化学还原氧化石墨烯及其衍生物的制备、性质和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯(Graphene)是由单层碳原子六方堆积而成的二维碳材料,具有理想的晶格结构和独特的电学、光学、力学和热学等性质,在电子器件、生物和化学传感器、储能器件及复合材料等领域有着广泛的应用前景。目前,石墨烯的制备方法主要包括:微机械剥离法、化学气相沉积法、外延生长法、氧化石墨烯溶液(Graphene Oxide,GO)还原法和有机合成法。与其它方法相比,氧化石墨烯溶液还原法具有成本低、产率高和可批量生产等特点,有望成为规模化制备石墨烯的有效途径之一。
     本论文针对目前GO溶液还原法制备石墨烯过程中存在的科学和技术问题,创新性地以具有较强还原能力和环境友好的抗坏血酸(L-AA)(维生素C)为还原剂,实现了GO的有效还原,制备出了具有较高还原程度的化学还原氧化石墨烯(Chemically Reduced Graphene Oxide,CRG)。由于其表面仍然残留有极少量的含氧基团,为了与严格意义上的石墨烯相区别,在此文中我们称之为化学还原氧化石墨烯,并在此基础上合成出了化学还原氧化石墨烯/聚乙烯吡咯烷酮(CRG/PVP)纳米复合物等。同时,对它们的组成、结构和电学性质,及其在酶固载和电化学传感等领域的应用进行了研究。主要研究内容及结果如下:
     (1)通过石墨插层氧化处理再超声剥离的方法制备出了单分散GO水悬浮液。利用原子力显微镜(AFM)、透射电镜(TEM)、红外光谱(FT-IR)、拉曼光谱(Raman)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)和固体13C魔角旋转核磁共振(Solid State 13C Magic-Angle Spinning (MAS) NMR)对其化学组成、晶态结构和形貌进行了系统表征和分析。结果表明,所制备的GO具有单原子层结构,表面富含大量的含氧基团,在水中具有良好的单分散性。
     (2)在不添加任何稳定剂(Stablizer)的条件下,以具有较强还原能力和环境友好的抗坏血酸(L-AA)(维生素C)为还原剂,在水溶液中还原GO制备出了单分散的CRG。采用AFM、TEM、高分辨透射电镜(HRTEM)、紫外可见光谱(UV-vis)、FT-IR、Raman、XRD和XPS对其形貌和结构进行了表征,也通过四探针测量仪测定了CRG薄片的电导率;并利用导电原子力显微镜(CAFM)对单层CRG的电学性质进行了研究。结果表明,所制备出的CRG具有较好的导电性,并可以分散于水中形成稳定的悬浮液。
     (3)以水溶性高分子聚乙烯吡咯烷酮(PVP)和GO为原料,L-AA为还原剂及质子化试剂,经一步法合成出了CRG/PVP纳米复合物。采用UV-vis、Raman、XPS、Solid State 13C MAS NMR、示差扫描热量法(DSC)和热重分析法(TGA)对其结构进行了分析;采用AFM原位观察了单层CRG/PVP纳米复合物的水吸附能力;利用CAFM对单层CRG/PVP复合物薄膜的电学及湿敏性进行了研究。结果表明,通过简单的一步法成功将PVP接枝于单层CRG上形成CRG/PVP纳米复合物;单层CRG/PVP的导电性对环境相对湿度的改变十分灵敏。
     (4)在不加入任何偶联剂和不对表面进行任何修饰的条件下,实现了辣根过氧化物酶(HRP)在GO表面的有效固载。利用AFM原位观察了HRP在GO原子级平整表面的固载过程,以苯酚作为还原底物研究了固载酶的催化性质。结果表明,单层GO是一种理想的酶固载基底材料,HRP与GO官能团的相互作用决定着GO固载酶的催化效率。
     (5)采用电化学循环伏安法(CV)和微分脉冲伏安法(DPV)研究了部分还原氧化石墨烯(PCRG)固载HRP体系对玻碳(GC)电极的修饰和修饰后电极的电化学生物活性。结果表明,经L-AA还原GO制备的PCRG可以在不使用任何交联剂的条件下固载HRP并对GC电极进行修饰;其中CRG24H(GO还原24 h)是理想的电极修饰材料,促进了HRP与电极的直接的电子转移;基于HRP/CRG24H/GC的传感器对H_2O_2、苯酚和对氯苯酚都表现出很高的生物催化活性。
Graphene is a two-dimensional carbon materials, which is composed of monolayer of carbon atoms tightly packed with hexagnol symmetry, and has excellent electrical, optical, mechanical and thermal properties, and holds great potential for applications in electronic device, chemical/biological sensors, energy storage devices, and composites. Up to now, there have been several fabrication routes to graphene, such as micromechanical exfoliation, chemical vapour deposition, epitaxial growth, the reduction of graphene oxide (GO) solution, and organic synthesis. In comparison, the reduction of GO solution has advantages over other approaches including easy processing, large-scale yield and low cost, and is expected to be an effective way for large-scale preparation of graphene.
     In this thesis, to overcome the current scientific and technical problems exist in reduction of GO, an innovative route using L-ascorbic acid (L-AA) (vitamin C) as a reducing agent, which have mild reductive ability and nontoxic property, to achieve effective reduction of graphene oxide, and prepare the chemically reduced graphene oxide (CRG) having higher degree of reduction. Because its surface remained a small number of residual oxygen groups, in order to distinguish strict graphene, in this thesis, we call it chemically reduced graphene oxide, and, additionally, the chemically reduced graphene oxide/poly(N-vinyl pyrrolidone) (CRG/PVP) nanocomposites and so on have been prepared successfully. Meanwhile, the compositions, structures and electrical properties, and applications in enzyme immobilization and electrochemical sensing were explored systematically. The main results are as follows:
     1. We demonstrated that graphite could be intercalated and oxidized to form graphite oxide. The graphite oxide could be exfoliated by ultrasonication in water into individual graphene oxide (GO) sheets. The composition, structure and morphology of as-generated GO were characterized using atomic force microscopy (AFM), transmission electron microscopy (TEM), FT-IR, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Solid-State 13C Magic-Angle Spinning (MAS) NMR. The results show that the as-prepared single-layered GO, has abundant oxygen-containing surface functional groups, and shows a good monodispersity in water.
     2. Using L-ascorbic acid as reductant, having a mild reductive ability and nontoxic property, the individual CRG sheets in water was prepared by the redction of GO without using any stabilizer. The morphology and structure of CRG were characterized using AFM, TEM, HRTEM, UV-vis, FT-IR, Raman spectroscopy, XRD and XPS. The electrical conductivity of CRG paper was measured by Four-Point probes, and the electrical conductivity of the individual CRG sheet was measured using conductive atomic force micr oscopy (CAFM). The results show that the prepared CRG has good electrical conductivity, and can be dispersed in water to form a stable suspension.
     3. Using water-soluble poly (N-vinyl pyrrolidone) (PVP) and GO as raw materials and L-AA as reductant and protonated reagent, the individual nanocomposite sheets of CRG and PVP, namely CRG/PVP, have been fabricated through a simple one-pot procedure. The structure of as-prepared CRG/PVP sheets were characterized using UV-vis, Raman spectroscopy, XPS, Solid-State 13C NMR, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Water adsorption capability of individual CRG/PVP sheets was monitored in situ using AFM. The electrical conductivity of the individual CRG/PVP sheets was measured at different relative humidity (RH) using a CAFM system. The results show that the PVP molecules were chemically grafted on CRG surfaces, and the electrical conductivity of CRG/PVP sheet is sensitive to RH variation. 4. We illustrated that horseradish peroxidase (HRP) immobilization on GO sheets could take place readily without using any cross linking reagents and additional surface modification. The atomically flat surface of GO enabled us to observe the immobilized enzyme in native state directly using AFM. The catalytic activity of the immobilized HRP was assayed using phenol as catalytic reaction substrates. The results show that GO sheets is an ideal substrate for enzyme immobilization, and immobilized catalytic performance is mainly determined by the interactions of the enzyme molecules with the functional groups of GO.
     5. The electrochemical catalytic properties of glass carbon (GC) electrodes modified with PCRG (partially chemcailly reduced graphene oxide)-bound HRP were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results show that PCRG, which were prepared by reduction of GO via L-AA, were able to immobilize enzyme firmly without using any cross linking reagents, and CRG24H (GO was reduced for 24 hours) was an ideal material for modification of GC electrode, and may promote the direct electron transfer between enemzy and electrode, and the sensor based on HRP/CRG24H/GC electrode exhibites high biological activity toward H2O2, phenol and p-chlorophenol.
引文
[1] Geim A. K., Novoselov K. S. The Rise of Graphene[J]. Nat. Mater. 2007, 6, 183-191.
    [2] Allen M. J., Tung V. C., Kaner R. B. Honeycomb Carbon: A Review of Graphene[J]. Chem. Rev. 2010, 110, 132-145.
    [3] Novoselov K. S., Geim A. K., Morozov S. V., etc. Electric Field Effect in Atomically Thin Carbon Films[J]. Science 2004, 306, 666-669.
    [4] Soldano C., Mahmood A., Dujardin E. Production, Properties and Potential of Graphene[J]. Carbon 2010, 48, 2127-2150.
    [5] Avouris P. Graphene: Electronic and Photonic Properties and Devices[J]. Nano Lett. 2010, 10, 4285-4294.
    [6] Zhang Y., Tan Y.-W., Stormer H. L., etc. Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene[J]. Nature 2005, 438, 201-204.
    [7] Novoselov K. S., Geim A. K., Morozov S. V., etc. Two-dimensional Gas of Massless Dirac Fermions in Graphene[J]. Nature 2005, 438, 197-200.
    [8] Bolotin K. I., Sikes K. J., Jiang Z., etc. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun. 2008, 146, 351-355.
    [9] Novoselov K. S., Jiang Z., Zhang Y., etc. Room-Temperature Quantum Hall Effect in Graphene[J]. Science 2007, 315, 1379-1379.
    [10] Gusynin V. P., Sharapov S. G. Unconventional Integer Quantum Hall Effect in Graphene[J]. Phys. Rev. Lett. 2005, 95, 146801(1)-(4).
    [11] Peres N. M. R., Guinea F., Neto A. H. C. Electronic Properties of Disordered Two-Dimensional Carbon[J]. Phys. Rev. B 2006, 73, 125411(1)-(23).
    [12] Zhu Y., Murali S., Cai W., etc. Graphene and Graphene Oxide: Synthesis, Properties, and Applications[J]. Adv. Mater. 2010, 22, 3906-3924.
    [13] Miller D. L., Kubista K. D., Rutter G. M., etc. Observing the Quantization of Zero Mass Carriers in Graphene[J]. Science 2009, 324, 924-927.
    [14] Neto A. H. C., Peres N. M. R., Novoselov K. S., etc. The Electronic Properties of Graphene[J]. Rev. Mod. Phys. 2009, 81, 109-162.
    [15] Apalkov V. M., Chakraborty T. Fractional Quantum Hall States of Dirac Electrons in Graphene[J]. Phys. Rev. Lett. 2006, 97, 126801(1)-(4).
    [16] T?ke C., Jain J. K. SU(4) Composite Fermions in Graphene: Fractional Quantum Hall States without Analog in GaAs[J]. Phys. Rev. B 2007, 75, 245440(1)-(9).
    [17] Du X., Skachko I., Duerr F., etc. Fractional Quantum Hall Effect and Insulating Phase of Dirac Electrons in Graphene[J]. Nature 2009, 462, 192-195.
    [18] Bolotin K. I., Ghahari F., Shulman M. D.; etc. Observation of the Fractional Quantum Hall Effect in Graphene[J]. Nature 2009, 462, 196-199.
    [19] Nair R. R., Blake P., Grigorenko A. N., etc. Fine Structure Constant Defines Visual Transparency of Graphene[J]. Science 2008, 320, 1308-1308.
    [20] Wang F., Zhang Y., Tian C., etc. Gate-Variable Optical Transitions in Graphene[J]. Science 2008, 320, 206-209.
    [21] Mak K. F., Sfeir M. Y., Wu Y., etc. Measurement of the Optical Conductivity of Graphene[J]. Phys. Rev. Lett. 2008, 101, 196405(1)-(4).
    [22] S B., H K., Y L., etc. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes[J]. Nat. Nanotechnol. 2010, 5, 574-578.
    [23] Sun Z., Hasan T., Torrisi F., etc. Graphene Mode-Locked Ultrafast Laser[J]. ACS Nano 2010, 4, 803-810.
    [24] Xia F., Mueller T., Lin Y.-m., etc. Ultrafast Graphene Photodetector[J]. Nat. Nanotechnol. 2009, 4, 839-843.
    [25] Mueller T., Xia F., Avouris P. Graphene Photodetectors for High-Speed Optical Communications[J]. Nat. Photonics 2010, 4, 297-301.
    [26] Lee E. J. H., Balasubramanian K., Weitz R. T., etc. Contact and Edge Effects in Graphene Devices[J]. Nat. Naontechnol. 2008, 3, 486-490.
    [27] Xia F., Mueller T., Golizadeh-Mojarad R., etc. Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor[J]. Nano Lett. 2009, 9, 1039-1044.
    [28] Mueller T., Xia F., Freitag M., etc. Role of Contacts in Graphene Transistors: A Scanning Photocurrent Study[J]. Phys. Rev. B 2009, 79, 245430(1)-(6).
    [29] Liu F., Ming P. Ab Initio Calculation of Ideal Strength and Phonon Instability of Graphene under Tension[J]. Phys. Rev. B 2007, 76, 064120(1)-(7).
    [30] Frank I. W., Tanenbaum D. M., Zande A. M. v. d., etc. Mechanical Properties of Suspended Graphene Sheets[J]. J. Vac. Sci. Technol. B 2007, 25, 2558-2561.
    [31] Lee C., Wei X., Kysar J. W., etc. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J]. Science 2008, 321, 385-388.
    [32] Gómez-Navarro C., Burghard M., Kern K. Elastic Properties of Chemically Derived Single Graphene Sheets[J]. Nano Lett. 2008, 8, 2045-2049.
    [33] Stankovich S., Dikin D. A., Dommett G. H. B., etc. Graphene-Based Composite Materials[J]. Nature 2006, 442, 282-286.
    [34] Ansari S., Giannelis E. P. Functionalized Graphene Sheet—Poly(vinylidene fluoride) Conductive Nanocomposites[J]. Polym. Sci. Pt. B-Polym. Phys. 2009, 47,888-897.
    [35] Cai D., Yusoh K., Song M. The Mechanical Properties and Morphology of a Graphite Oxide Nanoplatelet/Polyurethane Composite[J]. Nanotechnology 2009, 20, 085712(1)-(5).
    [36] Bunch J. S., Zande A. M. v. d., Verbridge S. S., etc. Electromechanical Resonators from Graphene Sheets[J]. Science 2007, 315, 490-493.
    [37] Garcia-Sanchez D., Zande A. M. v. d., Paulo A. S., etc. Imaging Mechanical Vibrations in Suspended Graphene Sheets[J]. Nano Lett. 2008, 8, 1399-1403.
    [38] Bunch J. S., Verbridge S. S., Alden J. S., etc. Impermeable Atomic Membranes from Graphene Sheets[J]. Nano Lett. 2008, 8, 2458-2462.
    [39] Yu C., Shi L., Yao Z., etc. Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube[J]. Nano Lett. 2005, 5, 1842-1846.
    [40] Berber S., Kwon Y.-K., Tománek D. Unusually High Thermal Conductivity of Carbon Nanotubes[J]. Phys. Rev. Lett. 2000, 84, 4613-4616.
    [41] Nika D. L., Pokatilov E. P., Askerov A. S., etc., Phonon Thermal Conduction in Graphene: Role of Umklapp and Edge Roughness Scattering[J]. Phys. Rev. B 2009, 79, 155413(1)-(12).
    [42] Guo Z., Zhang D., Gong X.-G. Thermal Conductivity of Graphene Nanoribbons[J]. Appl. Phys. Lett. 2009, 95, 163103(1)-(3).
    [43] Ghosh S., Calizo I., Teweldebrhan D., etc. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits[J]. Appl. Phys. Lett. 2008, 92, 151911(1)-(3).
    [44] Balandin A. A., Ghosh S., Bao W., etc. Superior Thermal Conductivity of Single-Layer Graphene[J]. Nano Lett. 2008, 8, 902-907.
    [45] Calizo I., Balandin A. A., Bao W., etc. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers[J]. Nano Lett. 2007, 7, 2645-2649.
    [46] Cai W., Moore A. L., Zhu Y., etc. Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition[J]. Nano Lett. 2010, 10, 1645-1651.
    [47] Seol J. H., Jo I., Moore A. L., etc. Two-Dimensional Phonon Transport in Supported Graphene[J]. Science 2010, 328, 213-216.
    [48] Meyer J. C., Geim A. K., Katsnelson M. I., etc. The Structure of Suspended Graphene Sheets[J]. Nature 2007, 446, 60-63.
    [49] Meyer J. C., Geim A. K., Katsnelson M. I., etc., On the Roughness of Single- and Bi-layer Graphene Membranes[J]. Solid State Commun. 2007, 143, 101-109.
    [50] Fasolino A., Los J. H., Katsenlson M. I. Intrinsic Ripples in Graphene[J]. Nat.Mater. 2007, 6, 858-861.
    [51] Kim K. S., Zhao Y., Jang H., etc. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes[J]. Nature 2009, 457, 706-710.
    [52] Reina A., Jia X., Ho J., etc. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition[J]. Nano Lett. 2009, 9, 30-35.
    [53] Heer W. A. d., Berger C., Wu X., etc. Epitaxial Graphene[J]. Solid State Commun. 2007, 143, 92-100.
    [54] Virojanadara C., Syv?jarvi M., Yakimova R., etc. Homogeneous Large-area Graphene Layer Growth on 6H-SiC(0001) [J]. Phys. Rev. B 2008, 78, 245403(1)-(6).
    [55] Emtsev K. V., Bostwick A., Horn K., etc. Towards Wafer-Size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide[J]. Nat. Mater. 2009, 8, 203-207.
    [56] Kim K.-j., Lee H., J-H Choi, etc. Temperature Dependent Structural Changes of Graphene Layers on 6H-SiC(0001) Surfaces[J]. J. Phys. Condens. Matter 2008, 20, 225017(1)-(5).
    [57] Stankovich S., Dikin D. A., Piner R. D., etc. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon 2007, 45, 1558-1565.
    [58] Lomeda J. R., Doyle C. D., Kosynkin D. V., etc. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets[J]. J. Am. Chem. Soc. 2008, 130, 16201-16206.
    [59] Tung V. C., Allen M. J., Yang Y., etc. High-Throughput Solution Processing of Large-Scale Graphene[J]. Nat. Nanotechnol. 2008, 4, 25-29.
    [60] Wang G., Yang J., Park J., etc. Facile Synthesis and Characterization of Graphene Nanosheets[J]. J. Phys. Chem. C 2008, 112, 8192-8195.
    [61] Si Y., Samulski E. T. Synthesis of Water Soluble Graphene[J]. Nano Lett. 2008, 8, 1679-1682.
    [62] Muszynski R., Seger B., Kamat P. V. Decorating Graphene Sheets with Gold Nanoparticles[J]. J. Phys. Chem. C 2008, 112, 5263-5266.
    [63] Chen W., Yan L., Bangal P. R. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds[J]. J. Phys. Chem. C 2010, 114, 19885-19890.
    [64] Chen W., Yan L., Bangal P. R. Preparation of Graphene by the Rapid and Mild Thermal Reduction of Graphene Oxide Induced by Microwaves[J]. Carbon 2010, 48, 1146-1152.
    [65] Williams G., Seger B., Kamat P. V. TiO2-Graphene Nanocomposites.UV-Assisted Photocatalytic Reduction of Graphene Oxide[J]. ACS Nano 2008, 2, 1487–1491.
    [66] Jeong H.-K., Lee Y. P., Lahaye R. J. W. E., etc. Evidence of Graphitic AB Stacking Order of Graphite Oxides[J]. J. Am. Chem. Soc 2008, 130, 1362-1366.
    [67] Hummers W. S., JR., Offeman R. E. Preparation of Graphitic Oxide[J]. J. Am. Chem. Soc. 1958, 80, 1339.
    [68] Stankovich S., Piner R. D., Chen X., etc. Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-styrenesulfonate) [J]. J. Mater. Chem. 2006, 16, 155-158.
    [69] Xu Y., Bai H., Lu G., etc. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets[J]. J. Am. Chem. Soc. 2008, 130, 5856–5857.
    [70] Li D., Muller M. B., Gilje S., etc. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat. Nanotechnol. 2008, 3, 101-105.
    [71] Park S., An J., Piner R. D., etc. Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets[J]. Chem. Mater. 2008, 20, 6592-6594.
    [72] Kim S. R., Parvez M. K., Chhowalla M. UV-Reduction of Graphene Oxide and Its Application as An Interfacial Layer to Reduce the Back-Transport Reactions in Dye-sensitized Solar Cells[J]. Chem. Phys. Lett. 2009, 483, 124-127.
    [73] Wu J., Tomovi? ?., Enkelmann V., etc. From Branched Hydrocarbon Propellers to C3-Symmetric Graphite Disks[J]. J. Org. Chem. 2004, 69, 5179-5186.
    [74] Wu J., Pisula W., Mu¨llen K. Graphenes As Potential Material for Electronics[J]. Chem. Rev. 2007, 107, 718-747.
    [75] Simpson C. D., Brand D. J., Berresheim A. J., etc., Synthesis of a Giant 222 Carbon Graphite Sheet[J]. Chem. Eur. J. 2002, 8, 1424-1429.
    [76] Qian H., Wang Z., Yue W., etc. Exceptional Coupling of Tetrachloroperylene Bisimide: Combination of Ullmann Reaction and C-H Transformation[J]. J. Am. Chem. Soc 2007, 129, 10664-10665.
    [77] Qian H., Negri F., Wang C., etc. Fully Conjugated Tri(perylene bisimides): An Approach to the Construction of n-Type Graphene Nanoribbons[J]. J. Am. Chem. Soc 2008, 130, 17970-17976.
    [78] Novoselov K. S., Jiang D., Schedin F., etc. Two-Dimensional Atomic Crystals[J]. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.
    [79] Roddaro S., Pingue P., Piazza V., etc. The Optical Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO2[J]. Nano Lett. 2007, 7, 2707-2710.
    [80] Gupta A., Chen G., Joshi P., etc. Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films[J]. Nano Lett. 2006, 6, 2667-2673.
    [81] Ferrari A. C., Meyer J. C., Scardaci V., etc., Raman Spectrum of Graphene and Graphene Layers[J]. Phys. Rev. Lett. 2006, 97, 187401(1)-(4).
    [82] Graf D., Molitor F., Ensslin K., etc. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene[J]. Nano Lett. 2007, 7, 238-242.
    [83] Blake P., Hill E. W., Neto A. H. C., etc. Making Graphene Visible[J]. Appl. Phys. Lett. 2007, 91, 063124(1)-(3).
    [84] Ni Z. H., Wang H. M., Kasim J., etc. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy[J]. Nano Lett. 2007, 7, 2758-2763.
    [85] Jung I., Pelton M., Piner R., etc. Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets[J]. Nano Lett. 2007, 7 (12), 3569-3575.
    [86] Gao L., Ren W., Li F., etc. Total Color Difference for Rapid and Accurate Identification of Graphene[J]. ACS Nano 2008, 8, 1625–1633.
    [87] Zhang Y., Small J. P., Amori M. E. S., etc. Electric Field Modulation of Galvanomagnetic Properties of Mesoscopic Graphite[J]. Phys. Rev. Lett. 2005, 97, 176803(1)-(4).
    [88] Stolyarova E., Rim K. T., Ryu S., etc. High-Resolution Scanning Tunneling Microscopy Imaging of Mesoscopic Graphene Sheets on An insulating Surface[J]. Proc. Natl. Acad. Sci. U.S.A 2007, 104, 9209.
    [89] Hashimoto A., Suenaga K., Gloter A., etc. Direct Evidence for Atomic Defects in Graphene Layers[J]. Nature 2004, 430, 870-873.
    [90] Liu Z., Suenaga K., Harris P. J. F., etc. Open and Closed Edges of Graphene Layers[J]. Phys. Rev. Lett. 2009, 102, 015501(1)-(4).
    [91] Meyer J. C., Kisielowski C., Erni R., etc. Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes[J]. Nano Lett. 2008, 8, 3582-3586.
    [92] Horiuchi S., Gotou T., Fujiwara M., etc. Carbon Nanofilm with a New Structure and Property[J]. Jpn. J. Appl. Phys. 2003, 42, L1073-L1076.
    [93] Hernandez Y., Nicolosi V., Lotya M., etc. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite[J]. Nat. Nanotechnol. 2008, 3, 563-568.
    [94] Ferrari A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects[J]. Solid State Commun. 2007, 143, 47-57.
    [95] Malard L. M., Pimenta M. A., Dresselhaus G., etc. Raman Spectroscopy in Graphene[J]. Phys Rep. 2009, 473, 51-87.
    [96] Thomsen C., Reich S. Double Resonant Raman Scattering in Graphite[J]. Phys Rev Lett. 2000, 85, 5214-5217.
    [97] Ferrari A. C., Robertson J. Rosonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon[J]. Phys Rev B. 2001, 64, 075414(1)-(13).
    [98] Faugeras C., Nerrière A., Potemski M., etc. Few-Layer Graphene on SiC, Pyrolitic Graphite, and Graphene: A Raman Scattering Study[J]. Appl Phys Lett. 2008, 92, 011914(1)-(3).
    [99] Ferrari A. C., Meyer J. C., Scardaci V., etc. Raman Spectrum of Graphene and Graphene Layers[J]. Phys. Rev. Lett. 2006, 97, 187401(1)-(4).
    [100] Lemme M. C., Echtermeyer T. J., Baus M., etc. A Graphene Field-Effect Device[J]. IEEE Electron Device Letters 2007, 28, 282.
    [101] Echtermeyer T. J., Lemme M. C., Baus M., etc. Nonvolatile Switching in Graphene Field-Effect Devices[J]. IEEE Electron Device Letters 2008, 29, 952-954.
    [102] Jung I., Dikin D. A., Piner R. D., etc. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at“Low”Temperatures[J]. Nano Lett. 2008, 8, 4283-4287.
    [103] Tung V. C., Allen M. J., Yang Y., etc. High-Throughput Solution Processing of Large-Scale Graphene[J]. Nat. Nanotechnol. 2009, 4, 25-29.
    [104] Sordan R., Traversi F., Russo V. Logic Gates with a Single Graphene Transistor[J]. Appl. Phys. Lett. 2009, 94, 073305(1)-(3).
    [105] Wang H., Nezich D., Kong J., etc. Graphene Frequency Multipliers[J]. IEEE Electron Device Letters 2009, 30, 547-549.
    [106] Robinson J. T., Perkins F. K., Snow E. S., etc. Reduced Graphene Oxide Molecular Sensors[J]. Nano Lett. 2008, 8, 3137-3140.
    [107] Fowler J. D., Allen M. J., Tung V. C., etc. Practical Chemical Sensors from Chemically Derived Graphene[J]. ACS Nano 2009, 3 (2), 301-306.
    [108] Pumera M. Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage[J]. Chem. Rec. 2009, 9, 211-223.
    [109] Davies T. J., Hyde M. E., Compton R. G. Nanotrench Arrays Reveal Insight into Graphite Electrochemistry[J]. Angew. Chem. Int. Ed. 2005, 44, 5121-5126.
    [110] Pumera M., Ambrosi A., Bonanni A., etc. Graphene for Electrochemical Sensing and Biosensing[J]. Trends Anal. Chem. 2010, 29, 954-965.
    [111] Alwarappan S., Erdem A., Liu C., etc. Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications[J]. J. Phys. Chem. C 2009, 113, 8853-8857.
    [112] A A., T S., M P. Platelet Graphite Nanofibers for Electrochemical Sensing andBiosensing: the Influence of Graphene Sheet Orientation[J]. Chem. Asian J. 2010, 5, 266-271.
    [113] Ambrosi A., Pumera M. Stacked Graphene Nanofibers for Electrochemical Oxidation of DNA Bases[J]. Phys. Chem. Chem. Phys. 2010, 12, 8943-8947.
    [114] Shan C., Yang H., Song J., etc. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J]. Anal. Chem. 2009, 81, 2378–2382.
    [115] Wu J.-F., Xu M.-Q., Zhao G.-C. Graphene-Based Modified Electrode for the Direct Electron Transfer of Cytochrome c and Biosensing[J]. Electrochem. Commun. 2010, 12, 175-177.
    [116] Stoller M. D., Park S., Zhu Y., etc. Graphene-Based Ultracapacitors[J]. Nano Lett. 2008, 8, 3498-3502.
    [117] Yoo E., Kim J., Hosono E., etc. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J]. Nano Lett. 2008, 8, 2277-2282.
    [118] Si Y., Samulski E. T. Exfoliated Graphene Separated by Platinum Nanoparticles[J]. Chem. Mater. 2008, 20, 6792-6797.
    [119] Thostenson E. T., Li C., Chou T.-W. Nanocomposites in Context[J]. Compos. Sci. Technol. 2005, 65, 491-516.
    [120] McAllister M. J., Li J.-L., Adamson D. H., etc. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite[J]. Chem. Mater. 2007, 19, 4396-4404.
    [121] Dreyer D. R., Park S., Bielawsk C. W., etc. The Chemistry of Graphene Oxide[J]. Chem. Soc. Rev. 2010, 39, 228-240.
    [122] Park S., Ruoff R. S. Chemical Methods For the Production of Graphenes[J]. Nat. Nanotechnol. 2009, 4, 217-224.
    [123] Kalaitzidou K., Fukushima H., Drzal L. T. A New Compounding Method for Exfoliated Graphite–Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold[J]. Compos. Sci. Technol. 2007, 67, 2045-2051.
    [124] Ramanathan T., Abdala A. A., Stankovich S., etc. Functionalized Graphene Sheets for Polymer Nanocomposites[J]. Nat. Nanotechnol. 2008, 3, 327-331.
    [125] Steurer P., Wissert R., Thomann R., etc. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide[J]. Macromol. Rapid Commun. 2009, 30, 316-327.
    [126] Liang J., Huang Y., Zhang L., etc. Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites[J]. Adv.Funct. Mater. 2009, 19, 2297-2302.
    [127] Salavagione H. J., Martínez G., Gómez M. A. Synthesis of Poly(vinyl alcohol)/Reduced Graphite Oxide Nanocomposites with Improved Thermal and Electrical Properties[J]. J. Mater. Chem. 2009, 19, 5027-5032.
    [128] Steurer P., Wissert R., Thomann R., etc. Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide[J]. Macromol. Rapid Commun. 2009, 30, 316–327.
    [129] Wang, S.; Tambraparni, M.; Qiu, J.; Tipton, J.; Dean, D., Thermal Expansion of Graphene Composites[J]. Macromolecules 2009, 42, 5251-5255.
    [130] Rafiee M. A., Rafiee J., Yu Z.-Z., etc. Buckling Resistant Graphene Nanocomposites[J]. Appl. Phys. Lett. 2009, 95, 223103(1)-(3).
    [131] Veca L. M., Lu F., Meziani M. J., etc. Polymer Functionalization and Solubilization of Carbon Nanosheets[J]. Chem. Commun. 2009, 18, 2565-2568.
    [132] Ganguli S., Roy A. K., Anderson D. P. Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites[J]. Carbon 2008, 46, 806-817.
    [133] Hu H., Wang X., Wang J., etc. Preparation and Properties of Graphene Nanosheets–Polystyrene Nanocomposites via in situ Emulsion Polymerization[J]. Chemical Physics Letters 2010, 484, 247-253.
    [134] Yang Y., Wang J., Zhang J., etc. Exfoliated Graphite Oxide Decorated by PDMAEMA Chains and Polymer Particles[J]. Langmuir 2009, 25, 11808-11814.
    [135] Fang M., Wang K., Lu H., etc. Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites[J]. J. Mater. Chem. 2009, 19, 7098-7105.
    [136] Wu J., Tang Q., Sun H., etc. Conducting Film from Graphite Oxide Nanoplatelets and Poly(acrylic acid) by Layer-by-Layer Self-Assembly[J]. Langmuir 2008, 24, 4800-4805.
    [137] Wakabayashi K., Pierre C., Dikin D. A., etc. Polymer-Graphite Nanocomposites: Effective Dispersion and Major Property Enhancement via Solid-State Shear Pulverization[J]. Macromolecules 2008, 41, 1905.
    [138] Wei T., Luo G., Fan Z., etc. Preparation of Graphene Nanosheet/Polymer Composites Using in situ Reduction–Extractive Dispersion[J]. Carbon 2009, 47, 2296-2699.
    [139] Du X., Yu Z.-Z., Dasari A., etc. New Method to Prepare Graphite Nanocomposites[J]. Chem. Mater. 2008, 20, 2066-2068.
    [140] Vickery J. L., Patil A. J., Mann S. Fabrication of Graphene–PolymerNanocomposites With Higher-Order Three-Dimensional Architectures[J]. Adv. Mater. 2009, 21, 2180-2184.
    [141] Furst A., Berlo R. C., Hooton S. Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions) [J]. Chem. Rev. 1965, 65, 51-68.
    [142] Su Q., Pang S., Alijani V., etc. Composites of Graphene with Large Aromatic Molecules[J]. Adv. Mater 2009, 21, 3191–3195.
    [143] Xu Y., Liu Z., Zhang X., etc. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property[J]. Adv. Mater. 2009, 21, 1275–1279.
    [144] Hontoria-Lucas C., López-Peinado A. J., López-González J. d. D., etc. Study of Oxygen-Containing Groups in a Series of Graphite Oxides: Physical and Chemical Characterization[J]. Carbon 1995, 33, 1585-1592.
    [145] SzabóT., Berkesi O., ForgóP., etc. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides[J]. Chem. Mater. 2006, 18, 2740-2749.
    [146] Bourlinos A. B., Gournis D., Petridis D., etc. Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids[J]. Langmuir 2003, 19, 6050-6055.
    [147]傅玲,刘洪波,邹艳红等。Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J]。炭素2005, 124, 10-14。
    [148] Schniepp H. C., Li J.-L., McAllister M. J., etc. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide[J]. J. Phys. Chem. B 2006, 110, 8535-8539.
    [149] Titelman G. I., Gelman V., Bron S., etc. Characteristics and Microstructure of Aqueous Colloidal Dispersions of Graphite Oxide[J]. Carbon 2005, 43, 641-649.
    [150] Gao W., Alemany L. B., Ci L., etc. New Insights into the Structure and Reduction of Graphite Oxide[J]. Nature Chemsitry 2009, 1, 403-408.
    [151] Cote L. J., Cruz-Silva R., Huang J. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite[J]. J. Am. Chem. Soc 2009, 131, 11027–11032.
    [152] Paredes J. I., Villar-Rodil S., Mart?′nez-Alonso A., etc. Graphene Oxide Dispersions in Organic Solvents[J]. Langmuir 2008, 24, 10560-10564.
    [153] Fan X., Peng W., Li Y., etc. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation[J]. Adv. Mater. 2008, 20, 4490–4493.
    [154] Karrer P. The Chemistry of Vitamins A and C[J]. Chem. Rev. 1934, 14, 17-30.
    [155] Loeffler H. J., Ponting J. D. Ascorbic Acid[J]. Ind. Eng. Chem. Anal. Ed. 1942, 14,846-849.
    [156] Davies M. B., Austin J., Partridge D. A. Vitamin C: Its Chemisitry and Biochemistry[M]. Royal Society of Chemsitry, UK: 1991.
    [157] Ambrosi M., Fratini E., Alfredsson V., etc. Nanotubes from a Vitamin C-Based Bolaamphiphile[J]. J. Am. Chem. Soc. 2006, 128, 7209-7214.
    [158] Lu L., Kobayashi A., Tawa K., etc. Silver Nanoplates with Special Shapes: Controlled Synthesis and Their Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Properties[J]. Chem. Mater. 2006, 18, 4894-4901.
    [159] Mtraux G. S., Cao Y. C., Jin R., etc. Triangular Nanoframes Made of Gold and Silver[J]. Nano Lett. 2003, 3, 519-522.
    [160] Wang Y., Camargo P. H. C., Skrabalak S. E., etc. A Facile, Water-Based Synthesis of Highly Branched Nanostructures of Silver[J]. Langmuir 2008, 24, 12042-12046.
    [161] Villar-Rodil S., Paredes J. I., Mart?′nez-Alonso A., etc. Preparation of Graphene Dispersions and Graphene-Polymer Composites in Organic Media[J]. J. Mater. Chem. 2009, 19, 3591-3593.
    [162] Eda G., Fanchini G., Chhowalla M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material[J]. Nat. Nanotechnol. 2008, 3, 270-274.
    [163] Gao J., Liu F., Liu Y., etc. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid[J]. Chem. Mater. 2010, 22, 2213-2218.
    [164]王镜岩,朱圣庚,徐长法,生物化学(第三版)[M]。高等教育出版社:北京,2002。
    [165] Gilje S., Han S., Wang M., etc. A Chemical Route to Graphene for Device Applications[J]. Nano Lett. 2007, 7, 3394-3398.
    [166] CN R., AK S., KS S., etc. Graphene: the New Two-Dimensional Nanomaterial[J]. Angew Chem Int Ed 2009, 48, 7752-7777.
    [167] Dato A., Radmilovic V., Lee Z., etc. Substrate-Free Gas-Phase Synthesis of Graphene Sheets[J]. Nano Lett. 2008, 8, 2012-2016.
    [168] Sutter P. W., Flege J.-I., Sutter E. Epitaxial Graphene on Ruthenium[J]. Nat. Mater. 2008, 7, 406-411.
    [169] Hass J., Heer W. A. d., Conrad E. H. The Growth and Morphology of Epitaxial Multilayer Graphene[J]. J. Phys. Condens. Matter 2008, 20, 323202.
    [170] Jung I., Dikin D., Park S., etc. Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets[J]. J. Phys. Chem. C 2008, 112, 20264–20268.
    [171] Chen F., Tao N. J. Electron Transport in Single Molecules: FromBenzene toGraphene[J]. Acc. Chem. Res. 2008, 42, 429-438.
    [172] Navarro C. G. m., Weitz R. T., Bittner A. M., etc. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets[J]. Nano Lett. 2007, 7, 3499-3503.
    [173] Liu Z., Robinson J. T., Sun X., etc. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs[J]. J. Am. Chem. Soc. 2008, 130, 10876–10877.
    [174] Bourlinos A. B., Georgakilas V., Zboril R., etc. Aqueous-Phase Exfoliation of Graphite in the Presence of Polyvinylpyrrolidone for the Production of Water-soluble Graphenes[J]. Solid State Commun. 2009, 149, 2172-2176.
    [175] Li L.-J., Nicholas R. J., Chen C.-Y., etc. Comparative Study of Photoluminescence of Single-walled Carbon Nanotubes Wrapped with Sodium Dodecyl Sulfate, Surfactin and Polyvinylpyrrolidone[J]. Nanotechnology 2005, 16, S202–S205.
    [176] Yang X., Yan N., Fei Z., etc. Biphasic Hydrogenation over PVP Stabilized Rh Nanoparticles in Hydroxyl Functionalized Ionic Liquids[J]. Inorg. Chem. 2008, 47, 7444-7446.
    [177] Ster G., Immergut E. H. Ultraviolet and Infrared Spectral Studies of Polyvinylpyrrolidone[J]. J. Am. Chem. Soc 1954, 76 (5), 1393-1396.
    [178] Turner D. T., Schwartz A. The Glass Transition Temperature of Poly(N-vinyl pyrrolidone) by Differential Scanning Calorimetry[J]. Polymer 1985, 26, 757-762.
    [179] Park S., Lee K.-S., Bozoklu G., etc. Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking[J]. ACS Nano 2008, 2, 572-578.
    [180] Song Y., Qu K., Zhao C., etc. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection[J]. Adv. Mater. 2010, 22, 2206-2210.
    [181] Zuo X., He S., Li D., etc. Graphene Oxide-Facilitated Electron Transfer of Metalloproteins at Electrode Surfaces[J]. Langmuir 2009, 26 (3), 1936-1939.
    [182] Bornscheuer U. T. Immobilizing Enzymes: How to Create More Suitable Biocatalysts[J]. Angew Chem Int Ed 2003, 42, 3336-3337.
    [183] Betancor L., Luckarift H. R. Bioinspired Enzyme Encapsulation for Biocatalysis[J]. Trends Biotechnol. 2008, 26, 566-572.
    [184] Bódalo A., Gómez J. L., Gómez E., etc. Comparison of Commercail Peroxidases for Removing Phenol from Water Solutions[J]. Chemosphere 2006, 63, 626-632.
    [185] Chen B., Pernodet N., Rafailovich M. H., etc. Protein Immobilization on Epoxy-Activated Thin Polymer Films: Effect of Surface Wettability and Enzyme Loading[J]. Langmuir 2008, 24, 13457-13464.
    [186] Kim J., Grate J. W., Wang P. Nanostructures for Enezyme Stabilization[J]. Chem. Eng. Sci 2006, 61, 1017-1026.
    [187] Zhi C., Bando Y., Tang C., etc. Immobilization of Proteins on Boron Nitride Nanotubes[J]. J. Am. Chem. Soc 2005, 127, 17144-17145.
    [188] Tsang S. C., Yu C. H., Gao X., etc. Silica-Encapsulated Nanomagnetic Particle as a New Recoverable Biocatalyst[J]. J. Phys. Chem. B 2006, 110, 16914-16922.
    [189] Takahashi H., Bo Li T. S., Miyazaki C., etc. Catalytic Activity in Organic Solvents and Stability of Immobilized Enzymes Depend on the Pore Size and Surface Characteristics of Mesoporous Silica[J]. Chem. Mater. 2000, 12, 3301-3305.
    [190] YM L., OY K., YJ Y., etc. Immobilization of Horseradish Peroxidase on Multi-wall Carbon Nanotubes and Its Electrochemical Properties[J]. Biotechnol. Lett. 2006, 28, 39-43.
    [191] Lin Y., Lu F., Tu Y., etc. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles[J]. Nano Lett. 2004, 4, 191-195.
    [192] Cheng J., Yu S. M., Zuo P. Horseradish Peroxidase Immobilized on Aluminum-Pillared Interlayered Clay for the Catalytic Oxidation of Phenolic Wastewater[J]. Water Res 2006, 40, 283-290.
    [193] Nicell J. A., Wright H. A Model of Peroxidase Activity with Inhibition by Hydrogen Peroxide[J]. Enzyme. Microb. Technol. 1997, 21, 302-310.
    [194] Buchanan I. D., Nicell J. A. Model Development for Horseradish Peroxidase Catalyzed Removal of Aqueous Phenol[J]. Biotechnol. Bioeng. 1997, 54, 251-261.
    [195] Guo S., Ward M. D., Wesson J. A. Direct Visualization of Calcium Oxalate Monohydrate Crystallization and Dissolution with Atomic Force Microscopy and the Role of Polymeric Additives[J]. Langmuir 2002, 18, 4284-4291.
    [196] MultiMode V SPM Instruction Manual[M]. Veeco Instruments Inc.: 2006.
    [197] Gao Y., Kyratzis I. Covalent Immobilization of Proteins on Carbon Nanotubes Using the Cross-Linker 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide—a Critical Assessment[J]. Bioconjugate Chem. 2008, 19, 1945-1950.
    [198] Pundir C. S., Malik. V., Bhargava. A. K., etc. Studies on Horseradish Peroxidase Immobilized onto Arylamine and Alkylamine Glass[J]. J. Plant Biochem. Biotechnol. 1999, 8, 123-126.
    [199] Gómez J. L., Bódalo A., Gómez E., etc. Immobilization of Peroxidases on Glass Beads: An Improved Alternative for Phenol Removal[J]. Enzyme Microb. Technol. 2006, 39, 1016-1022.
    [200] Henriksen A., Schuller D. J., Meno K., etc. Structural Interactions between Horseradish Peroxidase C and the Substrate Benzhydroxamic Acid Determined byX-ray Crystallography[J]. Biochemistry 1998, 37, 8054-8060.
    [201] Cooper V. A., Nicell J. A. Removal of Phenols from a Foundry Wastewater Using Horseradish Peroxidase[J]. Water Res. 1996, 30, 954-964.
    [202] Liang M., Zhi L. Graphene-Based Electrode Materials for Rechargeable Lithium Batteries[J]. J. Mater. Chem. 2009, 19, 5871-5878.
    [203] Shao Y., Wang J., Wu H., etc. Graphene Based Electrochemical Sensors and Biosensors:A Review[J]. Electroanalysis 2010, 22, 1027-1036.
    [204] Berger C., Song Z., Li T., etc. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics[J]. J. Phys. Chem. B 2004, 108, 19912-19916.
    [205] Lotya M., Hernandez Y., King P. J., etc. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions[J]. J. Am. Chem. Soc 2009, 131, 3611-3620.
    [206] McCreery R. L. Advanced Carbon Electrode Materials for Molecular Electrochemistry[J]. Chem. Rev. 2008, 108, 2646-2687.
    [207] Banks C. E., Davies T. J., Wildgoose G. G., etc. Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge-Plane Sites and Tube Ends are the Reactive Sites[J]. Chem. Commun. 2005, 829-841.
    [208] Dumitrescu I., Unwin P. R., Macpherson J. V. Electrochemistry at Carbon Nanotubes: Perspective and Issues[J]. Chem. Commun. 2009, 6886-6901.
    [209] Wang Y., Li Y., Tang L., etc. Application of Graphene-Modified Electrode for Selective Detection of Dopamine[J]. Electrochem. Commun. 2009, 11, 889-892.
    [210] Zhou M., Zhai Y., Dong S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide[J]. Anal. Chem. 2009, 81, 5603–5613.
    [211] Tang L., Wang Y., Li Y., etc. Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films[J]. Adv. Funct. Mater. 2009, 19, 2782-2789.
    [212] Liu H., Gao J., Xue M., etc. Processing of Graphene for Electrochemical Application: Noncovalently Functionalize Graphene Sheets with Water-Soluble Electroactive Methylene Green[J]. Langmuir 2009, 25, 12006-12010.
    [213] Shang N. G., Papakonstantinou P., McMullan M., etc. Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes[J]. Adv. Funct. Mater. 2008, 18, 3506-3514.
    [214] Veitch N. C. Horseradish Peroxidase: A Modern View of a Classic Enzyme[J]. Phytochem. 2004, 65, 249-259.
    [215] Serra B., Reviejo A. J., Pingarron J. M. Composite Multienzyme AmperometricBiosensors for an Improved Detection of Phenolic Compounds[J]. Electroanalysis 2003, 15, 1737-1744.
    [216] Elyacoubi A., Zayed S. I. M., Blankert B., etc. Development of an Amperometric Enzymatic Biosensor Based on Gold Modified Magnetic Nanoporous Microparticles[J]. Electroanalysis 2006, 18, 345-350.
    [217] Chen Z., Xi F., Yang S., etc. Development of a Bienzyme System Based on Sugar–Lectin Biospecific Interactions for Amperometric Determination of Phenols and Aromatic Amines[J]. Sens. Actuators B 2008, 130, 900-907.
    [218] Qiu H., Lua L., Huang X., etc. Immobilization of Horseradish Peroxidase on Nanoporous Copper and Its Potential Applications[J]. Bioresour. Technol. 2010, 101, 9415-9420.
    [219] Hong J., Ghourchian H., Moosavi–Movahedi A. A. Direct Electron Transfer of Redox Proteins on a Nafion-Cysteine Modified Gold Electrode[J]. Electrochem. Commun. 2006, 8, 1572-1576.
    [220] Tian Y., Mao L., Okajima T., etc. Superoxide Dismutase-Based Third-Generation Biosensor for Superoxide Anion[J]. Anal. Chem. 2002, 74, 2428-2434.
    [221] Tian Y., Ariga T., Takashima N., etc. Self-Assembled Monolayers Suitable for Electron-Transfer Promotion of Copper, Zinc-Superoxide Dismutase[J]. Electrochem. Commun. 2004, 6, 609-614.
    [222] Yin H., Ai S., Sh W., etc. A Novel Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized on Gold Nanoparticles–Silk Fibroin Modified Glassy Carbon Electrode and Direct Electrochemistry of Horseradish Peroxidase[J]. Sens. Actuators B 2009, 137, 747-753.
    [223] Zhou K., Zhu Y., Yang X., etc. A Novel Hydrogen Peroxide Biosensor Based on Au–Graphene–HRP–Chitosan Biocomposites[J]. Electrochim. Acta 2010, 55, 3055-3060.
    [224] Du H., Ye J., Zhang J., etc. A Voltammetric Sensor Based on Graphene-Modified Electrode for Simultaneous Determination of Catechol and Hydroquinone[J]. J. Electroanal. Chem. 2010, 650, 209-213.
    [225] Yin H., Ma Q., Zhou Y., etc. Electrochemical Behavior and Voltammetric Determination of 4-Aminophenol Based on Graphene–Chitosan Composite Film Modified Glassy Carbon Electrode[J]. Electrochim. Acta 2010, 55, 7102-7108.
    [226] Wang S.-F., Xie F., Hu R.-F. Electrochemical Study of Brucine on an Electrode Modified with Magnetic Carbon-Coated Nickel Nanoparticles[J]. Anal. Bioanal. Chem. 2007, 387, 933.
    [227] Liu S.-Q., Ju H.-X. Renewable Reagentless Hydrogen Peroxide Sensor Based onDirect Electron Transfer of Horseradish Peroxidase Immobilized on Colloidal Gold-Modified Electrode[J]. Anal. Biochem. 2002, 307, 110-116.
    [228] Li J., Dong S. The Electrochemical Study of Oxidation-Reduction Properties of Horseradish Peroxidase[J]. J. Electroanal. Chem. 1997, 431, 19-22.
    [229] Ren X., Meng X., Chen D., etc. Using Silver Nanoparticle to Enhance Current Response of Biosensor[J]. Biosens. Bioelectron. 2005, 21, 433-437.
    [230] Wen D., Liu Y., Yang G., etc. Electrochemistry of Glucose Oxidase Immobilized on the Carbon Nanotube Wrapped by Polyelectrolyte[J]. Electrochim. Acta 2007, 52, 5312-5317.
    [231] Fu C., Wang W., Chen X., etc. Direct Electrochemistry of Glucose Oxidase on a Graphite Nanosheet–Nafion Composite Film Modified Electrode[J]. Electrochem. Commun. 2009, 11, 997-1000.
    [232] Yi X., Huang-Xian J., Hong-Yuan C. Direct Electrochemistry of Horseradish Peroxidase Immobilized on a Colloid/Cysteamine-Modified Gold Electrode[J]. Anal. Biochem. 2000, 278, 22-28.
    [233] Dean J. A,兰氏化学手册[M]。科学出版社:北京,2003。
    [234] Sharifian H., Kirk D. W. Electrochemical Oxidation of Phenol[J]. J. Electrochem. Soc. 1986, 133, 921-924.
    [235] Gattrell M., Kirk D. W. A Study of the Oxidation of Phenol at Platinum and Preoxidized Platinum Surfaces[J]. J. Electrochem. Soc. 1993, 140, 1534-1540.
    [236] Torres R. A., Torres W., Peringer P., etc. Electrochemical Degradation of P-Substituted Phenols of Industrial Interest on Pt Electrodes. Attempt of a Structure–Reactivity Relationship Assessment[J]. Chemosphere 2003, 50, 97–104.
    [237] Kane S. A., Iwuoha E. I., Smyth M. R. Development of a Sol–Gel Based Amperometric Biosensor for the Determination of Phenolics[J]. Analyst 1998, 123, 2001-2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700