.-Y.; Chan, C.-M.; Lin, K.-J. Growth of copper phthalocyanine rods on Au plasmon electrodes through micelle disruption methods. Langmuir 2010, 26(4):2191-2195.
    [11] Gao, J.; Cheng, C.; Zhou, X.; Li, Y.; Xu, X.; Du, X.; Zhang, H. Synthesis of size controllable cu-phthalocyanine nanofibers by simple solvent diffusion method and their electrochemical properties. J.Colloid Interface Sci. 2010, 342(2):225-228.
    [12] Tong W.Y.; Djuri?i? A.B.; Xie M.H.; Ng A.C.M.; Cheung K.Y.; Chan W.K.; Leung Y.H.; Lin H.W.; Gwo S. Metal phthalocyanine nanoribbons and nanowires. J. Phys. Chem. B 2006, 110(35):17406- 17413.
    [13] Sato, N.; Saji, T. Formation of copper phthalocyanine films by electrophoretic deposition. Chem. Lett. 1998, 27(7):647-648.
    [14] Yamanouchi, H.; Irie, K.; Saji, T. Electrophoretic deposition of copper phthalocyanine from trifluoroacetic acid-dichloromethane mixed solution. Chem. Lett. 2000, 29(1):10-11.
    [15] Rajaputra, S.; Sagi, G.; Singh, V. Schottky diode solar cells on electrodeposited copper phthalocyanine films. Sol. Energy Mater. Sol. Cells 2009, 93(1):60-64.
    [16] Ogunsipe, A.; Nyokong, T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. J. Mol. Struct. 2004, 689(1-2):89-97.
    [17] Sharp, J.H.; Abkowitz, M. Dimeric structure of a copper phthalocyanine polymorph. J. Phys. Chem. 1973, 77(4):477-81.
    [18] Berger, O.; Fischer, W.-J.; Adolphi, B.; Tierbach, S.; Melev, V.; Schreiber, J. Studies on phase transformations of copper phthalocyanine thin films. J. Mater. Sci.: Mater. Electron. 2000, 11(4): 331-346.
    [19] Debe, M.K.; Kam, K.K. Effect of gravity on copper phthalocyanine thin films. II. Spectroscopic evidence for a new oriented thin-film polymorph of copper phthalocyanine grown in a microgravity environment. Thin Solid Films 1990, 186(2):289-325.
    [20] Assour, J.M. Polymorphic modifications of phthalocyanines. J. Phys. Chem. 1965, 69(7):2295- 2299.
    [21] Abkowitz, M.; Chen, I.; Sharp, J.H. Electron spin resonance of the organic semiconductor,α-copper phthalocyanine. J. Chem. Phys. 1968, 48(10):4561-4567.
    [22] E, J.; Kim, S.; Lim, E.; Lee, K.; Cha, D.; Friedman, B. Effects of substrate temperature on copper(II) phthalocyanine thin films. Appl. Surf. Sci. 2003, 205(1-4):274-279.
    [23] Djurisic, A.B.; Kwong, C.Y.; Lau, T.W.; Guo, W.L.; Li, E.H.; Liu, Z.T.; Kwok, H.S.; Lam, L.S.M.; Chan, W.K. Optical properties of copper phthalocyanine. Opt. Commun. 2002, 205(1-3):155-162.
    [24] Xia, H.; Nogami, M. Copper phthalocyanine bonding with gel and their optical properties. Opt. Mater. 2000, 15(2):93-98.
    [25] Zhu, Y.; Si, Z.; Qian, L.; Xue, M.; Sheng, Q.; Zhang, Q.; Liu, Y. Nanocrystalline films formation of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole through electrophoretic deposition. Jpn. J. Appl. Phys. 2010, 49(7, Pt. 1):072602/1-072602/6
    [26] Luo, Y.; Gao, J.; Cheng, C.; Sun, Y.; Du, X.; Xu, G.; Wang, Z. Fabrication micro-tube of substituted Zn-phthalocyanine in large scale by simple solvent evaporation method and its surface photovoltaic properties. Org. Electron. 2008, 9(4):466-472.
    [27] Tan, F.; Qu, S.; Zeng, X.; Zhang, C.; Shi, M.; Wang, Z.; Jin, L.; Bi, Y.; Cao, J.; Wang, Z.; Hou, Y.; Teng, F.; Feng, Z. Photovoltaic effect of tin disulfide with nanocrystalline/amorphous blended phases. Solid State Commun. 2010, 150(1-2):58-61.
    [28] Lepoutre, S.; Julian-Lopez, B.; Sanchez, C.; Amenitsch, H.; Linden, M.; Grosso, D. Nanocasted mesoporous nanocrystalline ZnO thin films. J. Mater. Chem. 2010, 20(3):537-542.
    [29] Tada, K.; Onoda, M. Nanostructured conjugated polymer films by electrophoretic deposition. Adv. Funct. Mater. 2002, 12(6-7):420-424.
    [30] Prabakaran, R.; Kesavamoorthy, R.; Reddy, G.L.N.; Xavier, F.P. Structural investigation of copper phthalocyanine thin films using X-ray diffraction, Raman scattering and optical absorption measurements. Phys. Stat. Sol. B 2002, 229(3):1175-1186.
    [31] Qian, R. Studies of organic semiconductors for 40 years. VIII. Mol. Cryst. Liq. Cryst. 1989, 171, 117-133.
    [32] Yang, F.; Sun, K.; Forrest, S.R. Efficient solar cells using all-organic nanocrystalline networks. Adv. Mater. 2007, 19(23):4166-4171.
    [33] Lucia, E.A.; Verderame, F.D. Spectra of polycrystalline phthalocyanines in the visible region. J.Chem. Phys.1968, 48(6):2674-2681.
    [34] Sharp, J.H.; Miller, R.L. Kinetics of the thermalα-βpolymorphic conversion in metal-free phthalocyanine. J. Phys. Chem. 1968, 72(9):3335-3337.
    [35] Robinson, M.T.; Klein, G.E. Unit-cell constants ofα-copper phthalocyanine. J. Am. Chem. Soc. 1952, 74(24):6294-6295.
    [36] Robertson, J.M. An X-ray study of the structure of the phthalocyanines. I. The metal-free, nickel, copper and platinum compounds. J. Chem. Soc. 1934, 615-621.
    [37] Ng, J.D.; Lorber, B.; Witz, J.; Theobald-Dietrich, A.; Kern, D.; Giege, R. The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening. J. Cryst. Growth 1996, 168(1-4):50-62.
    [1] Akaike, K.; Kanai, K.; Ouchi, Y.; Seki, K. Impact of ground-state charge transfer and polarization energy change on energy band offsets at donor/acceptor interface in organic photovoltaics. Adv. Funct. Mater. 2010, 20(5):715-721.
    [2] Baba, A.; Kanetsuna, Y.; Sriwichai, S.; Ohdaira, Y.; Shinbo, K.; Kato, K.; Phanichphant, S.; Kaneko, F. Nanostructured carbon nanotubes/copper phthalocyanine hybrid multilayers prepared using layer-by-layer self-assembly approach. Thin Solid Films 2010, 518(8):2200-2205.
    [3] Law, K.Y. Organic photoconductive materials: recent trends and developments. Chem. Rev. 1993, 93(1):449-86.
    [4] Jenekhe, S.A.; Yi, S. Highly photoconductive nanocomposites of metallophthalocyanines and conjugated polymers. Adv. Mater. 2000, 12(17):1274-1278.
    [5] Wang, H.; Zhu, F.; Yang, J.; Geng, Y.; Yan, D. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Adv. Mater. 2007, 19(16):2168-2171.
    [6] Zhao, Z.; Poon, C.-T.; Wong, W. -K.; Wong, W.-Y.; Tam, H.-L.; Cheah, K.-W.; Xie, T.; Wang, D. Synthesis, photophysical characterization, and surface photovoltage spectra of windmill-shaped phthalocyanine-porphyrin heterodimers and heteropentamers. Eur. J. Inorg. Chem. 2008, (1):119- 128.
    [7] Xu, H.; Chen, H.; Shi, M.; Bai, R.; Wang, M. A novel donor-acceptor heterojunction from single-walled carbon nanotubes functionalized by erbium bisphthalocyanine. Mater. Chem. Phys. 2005, 94(2-3):342-346.
    [8] Aroca, R.; Del Can?o, T.; de Saja, J.A. Exciplex formation and energy transfer in mixed films of phthalocyanine and perylene tetracarboxylic diimide derivatives. Chem. Mater. 2003, 15(1):38-45.
    [9] Ishida, N.; Shibuya, T.; Kitamura, T.; Hoshino, K. Preparation of Interpenetrating pn Organic Pigment Heterostructures with Graded and Mixed Junction Profiles. Langmuir 2003, 19(6):2458- 2465.
    [10] Huang, H.; Huang, Y.; Pflaum, J.; Wee, A.T.S.; Chen, W. Nanoscale phase separation of a binary molecular system of copper phthalocyanine and di-indenoperylene on Ag(111). Appl. Phys. Lett. 2009, 95(26):263309/1-263309/3.
    [11] Moore, V.C.; Strano, M.S.; Haroz, E.H.; Hauge, R.H.; Smalley, R.E.; Schmidt, J.; Talmon, Y. Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants. Nano Lett. 2003, 3(10):1379-1382.
    [12] Sinani, V.A.; Gheith, M. K.; Yaroslavov, A.A.; Rakhnyanskaya, A.A.; Sun, K.; Mamedov, A.A.; Wicksted, J.P.; Kotov, N.A. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J. Am. Chem. Soc. 2005, 127(10):3463-3472.
    [13] Wong, H.M.P.; Wang, P.; Abrusci, A.; Svensson, M.; Andersson, M.R.; Greenham, N.C. Donor and acceptor behavior in a polyfluorene for photovoltaics. J. Phys. Chem. C 2007, 111(13):5244- 5249.
    [14] Peters, C.H.; Guichard, A.R.; Hryciw, A.C.; Brongersma, M.L.; McGehee, M.D. Energy transfer in nanowire solar cells with photon-harvesting shells. J. Appl. Phys. 2009, 105(12):124509/1-124509/ 6.
    [15] Maligaspe, E.; Sandanayaka, A.S.D.; Hasobe, T.; Ito, O.; D'Souza, F. Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues. J. Am. Chem. Soc. 2010, 132 (23):8158-8164.
    [16] Lutsyk, P.; Misiewicz, J.; Podhorodecki, A.; Vertsimakha, Y. Photovoltaic properties of SnCl2Pc films and SnCl2Pc/pentacene heterostructures. Sol. Energy Mater. Sol. Cells 2007, 91(1):47-53.
    [17] Li, A.D.Q.; Li, L.S. Photovoltage Enhancement: Analysis of Polaron Formation and Charge Transport at the Junctions of Organic Polythiophene and Inorganic Semiconductors. J. Phys. Chem. B 2004, 108(34):12842-12850.
    [18] Jarosz, G. Small signal spectra of complex capacitance obtained on organic heterojunction formed from Copper phthalocyanine and Perylene dye. Thin Solid Films 2008, 516(24):8984-8987.
    [19] Signerski, R.; Jarosz, G.; Godlewski, J. Photoelectric properties of heterojunctions formed from di-(pyridyl)-perylenetetracarboxylic diimide and copper phthalocyanine or pentacene. Synth. Met. 1998, 94(1):135-137.
    [20] Liu, J.P.; Wang, S.S.; Bian, Z.Q.; Shan, M.N.; Huang, C.H. Inverted photovoltaic device based on ZnO and organic small molecule heterojunction. Chem.Phys. Lett. 2009, 470(1-3):103-106.
    [21] Chiang, W.-T.; Su, S.-H.; Lin, Y.-F.; Yokoyama, M. Increasing the fill factor and power conversion efficiency of polymer photovoltaic cell using V2O5/CuPc as a buffer layer. Jpn. J. Appl. Phys. 2010, 49(4, Pt. 2):04DK14/1-04DK14/4.
    [22] Liu, A.; Zhao, S.; Rim, S.-B.; Wu, J.; Konemann, M.; Erk, P.; Peumans, P. Control of electric field strength and orientation at the donor-acceptor interface in organic solar cells. Adv. Mater. 2008, 20(5):1065-1070.
    [23] Yang, C.; Hu, J.G.; Heeger, A.J. Molecular Structure and Dynamics at the Interfaces within Bulk Heterojunction Materials for Solar Cells. J. Am. Chem. Soc. 2006, 128(36):12007-12013.
    [24] Aldakov, D.; Jiu, T.; Zagorska, M.; de Bettignies, R.; Jouneau, P.-H.; Pron, A.; Chandezon, F. Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers. Phys. Chem. Chem. Phys. 2010, 12(27):7497-7505.
    [25] Hoppe, H.; Arnold, N.; Sariciftci, N.S.; Meissner, D. Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic. Sol. Energy Mater. Sol. Cells 2003, 80(1):105-113.
    [26] Hoppe, H.; Sariciftci, N.S. Polymer solar cells. Adv. Polym. Sci. 2008, 214, 1-86.
    [27] Zhu, Y.; Si, Z.; Qian, L.; Xue, M.; Sheng, Q.; Zhang, Q.; Liu, Y. Nanocrystalline films formation of 4,7-bis(4-triphenylamino)benzo-2,1,3-thiadiazole through electrophoretic deposition. Jpn. J. Appl. Phys. 2010, 49(7, Pt. 1):072602/1-072602/6.
    [28] Zhu, Y.; Qian, L.; Xue, M.; Sheng Q.; Zhang, Q.; Liu, Y. Morphological control of copper phthalocyanine films by protonation-electrophoretic deposition. Appl. Surf. Sci. 2011, 257(7):2625-2632
    [29] Snow, A.W.; Jarvis, N.L. Molecular association and monolayer formation of soluble phthalocyanine compounds. J. Am. Chem. Soc. 1984, 106(17):4706-4711.
    [30] Cravino, A.; Roquet, S.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. A star-shaped triphenylamineπ-conjugated system with internal charge-transfer as donor material for hetero-junction solar cells. Chem. Commun. 2006, (13):1416-1418.
    [31] Mo, X.; Chen, H.; Wang, Y.; Shi, M.; Wang, M. Fabrication and Photoconductivity Study of Copper Phthalocyanine/Perylene Composite with Bulk Heterojunctions Obtained by Solution Blending. J. Phys. Chem. B 2005, 109(16):7659-7663.
    [32] E, J.; Kim, S.; Lim, E.; Lee, K.; Cha, D.; Friedman, B. Effects of substrate temperature on copper(II) phthalocyanine thin films. Appl. Surf. Sci. 2003, 205(1-4):274-279.
    [33] Karan, S.; Mallik, B. Effects of annealing on the morphology and optical property of copper (II) phthalocyanine nanostructured thin films. Solid State Commun. 2007, 143(6-7):289-294.
    [34] Mohamad, K.A.; Komatsu, N.; Uesugi, K.; Fukuda, H. Molecular orientation of poly(3-hexylthiophene)/fullerene composite thin films. Jpn. J. Appl. Phys. 2010, 49(4, Pt. 2): 04DK25/1-04DK25/5
    [35] Monahan, A.R.; Brado, J.A.; DeLuca, A.F. Dimerization of a copper(II)-phthalocyanine dye in carbon tetrachloride and benzene. J. Phys. Chem. 1972, 76(3):446-449.
    [36] Selmarten, D.; Jones, M.; Rumbles, G.; Yu, P.; Nedeljkovic, J.; Shaheen, S. Quenching of semiconductor quantum dot photoluminescence by aπ-conjugated polymer. J. Phys. Chem. B 2005, 109(33):15927-15932.
    [37] Greenham, N.C.; Peng, X.; Alivisatos, A.P. Charge separation and transport in conjugated-polymer /semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B: Condens. Matter 1996, 54(24):17628-17637.
    [38] Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Funct. Mater. 2006, 16(8):1112-1116.
    [39] Bouclé, J.; Chyla, S.; Shaffer, M.S.P.; Durrant, J.R.; Bradley, D.D.C.; Nelson, J. Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods. Adv. Funct. Mater. 2008, 18(4):622-633.
    [40] Das, N.C.; Sokol, P.E. Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites. Renewable Energy 2010, 35(12):2683-2688.
    [41] Murakami, M.; Ohkubo, K.; Fukuzumi, S. Inter- and intramolecular photoinduced electron transfer of flavin derivatives with extremely small reorganization energies. Chem. Eur. J. 2010, 16(26): 7820-7832.
    [42]李子享,有机/无机异质结光生电荷迁移行为研究[博士论文].吉林:吉林大学. 2005.
    [43] Britton, J.; Antunes, E.; Nyokong, T. Fluorescence quenching and energy transfer in conjugates of quantum dots with zinc and indium tetraamino phthalocyanines. J. Photochem. Photobiol. A 2010, 210(1):1-7.
    [44] F?rster, T. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 1959, 27, 7-17.
    [45] Bennett, R.G. Radiationless intermolecular energy transfer. I. Singlet-singlet transfer. J. Chem.Phys.1964, 41(10):3037-3040.
    [46] Chen, S.; Xu, X.; Liu, Y.; Yu, G.; Sun, X.; Qiu, W.; Ma, Y.; Zhu, D. Synthesis and characterization of n-type materials for non-doped organic red-light-emitting diodes. Adv. Funct. Mater. 2005, 15(9):1541-1546.
    [47] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 1999, 37(1-5):1-206.
    [48] Lin, Y.; Wang, D.; Zhao, Q.; Yang, M.; Zhang, Q. A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy. J. Phys. Chem. B 2004, 108(10):3202-3206.
    [49] Hiramoto, M.; Fujiwara, H.; Yokoyama, M. P-i-n like behavior in three-layered organic solar cells having a codeposited interlayer of pigments. J. Appl. Phys. 1992, 72(8):3781-3787.
    [1] Newman, C.R.; Frisbie, C.D.; da Silva Filho, D.A.; Bredas, J.L.; Ewbank, P.C.; Mann, K.R. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 2004, 16(23):4436-4451.
    [2] Xu, B.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. Large gate modulation in the current of a room temperature single molecule transistor. J. Am. Chem. Soc. 2005, 127(8):2386-2387.
    [3] Gregg, B.A.; Cormier, R.A. Doping molecular semiconductors. n-type doping of a liquid crystal perylene diimide. J. Am. Chem. Soc. 2001, 123(32):7959-7960.
    [4] Horowitz, G.; Kouki, F.; Spearman, P.; Fichou, D.; Nogues, C.; Pan, X.; Garnier, F. Evidence for n-type conduction in a perylene tetracarboxylic diimide derivative. Adv. Mater. 1996, 8(3): 242-245.
    [5] Würthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. 2004, (14):1564-1579.
    [6] Langhals, H. Cyclic carboxylic imide structures as structure elements of high stability. Novel developments in perylene dye chemistry. Heterocycles 1995, 40(1):477-500.
    [7] Kazmaier, P.M.; Hoffmann, R. A Theoretical Study of Crystallochromy. Quantum Interference Effects in the Spectra of Perylene Pigments. J. Am. Chem. Soc. 1994, 116(21):9684-91.
    [8] Gregg, B.A. Excitonic Solar Cells. J. Phys. Chem. B 2003, 107(20):4688-4698.
    [9] Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R.H.; MacKenzie, J.D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293(5532):1119-1122.
    [10] Angadi, M.A.; Gosztola, D.; Wasielewski, M.R. Characterization of photovoltaic cells using poly(phenylenevinylene) doped with perylenediimide electron acceptors. J. Appl. Phys. 1998, 83 (11, Pt. 1):6187-6189.
    [11] Panayotatos, P.; Parikh, D.; Sauers, R.; Bird, G.; Piechowski, A.; Husain, S. Improved p-n heterojunction solar cells employing thin film organic semiconductors. Sol. Cells 1986, 18(1):71- 84.
    [12] Chesterfield, R.J.; McKeen, J.C.; Newman, C.R.; Ewbank, P.C.; Da Silva Filho, D.A.; Bredas, J.-L.; Miller, L.L.; Mann, K.R.; Frisbie, C.D. Organic thin film transistors based on N-alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature. J. Phys. Chem. B 2004, 108(50):19281-19292.
    [13] Malenfant, P.R.L.; Dimitrakopoulos, C.D.; Gelorme, J.D.; Kosbar, L.L.; Graham, T.O.; Curioni, A.; Andreoni, W. N-type organic thin-film transistor with high field-effect mobility based on a N,N'-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl. Phys. Lett. 2002, 80(14): 2517-2519.
    [14] Struijk, C.W.; Sieval, A.B.; Dakhorst, J.E.J.; van Dijk, M.; Kimkes, P.; Koehorst, R.B.M.; Donker, H.; Schaafsma, T.J.; Picken, S.J.; van de Craats, A.M.; Warman, J.M.; Zuilhof, H.; Sudholter,E.J.R. Liquid Crystalline Perylene Diimides: Architecture and Charge Carrier Mobilities. J. Am. Chem. Soc. 2000, 122(45):11057-11066.
    [15] Rohr, U.; Schilichting, P.; Bohm, A.; Gross, M.; Meerholz, K.; Brauchle, C.; Mullen, K. Liquid crystalline coronene derivatives with extraordinary fluorescence properties. Angew. Chem., Int. Ed. 1998, 37(10):1434-1437.
    [16] P?sch, P; Thelakkat, M.; Schmidt, H.-W. Perylenediimides with electron transport moieties for electroluminescent devices. Synth. Met. 1999, 102(1-3):1110-1112.
    [17] Lee, S.K.; Zu, Y.; Herrmann, A.; Geerts, Y.; Muellen, K.; Bard, A.J. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J. Am. Chem. Soc. 1999, 121(14):3513-3520.
    [18] Alibert-Fouet, S.; Dardel, S.; Bock, H.; Oukachmih, M.; Archambeau, S.; Seguy, I.; Jolinat, P.; Destruel, P. Electroluminescent diodes from complementary discotic benzoperylenes. Chem. Phys. Chem. 2003, 4(9):983-985.
    [19] Schouwink, P.; Schafer, A.H.; Seidel, C.; Fuchs, H. The influence of molecular aggregation on the device properties of organic light emitting diodes. Thin Solid Films 2000, 372(1-2):163-168.
    [20] Ranke, P.; Bleyl, I.; Simmerer, J.; Haarer, D.; Bacher, A.; Schmidt, H.W. Electroluminescence and electron transport in a perylene dye. Appl. Phys. Lett. 1997, 71(10):1332-1334.
    [21] Zukawa, T.; Naka, S.; Okada, H.; Onnagawa, H. Organic heterojunction phototransistor. J. Appl. Phys. 2002, 91(3):1171-1174.
    [22] Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. Nanobelt self-assembly from an organic n-type semiconductor: propoxyethyl-PTCDI. J. Am. Chem. Soc. 2005, 127(30):10496- 10497.
    [23] Datar, A.; Balakrishnan, K.; Yang, X.; Zuo, X.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Tiede, D.M.; Zang, L. Linearly polarized emission of an organic semiconductor nanobelt. J. Phys. Chem. B 2006, 110(25):12327-12332.
    [24] Huang, M.; Schilde, U.; Kumke, M.; Antonietti, M.; Coelfen, H. Polymer-Induced Self-Assembly of Small Organic Molecules into Ultralong Microbelts with Electronic Conductivity. J. Am. Chem. Soc. 2010, 132(11):3700-3707.
    [25] Yan, P.; Chowdhury, A.; Holman, M.W.; Adams, D.M. Self-organized perylene diimide nanofibers. J. Phys. Chem. B 2005, 109(2):724-730.
    [26] Marcon, R.O.; Brochsztain, S. Highly stable 3,4,9,10-perylenediimide radical anions immobilized in robust zirconium phosphonate self-assembled films. Langmuir 2007, 23(24):11972-11976.
    [27] Che, Y.; Datar, A.; Yang, X.; Naddo, T.; Zhao, J.; Zang, L. Enhancing One-dimensional charge transport through intermolecularπ-electron delocalization: conductivity improvement for organic nanobelts. J. Am. Chem. Soc. 2007, 129(20):635355.
    [28] Marcon, R.O.; Brochsztain, S. Aggregation of 3,4,9,10-perylenediimide radical anions and dianions generated by reduction with dithionite in aqueous solutions. J. Phys. Chem. A 2009, 113(9):1747-1752.
    [29] Liu, N.; Chen, H.; Wang, M. Heterojunctions based on perylene diimide embedded into porous silicon. Thin Solid Films 2008, 516(12):4272-4276.
    [30] Bai, R.; Ouyang, M.; Zhou, R.; Shi, M.; Wang, M.; Chen, H. Well-defined nanoarrays from an n-type organic perylene-diimide derivative for photoconductive devices. Nanotechnology 2008, 19(5):055604/1-055604/6.
    [31]曹亚锋,解波雨,孙景志.乙酸介质中构筑茈酰亚胺染料长纳米线.高等学校化学学报. 2007, 28(10):1944-1947.
    [32] Liu, S.; Sui, G.; Cormier, R.A.; Leblanc, R.M.; Gregg, B.A. Self-organizing liquid crystal perylene diimide thin Films: spectroscopy, crystallinity, and molecular orientation. J. Phys. Chem. B 2002, 106(6):1307-1315.
    [33] Marcon, R.O.; Dos Santos, J.G.; Figueiredo, K.M.; Brochsztain, S. Characterization of a novel water-soluble 3,4,9,10-perylenetetracarboxylic diimide in solution and in self-assembled zirconium phosphonate thin films. Langmuir 2006, 22(4):1680-1687.
    [34] Gosztola, D.; Niemczyk, M.P.; Svec, W.; Lukas, A.S.; Wasielewski, M.R. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J. Phys. Chem. A 2000, 104(28):6545-6551.
    [35] Viehbeck, A.; Goldberg, M.J.; Kovac, C.A. Electrochemical properties of polyimides and related imide compounds. J. Electrochem. Soc. 1990, 137(5):1460-1466.
    [36] Rak, S.F.; Jozefiak, T.H.; Miller, L.L. Electrochemistry and near-infrared spectra of anion radicals containing several imide or quinone groups. J. Org. Chem. 1990, 55(16):4794-801.
    [37] Kircher, T.; Lohmannsroben, H.-G. Photoinduced charge recombination reactions of a perylene dye in acetonitrile. Phys. Chem. Chem. Phys. 1999, 1(17):3987-3992.
    [38] Chen, S.-G.; Branz, H.M.; Eaton, S.S.; Taylor, P.C.; Cormier, R.A.; Gregg, B.A. Substitutional n-type doping of an organic semiconductor investigated by electron paramagnetic resonance spectroscopy. J. Phys. Chem. B 2004, 108(45):17329-17336.
    [39] Zang, L.; Che, Y.; Moore, J.S. One-dimensional self-assembly of planarπ-conjugated molecules: adaptable building blocks for organic nanodevices. Acc. Chem. Res. 2008, 41(12):1596-1608.
    [40] Fu, G.; Wang, M.; Wang, Y.; Xia, N.; Zhang, X.; Yang, M.; Zheng, P.; Wang, W.; Burger, C. Ionic self-assembled derivatives of perylenetetracarboxylic dianhydride: facile synthesis, morphology and structures. New J. Chem. 2009, 33(4):784-792.
    [41] Wang, W.; Han, J.J.; Wang, L.-Q.; Li, L.-S.; Shaw, W.J.; Li, A.D.Q. Dynamicπ-stacked molecular assemblies emit from green to red colors. Nano Lett. 2003, 3(4):455-458.
    [42] Würthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. Chem. Eur. J. 2001, 7(10):2245- 2253.
    [43] Iverson, I.K.; Casey, S.M.; Seo, W.; Tam-Chang, S.-W.; Pindzola, B.A. Controlling molecular orientation in solid films via self-organization in the liquid-crystalline phase. Langmuir 2002, 18(9):3510-3516.
    [44] Schlettwein, D.; Graaf, H.; Meyer, J.-P.; Oekermann, T.; Jaeger, N. I. Molecular interactions in thin films of hexadecafluorophthalocyaninatozinc (F16PcZn) as compared to islands of N,N'- dimethylperylene-3,4,9,10-biscarboximide (MePTCDI). J. Phys. Chem. B 1999, 103(16):3078- 3086.
    [45] Graser, F.; H?dicke, E. Crystal structure and color of perylene-3,4,9,10-bis(dicarboximide) pigments. Liebigs Ann. Chem. 1980, (12):1994-2011.
    [46] Graser, F.; H?dicke, E. Crystal structure and color of perylene-3,4,9,10-bis(dicarboximide) pigments, 2. Liebigs Ann. Chem. 1984, (3):483-494.
    [47] H?dicke, E.; Graser, F. Structures of eleven perylene-3,4,9,10-bis(dicarboximide) pigments. Acta Crystallogr., Sect. C 1986, C42(2):189-195.
    [48] H?dicke, E.; Graser, F. Structures of three perylene-3,4,9,10-bis(dicarboximide) pigments. Acta Crystallogr., Sect. C 1986, C42(2):195-198.
    [49] Klebe, G.; Graser, F.; H?dicke, E.; Berndt, J. Crystallochromy as a solid-state effect: correlation of molecular conformation, crystal packing and color in perylene-3,4,9,10-bis(dicarboximide) pigments. Acta Crystallogr., Sec. B 1989, B45(1):69-77.
    [50] Huang, Y.; Quan, B.; Wei, Z.; Liu, G.; Sun, L. Self-assembled organic functional nanotubes and nanorods and their sensory properties. J. Phys. Chem. C 2009, 113(10):3929-3933.
    [51] Zugenmaier, P.; Duff, J.; Bluhm, T.L. Crystal and molecular structures of six differently with halogen substituted bis (benzylimido) perylene. Cryst. Res. Technol. 2000, 35(9):1095-1115.
    [52] Chen, S.; Xu, X.; Liu, Y.; Yu, G.; Sun, X.; Qiu, W.; Ma, Y.; Zhu, D. Synthesis and characterization of n-type materials for non-doped organic red-light-emitting diodes. Adv. Funct. Mater. 2005, 15(9):1541-1546.
    [53] Ng, J.D.; Lorber, B.; Witz, J.; Theobald-Dietrich, A.; Kern, D.; Giege, R. The crystallization of biological macromolecules from precipitates: evidence for Ostwald ripening. J. Cryst. Growth 1996, 168(1-4):50-62.
    [54] Eremtchenko, M.; Schaefer, J.A.; Tautz, F.S. Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 2003, 425(6958):602-605.
    [55] Wagner, V. Raman analysis of ordered organic monolayers on metal surfaces. Phys. Status Solidi A 2001, 188(4):1297-1305.
    [56] Wang, M.; Chen, H.; Yang, S. Photoconductivity of phthalocyanine composites. I: Double-layered photoreceptor of copper phthalocyanine-poly(vinylcarbazole). J. Photochem. Photobiol. A 1990, 53(3):431-436.
    [57]汪茫,陈红征,沈菊李,杨士林.酞菁固体中的电子过程.中国科学A 1994,24(3):311-315.
    [58] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 1999, 37(1-5):1-206.
    [59]李子享.有机/无机异质结光生电荷迁移行为研究[博士论文].吉林:吉林大学. 2005.
    [60] Suzuki, S.; Fukui, K.-i.; Onishi, H.; Sasaki, T.; Iwasawa, Y. Observation of individual adsorbed pyridine, ammonia, and water on TiO2(110) by means of scanning tunneling microscopy. Stud. Surf. Sci. Catal. 2001, 132, 753-756.
    [61] Muryn, C.A.; Tirvengadum, G.; Crouch, J.J.; Warburton, D.R.; Raiker, G.N.; Thornton, G.; Law, D.S.L. Titania (100) structure-reactivity relationship. J. Phys. 1989, 1(Suppl. B):127-132.
    [62] Thornton, G. Molecular adsorption on TiO2 and ZnO surfaces. Springer Ser. Surf. Sci.1993, 33, 115-124.
    [63] Muryn, C.A.; Hardman, P.J.; Crouch, J.J.; Raiker, G.N.; Thornton, G.; Law, D.S.L. Step and pointdefect effects on titania(100) reactivity. Surf. Sci. 1991, 251-252, 747-752.
    [64] Brookes, I.M.; Muryn, C.A.; Thornton, G. Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 2001, 87(26):266103/1-266103/4.
    [65] Krischok, S.; Hofft, O.; Gunster, J.; Stultz, J.; Goodman, D.W.; Kempter, V. H2O interaction with bare and Li-precovered TiO2. Studies with electron spectroscopies (MIES and UPS(HeI and II)). Surf. Sci. 2001, 495(1-2):8-18.
    [66] Kokes, R. J. Influence of chemisorption of oxygen on the electron spin resonance of zinc oxide. J. Phys. Chem. 1962, 66, 99-103.
    [67]孙景志,江茫,曹健,陈红征,周成. TiOPc/VOTPP复合材料在蓝光区的光电导性能协同增强机理.功能材料2003, 34(1):83-85
    [68] Balestra, C.L.; Lagowski, J.; Gatos, H.C. Determination of surface state energy position y surface photovoltage spectrometry: cadmium sulfide. Surf. Sci. 1971, 26(1):317-320.
    [69] Barth, S.; Baessler, H.; Wehrmeister, T.; Muellen, K. Photoconduction in oligo-para-phenylene- vinylene films. J. Chem. Phys. 1997, 106(1):321-327.
    [70] Moses, D.; Lee, C.H.; Kraabel, B.; Yu, G.; Srdanov, V.I. Photocarrier dynamics in C60: studies of transient photoconductivity and transient photoinduced absorption. Synth. Met. 1995, 70(1-3): 1419-1422.
    [71]汪茫,孙景志,周成.酞菁氧钛/卟啉氧钒复合体系光导性能的协同增强效应.高等学校化学学报2002, 23(3):448-452.
    [2] Gazotti, W. A., Jr.; Camaioni, N.; Casalbore-Miceli, G.; De Paoli, M.-A.; Fichera, A.M. A new configuration of the solid-state battery magnesium|polymer proton conductor|gold, based on the use of poly(o-methoxyaniline). Synth. Met. 1997, 90(1):31-36.
    [3] Tsuzuki, T.; Shirota, Y.; Rostalski, J.; Meissner, D. The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment. Sol. Energy Mater. Sol. Cells 2000, 61(1):1-8.
    [4] Martin, C.M.; Burlakov, V.M.; Assender, H.E.; Barkhouse, D.A.R. A numerical model for explaining the role of the interface morphology in composite solar cells. J. Appl. Phys. 2007, 102(10):104506/1-104506/9.
    [5] Yakimov, A.; Forrest, S.R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl. Phys. Lett. 2002, 80(9):1667-1669.
    [6] Wong, H.L.; Mak, C.S.K.; Chan, W.K.; Djurisic, A.B. Efficient photovoltaic cells with wide photosensitization range fabricated from rhenium benzothiazole complexes. Appl. Phys. Lett. 2007, 90(8):081107/1-081107/3.
    [7] Breeze, A.J.; Schlesinger, Z.; Carter, S.A.; Brock, P.J. Charge transport in TiO2/MEH-PPV polymer photovoltaics. Phys. Rev. B 2001, 64(12):125205/1-125205/9.
    [8] Yang, F.; Lunt, R.R.; Forrest, S.R. Simultaneous heterojunction organic solar cells with broad spectral sensitivity. Appl. Phys. Lett. 2008, 92(5):053310/1-053310/3.
    [9] Dai, J.; Jiang, X.; Wang, H.; Yan, D. Organic photovoltaic cells with near infrared absorption spectrum. Appl. Phys. Lett. 2007, 91(25):253503/1-253503/3.
    [10] Bernede, J. C. Organic photovoltaic cells: history, principle and techniques. J. Chin. Chem. Soc. 2008, 53(3):1549-1564.
    [11] Riede, M.; Mueller, T.; Tress, W.; Schueppel, R.; Leo, K. Small-molecule solar cells-status and perspectives. Nanotechnology 2008, 19(42):424001/1-424001/12.
    [12] Peumans, P.; Forrest, S.R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 2001, 79(1):126-128.
    [13] Vogel, M.; Doka, S.; Breyer, C.; Lux-Steiner, M.C.; Fostiropoulos, K. On the function of a bathocuproine buffer layer in organic photovoltaic cells. Appl. Phys. Lett. 2006, 89(16):163501/1- 163501/3.
    [14] Rand, B.P.; Li, J.; Xue, J.; Holmes, R.J.; Thompson, M.E.; Forrest, S.R. Organic double- heterostructure photovoltaic cells employing thick tris(acetylacetonato)ruthenium(III) exciton- blocking layers. Adv. Mater. 2005, 17(22):2714-2718.
    [15] Chan, M.Y.; Lee, C.S.; Lai, S.L.; Fung, M.K.; Wong, F.L.; Sun, H.Y.; Lau, K.M.; Lee, S.T. Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer. J. Appl. Phys. 2006, 100(9):094506/1-094506/4.
    [16] Hong, Z.R.; Huang, Z.H.; Zeng, X.T. Investigation into effects of electron transporting materials on organic solar cells with copper phthalocyanine/C60 heterojunctions. Chem. Phys. Lett. 2006, 425(1-3):62-65.
    [17] Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107(4):1324-1338.
    [18] Liu, Q.; Mao, J.; Liu, Z.; Zhang, N.; Wang, Y.; Yang, L.; Yin, S.; Chen, Y. A photovoltaic device based on a poly(phenyleneethynylene)/SWNT composite active layer. Nanotechnology 2008, 19(11):115601/1-115601/5.
    [19]沈辉,曾祖勤.太阳能光伏发电技术.北京:化学工业出版社. 2004.
    [20]喜文华.太阳能实用工程技术.兰州:兰州大学出版社. 2001.
    [21]姚连增,晶体生长基础.合肥:中国科技大学出版社. 1995.
    [22] Jiang, T.; Xie, T.; Zhang, Y.; Chen, L.; Peng, L.; Li, H.; Wang, D. Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys. Chem. Chem. Phys. 2010, 12, 15476-15481
    [23] Zhang, Q.; Wang, D.; Wei, X.; Zhao, Q.; Lin, Y.; Yang, M. The electronic and optoelectronic properties study of N,N-dimethylperylene-3,4,9,10- dicarboximide/ITO film using surface photovoltage technique. Mater. Chem. Phys. 2006, 100, 230-235.
    [24] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 1999, 37(1-5):1-206.
    [25]李子享,有机/无机异质结光生电荷迁移行为研究[博士论文].吉林:吉林大学. 2005.
    [26]林艳红,ZnO纳米粒子的制备及其表面光电特性的研究[博士论文].吉林:吉林大学. 2006.
    [27] Cao, J.; Sun, J; Wang, M.; Chen, H.; Zhang, Q.; Wang, D. Surface photovoltaic properties of AlClPc/Me-PTC composite films. Synth. Met. 2003, 137(1-3):1539-1541.
    [28] Han, Y.; Wu, G.; Chen, H.; Wang, M. Preparation and optoelectronic properties of N,N'-diphenyl- N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine/TiO2 nanostructured hybrids. J. Mater. Sci. 2008, 43(3):1044-1049.
    [29] Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41(7):1188-1191.
    [30] Lutsyk, P.; Misiewicz, J.; Podhorodecki, A.; Vertsimakha, Y. Photovoltaic properties of SnCl2Pc films and SnCl2Pc/pentacene heterostructures. Sol. Energy Mater. Sol. Cells 2007, 91(1):47-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700