波长检测型表面等离子体子共振传感器性能改进的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统、深入地研究了改进多波长同时检测型表面等离子体子共振传感器性能的一些方法,以及这些方法在免疫分析方面的应用。详细介绍了多波长同时检测型表面等离子体子共振传感器的仪器构造,概述了SPR传感器的性能以及在提高SPR传感器灵敏度方面的研究进展。
     表面等离子体子共振(SPR)传感器通用性强、无需标记、可同时得到反应的一些热力学和动力学常数,在研究分子间的相互作用方面有优势,但其灵敏度有限。因此,有关SPR研究的一个重要内容是提高传感器的灵敏度。本论文通过改进SPR传感器表面结构和试样溶液组成来提高灵敏度。研究了四种方法:1、改进了传统的SPR传感膜结构,应用磁粒子修饰SPR传感膜。与传统的SPR免疫检测传感膜上固定抗体的方法相比,这种方法简化了抗体的固定,加速了待测物的检测,并进一步改进这一方法,通过层层自组装聚电解质和气相沉积二氧化钛两种方法修饰金膜表面,对金膜起到了保护的作用,避免了磁纳米粒子与金膜表面的直接接触而产生的沉积,同时增加了传感器的灵敏度和使用的寿命;2、应用不同浓度的基底溶液检测热休克蛋白(Hsp70);3、抗体-抗原结合法测定补体B因子和纤维蛋白Fn;4、基于电沉积Au-Ag膜和Au-Hg膜修饰金膜的方法测定人免疫球蛋白(hIgG)和兔免疫球蛋白(rIgG)。这几种提高SPR传感器灵敏度的方法操作简单,检测的最低浓度降低了5-10倍。
The most important characteristics of surface plasmon resonance (SPR) sensor are its versatility and capability in real time monitoring the association or dissociation of biomolecules on the surface of the sensor, no label and high selectivity. These characteristics made the SPR technique an easy, convenient and reliable one for determining the concentration and molecular weight, monitoring change in structure, measuring kinetic constant and binding specificity of individual biomolecules. Since the first SPR sensor was developed in 1983 by Liedberg et al, the research and application of SPR technology have shown extensive growth and gradually become the hot spot and research frontier in the biosensor field in the world. In recent years, the SPR sensors have been developed very rapidly and applied to such function research based on molecular level. After the SPR technology was first commercially developed to dominate this market, SPR biosensors have become standard bio-tools in both academic and industrial research laboratories. The popularity of the technology continues to grow, as numbers of scientific publications immerged that describing experiments using SPR.
     In addition, new methods of SPR are studied mostly for the sensitivity enhancement of SPR sensor, except for enlarging application range of SPR. So, exploring various analytical methods actively for enhancing SPR sensitivity is also a mainly topic. The work includes two aspects for sensitivity enhancement of SPR sensor. On the one hand, the research system is improved. Such as, improving SPR sensor surface structure and changing component of reagent solution. On the other hand, the SPR instrument is improved including optimizing wave-guide element, renovating detection system and combining with other high sensitivity instrument et al. The element theory and technical characteristics of SPR sensor are introduced. Several types of wavelength modulation SPR sensors have been employed and some applications of these sensors presented. The configurations of wavelength modulation SPR sensors installed in our lab are outlined and the latest developments in the application of sensitivity enhancement of SPR sensor were summarized.
     Dextran coated magnetic nanocomposites were prepared. A periodate oxidation method was used to further activate the magnetic dextran, forming magnetic polyaldehyde-dextran, which could be conjugated to antibodies. This biological probe could be trapped on the Au film firmly due to the magnetic force. Since the magnetic bead is coated with dextran, the antibodies and some specific biomolecular receptors can be immobilized using a variety of chemical reactions. And the conjugates of magnetic microbeads coupling with antibody could be dissociated from the Au film due to the absence of the magnetic field. Compared to traditional antibody immobilization on the sensing film, there is not a covalent link between the Au film and the antibody. There is a great advantage in that sensor can be stripped and reused. After the magnetic pillar was above the prism, the sensing film of the conjugates was structured on the gold surface for the immunoassay of Hsp70. Different dilution ratios (V/V) of the conjugates result in different detectable ranges. When the dilution ratio of the conjugates was 1:10, 1:8 and 1:5, the SPR biosensor yields good response to Hsp70 in the concentration range of 1.50-30.00μg mL~(-1), 0.75-30.00μg mL~(-1) and 0.30-30.00μg mL~(-1), respectively. In addition, the stability of conjugates trapped on the Au film was investigeted and the immobilization of conjugates was analyzed by UV-Visible spectrum.
     Meanwhile, the surface of the sensing film was modified with self-assembly of polyelectrolyte and vapor deposition of titania sol-gel matrix. With self-assembly of polyelectrolyte, different layers of polyelectrolyte can be assembled onto the Au film based on an electrostatic force between polycations and polyanions. The polyelectrolyte layers with appropriate thickness could effectively prevent the magnetic beads from depositing on the Au film and increase the life expectancy of this biosensor that favors the sensitivity of the biosensor and the regeneration of the sensing membrane. The assay of human IgG with standard SPR sensors by traditional method without magnetic beads was performed, and the lowest concentration that could be detected was 2.00μg mL~(-1). When the polyelectrolyte layer of (PAH/PSS)_1, (PAH/PSS)_2 and (PAH/PSS)_3 were separately constructed on the Au film, human IgG was determined in the concentration range of 2.00-30.00μg mL~(-1), 0.50-30.00μg mL~(-1) and 0.25-30.00μg mL~(-1), respectively. The sensing film with (PAH/PSS)_3 layer exhibits a larger dynamic range since it results in up to about 8 times lower determination limit than that obtained with (PAH/PSS)1 layer. The rational explanation was given for every experiment phenomenon. With the increase of thickness for the polyelectrolyte layers, the space of the surface was expanded producing more binding points, following with the resonant wavelength moving to longer wavelength and enhancing sensitivity of the wavelength modulation SPR biosensor. Also the effects of different polyelectrolyte layers on the regeneration of the biosensor were investigated. Meanwhile, the association constant of human IgG with antibody is 3.195×107 L mol~(-1). The surface of the Au film modified with (PAH/PSS)3 was measured by atomic force microscope (AFM).
     A facile vapor deposition method has been developed for the preparation of sol-gel matrix on the Au film by determining Hsp70. TiO_2 sol-gel matrix was constructed on the thin Au films by vapor deposition method with proper temperature. The vapor deposition method simplified the traditional sol-gel process and prevented the cracking of conventional sol-gel derived glasses. The sol-gel derived titania-modified Au film retained the bioactivity and provided for long-term stability of the biomaterials in storage. In the magnetic field, the conjugates of magnetic beads coupled with rabbit anti-Hsp70 were immobilized on the Au film modified with TiO_2 sol-gel membrane and the analysis of the immunoassay was done by SPR biosensor. Effects of the vapor deposition time and operating potential for obtaining the TiO_2 sol-gel matrix were explored. When titania sol-gel membrane obtained for deposition time of 30, 45 and 60 min, the SPR biosensor yields good response to Hsp70 in the concentration range of 1.00-30.00μg mL~(-1), 0.50-30.00μg mL~(-1) and 0.20-30.00μg mL~(-1), respectively. The limit of detection of the immunoassay is 0.062μg mL~(-1). Meanwhile, the effects of TiO_2 sol-gel membrane on the stability and regeneration of the SPR sensor were discussed.
     The sensitivity enhancement of wavelength modulation SPR biosensor was described by improving the baseline solution. The baseline solutions used are ethanol solutions, and all reagents in the assay were diluted with ethanol solution. Molecular self-assembling on the surface of the sensor is applied to form the sensing membrane on the gold substrate and detect Hsp70 quantitatively. The resonant wavelength changes with the change of baseline solutions. For the baseline solution of higher ethanol concentration, the resonant wavelength moved to the longer wavelength and the change of refractive index at longer wavelength could made larger shift of the resonant wavelength. When 1.0%, 2.0%, 4.0% and 6.0% ethanol solutions were used as the baseline solutions, the SPR biosensor has good response to Hsp70 in the concentration range 1.00-10.00μg mL~(-1) , 0.50-10.00μg mL~(-1) , 0.20-10.00μg mL~(-1) and 0.10-10.00μg mL~(-1), respectively. For the detection using 6.0% ethanol solution as the baseline solution, the lowest detectable concentration (0.10μg mL~(-1)) is 10-fold lower than that using 1.0% ethanol solution as the baseline solution (1.00μg mL~(-1)). The non-specific binding and the activity of antibody due to the ethanol solution were also discussed in detail. Meanwhile, it was proved with theoretical calculation that the sensitivity enhancement is not only relative to the increase of binding constant KA, but also to the shift of resonant wavelength towards longer wavelength. The method of changing the baseline solution that made the resonant wavelength move to the longer wavelength is authentic and feasible to enhance the sensitivity of SPR biosensor.
     A method of the sensitivity enhancement for the SPR biosensor is presented using antibody-antigen coupling assay. The human factor B (Bf) and fibronectin (FN) were determined and analyzed with kinetic process. The sensor surface was prepared by self-assembling monolayer (SAM), and regenerated by rising with citrate buffer. Thoil terminal of MPA is easily adsorbed to gold surface and–COOH is an active group that can bind to antibody. The antibody in the solution first bound to antigen. Then the binding of antigen to antibody in the solution leads to the formation of large couplers that could bind to the antibody immobilized on the Au film. The lowest determination concentration of Bf (0.05μg mL~(-1)) obtained by antibody-antigen coupling method is 10-fold lower than that by direct immunoreaction (0.5μg mL~(-1) ). The lowest determination concentration of FN (0.25μg mL~(-1)) obtained by antibody-antigen coupling assay is 8-fold lower than that by direct immunoreaction (2.00μg mL~(-1) ). The binding constants KA for Bf and FN are 3.72×107 L mol~(-1) and 1.92×107 L mol -1, respectively. Due to the coupling of antibody to antigen, the binding of antigen to antibody on the Au film could cause a large shift of the resonant wavelength. The sensitivity of the assay can be optimized with adjusting the concentration of the antigen and antibody preparations. Meanwhile, the selectivity, stability and the linear ranges of the SPR biosensor were investigated and the rational explanation was given for the experiment phenomenon.
     The sensitivity of the SPR biosensor was enhanced with the combination of electrochemical technique which is very accurate and advantageous. Surface functionality with element Hg or Ag is used as precursor for depositing the sensing layer onto the Au glass substrates. Electrochemical experiments were performed with a CHI660A electrochemical station. Hg or Ag was electrodeposited on the Au surface to form the Au-Hg or Au-Ag film. The SPR biosensors based on the Au-Hg or Au-Ag film were used to determine the human IgG and rabbit IgG. MPA is easily adsorbed on the Au-Hg or Au-Ag film. Then the COO- terminal group is an active group that can bind to antibody. When Hg or Ag overlayer was formed on the gold film, the surface of the film becomes rough that results in more molecules immobilized on the surface. Meanwhile, the electrodeposition time of Hg and Ag also has effect on the IgG determination. When the electrodeposition time of Hg on the Au film was 900 s and 1200 s, the concentration ranges for determination of human IgG are 1.00-40.00μg mL~(-1) and 0.50-40.00μg mL~(-1), respectively. When Ag was electrodeposited on the Au film for 1000 s and 1500 s, the concentration ranges for human IgG are 0.50-20.00μg mL~(-1) and 0.25-20.00μg mL~(-1), respectively. For the determination of rabbit IgG, the Au-Hg film is the most sensitive resulting in up to 4 times lower determination limits than that obtained by Au film and the Au-Ag film is 6 times than by Au film. With the electrodeposition time increasing, the thickness of Hg or Ag overlayer increases. These make the resonant wavelength move to longer wavelength in some wavelength range that results in higher sensitivity of the wavelength modulation SPR biosensor. Meanwhile, Hg and Ag film themselves also contributed to the higher sensitivity.
引文
[1]国家自然科学基金委员会,等离子体子物理学, [M]北京:科学出版社,1994.
    [2] C. Nylander, B. Liedberg, T. Lind, Gas detection by means of surface plasmons resonance, [J] Sens. Actuators, B, 1982, 3, 79-88.
    [3] B. Liedberg, C. Nylander, I. Lundstrom, Surface plasmon reso-nance for gas detection and biosonsing, [J] Sens. Actuators, B, 1983, 4, 299-304.
    [4] K. Matsubara, S. Kawata, S. Minami, Optical chemical sensor based on surface plasmon measurement, [J] Appl. Opt., 1988, 27, 1160-1163.
    [5] J. J. Cowan, E. T. Arakawa, Dispersion of surface plasmons in multiple metal and dielectric layers on concave diffraction gratings, [J] Phys. Stat. Sol. (a). 1970, 1, 695-705.
    [6] W. F. M. Stocklein, A. Warsinke, B. Micheel, G. Kempter, W. Hohne, F. W. Scheller, Diphenylurea hapten sensing with a monoclonal antibody and its Fab fragment: Kinetic and thermodynamic investigations, [J] Anal. Chim. Acta, 1998, 362, 101-111.
    [7] S. F. Chou, W. Hsu, J. Hwang, C. Chen, Development of an immunosensor for human ferritin, a nonspecific tumor marker, based on surface plasmon resonance, [J] Biosens. Bioelectron., 2004, 19, 999-1005.
    [8] J. F. Masson, L. Obando, S. Beaudoin, et al., Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I, [J] Talanta, 2004, 62, 865-870.
    [9] M. Mecklenburg, J. Svitel, F. Winquist, J. Gang, K. Ornstein, E. Dey, X. Bin, E. Hedborg, R. Norrby, H. Arwin, I. Lundstr, B. Danielsson, Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel, [J] Anal. Chim. Acta, 2002, 459, 25-31.
    [10] T. Fujino, Y. Sato, M. Une, T. Kanayasu-Toyoda, T. Yamaguchi, K. Shudo, K. Inoue, T. Nishimaki-Mogami, In vitro farnesoid X receptor ligand sensor assay using surface plasmon resonance and based on ligand-induced coactivator association, [J] J. Steroid Biochem. Mol. Biol., 2003, 87, 247-252.
    [11] M. Lahav, A. Vaskevich, I. Rubinstein, Biological sensing using transmission surfaceplasmon resonance spectroscopy, [J] Langmuir, 2004, 20, 7365-7367.
    [12] X. Liu, Y. Sun, D. Song, Q. Zhang, Y. Tian, H. Zhang, Enhanced optical immuosensor based on surface plasmon resonance for determination of transferring, [J] Talanta, 2006, 68, 1026-1031.
    [13] Y. Mizutaa, T. Onoderaa, P. Singhb, K. Matsumotoc, N. Miurad, K. Tokoa, Development of an oligo(ethylene glycol)-based SPR immunosensor for TNT detection, [J] Biosens. Bioelectron., 2008, 24, 191-197.
    [14] Y. Arimaa, M. Todaa, H. Iwata, Complement activation on surfaces modified with ethylene glycol units, [J] Biomaterials, 2008, 29, 551-560.
    [15] K. Nakatani, S. Sando, I. Saito, Scanning of guanine-guanine mismatches in DNA by synthetic ligands using surface plasmon resonance. [J] Nat. Biotechnol., 2001, 19, 51-55.
    [16] J. M. McDonnell, Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition, [J] Curr. Opin. Chem. Biol., 2001, 5, 572-577.
    [17] W. M. Mullett, E. P. C. Lai, J. M. Yeung, Surface Plasmon Resonance-Based Immunoassays, [J] Methods, 2000, 22, 77-91.
    [18] Z. Salamon, H. Angus Macleod, G. Tollin, Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems.Ⅰ: Theoretical principles, [J] Biochim. Biophys. Acta, 1997, 1331, 117-129.
    [19]田民波,刘德令编译,薄膜科学与技术手册, [M]北京:机械工业出版社, 1991, 410.
    [20] M. Keusgen. Biosensors: new approaches in drug discovery, [J] Naturwissenschaften, 2002, 89, 433-444.
    [21] T. Y. B. Leung, M. C. Gerstenberg, D. J. Lavrich, G. Scoles, F. Schreiber, G. E. Poirier, 1,6-Hexanedithiol Monolayers on Au(111): A Multitechnique Structural Study, [J] Langmuir, 2000, 16, 549-561.
    [22] C. E. H. Berger, T. A. M. Beumer, R. P. H. Kooyman, J. Greve, Surface Plasmon Resonance Multisensing, [J] Anal. Chem., 1998, 70, 703-706.
    [23] G. Sakai, K. Ogata, T. Uda, N. Miura, N. Yamazoe, A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine, [J] Sens. Actuators, B, 1998, 49,5-12.
    [24] C. R. Lawerence, N. J. Geddes, D. N. Furlong, Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings, [J] Biosens. Bioelectron., 1996, 11, 389-400.
    [25] N. J. Geedes, A. S. Martin, F. Caruso, R. S. Urquhart, D. N. Furlong, J. R. Samoles, K. A. Than, J. A. Edgar, Immobilisation of IgG onto gold surfaces and its interaction with anti-IgG studied by surface plasmon resonance, [J] J. Immunol. Methods, 1994, 175, 149-160.
    [26] R. P. H. Kooyman, H. Kolkman, J. Vengent J. Greve, Surface plasmon resonance immunosensors: sensitivity considerations, [J] Anal. Chim. Acta, 1988, 213, 35-45.
    [27] P. Daniels, J. Deascon, M. Eddowes, D. Pedley, Surface plasmon resonance applied to immunosensing, [J] Sens. Actuators, 1988, 15, 11-18.
    [28] C. Duschl, A. Sevin-Landais, H. Vogel, Surface engineering: optimization of antigen presentation in self-assembled monolayers, [J] Biophys. J., 1996, 70, 1985-1995.
    [29] K. A. Peterlinz, R. Georgiadis, In Situ Kinetics of Self-Assembly by Surface Plasmon Resonance Spectroscopy, [J] Langmuir, 1996, 12, 4731-4740.
    [30] N. Patel, M. M. Davies, R. J. Heaton, C. J. Roberts, S. J. B. Tendler, P. M.Williams, A scanning probe microscopy study of the physisorption and chemisorption of protein molecules onto carboxylate terminated self-assembled monolayers, [J] Appl.Phys. A.Mater. Sci. Process, 1998, 66, S569-574.
    [31] R. Karlsson, Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors, [J] J. Immunol. Methods, 1997, 200, 121-133.
    [32] S. Lofas, B. Johnsson, hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands, [J] J. Chem. Soc. Commun, 1990, 21, 1526-1528.
    [33] J. B. Schlenoff, M. Li, H. Ly, Stability and Self-Exchange in Alkanethiol Monolayers, [J] J. Am. Chem. Soc., 1995, 117, 12528-12536.
    [34] S. Sasaki, R. Nagata, B. Hock, I. Karube, Novel surface plasmon resonance sensor chip functionalized with organic silica compounds for antibody attachment, [J] Anal. Chim.Acta, 1998, 368, 71-76.
    [35] R. J. Green, J. Davies, M. C. Davies, C. J. Roberts, S. J .B. Tendler, Surface plasmon resonance for real time in situ analysis of protein adsorption to polymer surfaces, [J] Biomaterials, 1997, 18, 405-413.
    [36] S. S. Pathak, H. F. J. Savelkoul, Biosensors in immunology: the story so far, [J] Immunol. Today, 1997, 18, 464-467.
    [37] R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, H. Pedersen, A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing, [J] Anal. Chem., 1997, 69, 4649-4652.
    [38] D. Christensen, D. Fowers, Modeling SPR sensors with the finite-difference time-domain method, [J] Biosens. Bioelectron., 1996, 11, 677-684.
    [39]董绍俊,车广礼,谢远武, [M]化学修饰电极,北京:科学出版社, 1995, 30.
    [40] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces, [J] J. Am. Chem. Soc., 1980, 102, 92-98.
    [41] X. Liu, D. Song, Q. Zhang, Y. Tian, L. Ding, H. Zhang, Wavelength-modulation surface plasmon resonance sensor, [J] Trends Anal. Chem., 2005, 24, 887-893.
    [42] D. Song, Y. Mu, X. Liu, L. Zhao, H. Zhang, Q. Jin, An optical immunosensor based on surface plasmon resonance for determination of bFGF, [J] Microchem. J., 2003, 74, 93-97.
    [43] Y. Tian, Y. Chen, D. Song, X. Liu, S. Bi, X. Zhou, Y. Cao, H. Zhang, Acousto-optic tunable filter-surface plasmon resonance immunosensor for fibronectin, [J] Anal. Chim. Acta, 2005, 551, 98-104.
    [44] J. S. Yuk, S. Yi, H. G. Lee, H. J. Lee, Y. Kima, K. Haa, Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips, [J] Sens. Actuators, B, 2003, 94, 161-164.
    [45] M. Lotierzo, O. Y. F. Henry , S. Piletsky, I. Tothill, D. Cullen, M, Kania, B. Hock, A. P. F. Turner, Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer, [J] Biosens. Bioelectron. 2004, 20, 145-152.
    [46] A. A. Kruchinin, Y. G. Vlasov, Surface plasmon resonance monitoring by means of polarization state measurement in reflected light as the basis of a DNA-probe biosensor, [J]Sens. Actuators, B, 1996, 30, 77-80.
    [47] H. P. Ho, W. W. Lam, Application of differential phase measurement technique to surface plasmon resonance sensors, [J] Sens. Actuators, B, 2003, 96, 554-559.
    [48] A. K. Sheridan, R. D. Harris, P. N. Bartlett, J. S. Wilkinson, Phase interrogation of an integrated optical SPR sensor, [J] Sens. Actuators, B, 2004, 97, 114-121.
    [49] C. E. H. Berger, T. A. M.Beumer, R. P. H. Kooyman, J. Greve, Surface Plasmon Resonance Multisensing, [J] Anal. Chem., 1998, 70, 703-706.
    [50] A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, [J] Z. Phys., 1968, 216, 398-410
    [51] E. Kretschmann, H. Raether, Radiative decay of Nonradiative Surface Plasmons Excited by Light, [J] Z. Naturforsch. Teil A, 1968, 23, 2135-2136.
    [52] J. Homola, S. S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, [J] Sens. Actuators, B, 1999, 54, 3-15.
    [53] H. E. Bruijn, B. S. F. Altenburg, R. P. H. Kooyman, J. Greve, Choice of mental and wavelength for surface-plasmon resonance sensors: some considerations, [J] Appl. Opt., 1992, 31, 440-442.
    [54] R. P. H. Kooyman, H. Kolkman, J. Gent, J. Greve, Surface plasmon resonance immunosensors: sensitivity considerations, [J] Anal. Chim. Acta, 1988, 213, 35-45.
    [55] E. M. Yeatman, Resolution and sensitivity in surface plasmon microscopy and sensing, [J] Biosens. Bioelectron., 1996, 11, 635-649.
    [56] J. Homola, On the sensitivity of surface plasmon resonance sensors with spectral interrogation, [J] Sens. Actuators, B, 1997, 41, 207-211.
    [57] J. Homola, I. Koudela, S. S.Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, [J] Sens. Actuators, B, 1999, 54, 16-24.
    [58] A. A. Kolomenskii, P. D. Gershon, H. A. Schuessler, Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance, [J] Appl. Opt., 1997, 36, 6539-6547.
    [59] C. Jungar, M. Strandh, S. Ohlson, C. Mandenius, Analysis of Carbohydrates UsingLiquid Chromatography-Surface Plasmon Resonance Immunosensing Systems, [J] Anal. Biochem. 2000, 281, 151-158.
    [60] S. G. Nelson, K. S. John, S. S. Yee, Electrical characterization of porous BaTiO3 using impedance spectroscopy in humid condition, [J] Sens. Actuators, B, 1996, 35, 187-191.
    [61] I. Lundstrom, Real-time biospecific interaction analysis, [J] Biosens. Bioelectron., 1994, 9, 725-736.
    [62] J. Grote, N. Dankbar, E. Gedig, S. Koenig, Surface plasmon resonance/mass spectrometry interface, [J] Anal. Chem., 2005, 77 (4), 1157-1162.
    [63] G. R. Marchesini, J. Buijs, W. Haasnoot, D. Hooijerink, O. Jansson, M. W. F. Nielen, Nanoscale affinity chip interface for coupling inhibition SPR immunosensor screening with Nano-LC TOF MS, [J] Anal. Chem., 2008, 80 (4), 1159-1168.
    [64] D. Nedelkov, Development of Surface Plasmon Resonance Mass Spectrometry Array Platform, [J] Anal. Chem., 2007, 79 (15), 5987-5990.
    [65] C. S. Thompsona, S. A. Haugheyb, I. M. Traynora, et al., Effective monitoring for ractopamine residues in samples of animal origin by SPR biosensor and mass spectrometry, [J] Anal. Chim. Acta, 2008, 608, 217-225.
    [66] H. M. Ashwin, S. L. Stead, J. C. Taylor, J. R. Startin, S. F. Richmond, V. Homer, T. Bigwood, M. Sharman, Development and validation of screening and confirmatory methods for the detection of chloramphenicol and chloramphenicol glucuronide using SPR biosensor and liquid chromatography-tandem mass spectrometry, [J] Anal. Chim. Acta, 2005, 529, 103-108.
    [67] H. Larsericsdotter1, O. Jansson, A. Zhukov, D Areskoug, Sven Oscarsson, Jos Buijs, Optimizing the surface plasmon resonance/mass spectrometry interface for functional proteomics applications: How to avoid and utilize nonspecific adsorption, [J] Proteomics, 2006, 6, 2355-2364.
    [68] F. Wang, J. Wang, H. Chen, S. Dong, Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR, [J] J. Electroanal. Chem., 2007, 600, 265-274.
    [69] F. Wang, J. Wang, X. Liu, S. Dong, Nanoparticle-amplified surface plasmon resonancestudy of protein conformational change at interface, [J] Talanta, 2008, 77, 628-634.
    [70] J. Wang, F. Wang, X. Zou, Z. Xu, S. Dong, Surface plasmon resonance and electrochemistry for detection of small molecules using catalyzed deposition of metal ions on gold substrate, [J] Electrochem. Commun., 2007, 9, 343-347.
    [71] F.Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, J. Erlebacher, Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes, [J] Anal. Chem., 2006, 78, 7346-7350.
    [72] P. Neuzil, J Reboud, Palm-Sized Biodetection System Based on Localized Surface Plasmon Resonance, [J] Anal. Chem., 2008, 80 (15), 6100-6103.
    [73] A. B. Dahlin, J. O. Tegenfeldt, F. Hk, Improving the Instrumental Resolution of Sensors Based on Localized Surface Plasmon Resonance, [J] Anal. Chem., 2006, 78 (13), 4416-4423.
    [74] G. H. Chan, J. Zhao, G. C. Schatz, R. P. Van Duyne, Wavelength-Scanned Surface-Enhanced Resonance Raman Excitaton Spectroscopy, [J] J. Phys. Chem. C, 2008, 112 (36), 13958-13963.
    [75] A. Zybin, D. Boecker, V. M. Mirsky, K. Niemax, Enhancement of the Detection Power of Surface Plasmon Resonance Measurements by Optimization of the Reflection Angle, [J] Anal. Chem., 2007, 79, 4233-4236.
    [76] T. Hayano, Y. Yamauchi, K. Asano, T. Tsujimura, S. Hashimoto, T. Isobe, N. Takahashi, Automated SPR-LC-MS/MS system for protein interaction analysis, [J] J. Proteome Res., 2008, 7 (9), 4183-4190.
    [77] X. Zhou, D. Xing, D. Zhu, L. Jia, Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity, [J] Anal. Chem., 2009, 81 (1), 255-261.
    [78] S. E. Diltemiza, A. Denizlic, A. E. oza, R.Saya, Molecularly imprinted ligand-exchange recognition assay of DNA by SPR system using guanosine and guanine recognition sites of DNA, [J] Sens. Actuators, B, 2008, 133, 484-488.
    [79] L. Y. Chenga, T. Yu-chiab, T. Woo-Hud, H. Tsui-Shanc, C. Ko-Shaoc, L. Shu-Chuanc, The enhancement method of optical fiber biosensor based on surface plasmon resonancewith cold plasma modification, [J] Sens. Actuators, B, 2008, 133, 370-373.
    [80] R. C. Jorgenson, S. S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance, [J] Sens. Actuators, B, 1993, 12, 213-220.
    [81] J. Homola, S. S. Yee, Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis, [J] Sens. Actuators, B, 1996, 37, 145-150.
    [82] W. Lucosz, P. Nellen, C. Stamm. P. Weiss, Output grating couplers on planar waveguides as integrated optical chemical sensors, [J] Sens. Actuators, B, 1990, 1, 585-588.
    [83] P. M. Nellen, W. Lukosz, Model experiments with integrated optical input grating couplers as direct immunosensors, [J] Biosens. Bioelectron., 1991, 6, 517-525.
    [84] C. R. Lawrence, N. J. Geddes, D. N. Furlong, J. R. Sambles, Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings, [J] Biosens. Bioelectron., 1996, 11, 389-400.
    [85] F. Yu, S. Tian, D. Yao, W. Knoll, Surface Plasmon Enhanced Diffraction for Label-Free Biosensing, [J] Anal. Chem., 2004, 76, 3530-3535.
    [86] D. G. Hanken, R. R. Naujok, J. M. Gray, R. M. Corn, Characterization and Electro-Optical Properties of Noncentrosymmetric Azobenzene/Zirconium Phosphonate Multilayer Films, [J] Anal. Chem., 1997, 69, 240-248.
    [87] D. G. Hanken, R. M. Corn, Electric Fields and Interference Effects inside Noncentrosymmetric Multilayer Films at Electrode Surfaces from Electrochemically Modulated Surface Plasmon Resonance Experiments, [J] Anal. Chem., 1997, 69, 3665-3673.
    [88] Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, Analysis of electrochemical processes using surface plasmon resonance, [J] Sens. Actuators, B, 1998, 50, 145-148.
    [89] Y. Iwasaki, T. Horiuchi, M. Morita, O. Niwa, Electrochemical reaction of Fe(CN) 6 on gold electrodes analyzed by surface plasmon resonance3?/4?, [J] Surf. Sci., 1999, 427, 195-198.
    [90] Y. Iwasaki, T. Horiuchi, O. Niwa, Detection of Electrochemical Enzymatic Reactions by Surface Plasmon Resonance Measurement, [J] Anal. Chem., 2001, 73, 1595-1598.
    [91]李萃,詹显全,陈主初,生物传感芯片质谱及其在蛋白质组研究中的应用, [J]生命的化学, 2001, 21(2), 153-155.
    [92]杨何义,蔡耘,钱小红,生物质谱在核糖核酸领域的应用, [J]质谱学报, 2004, 25(1), 52-60.
    [93] S. M. Patrie, M, Mrksich, Self-Assembled Monolayers for MALDI-TOF Mass Spectrometry for Immunoassays of Human Protein Antigens, [J] Anal. Chem., 2007, 79, 5878-5887.
    [94] R. W. Nelson, J. R. Krone, Advances in surface plasmon resonance bimolecular interaction analysis mass spectrometry (BIA/MS), [J] J. Mol. Recognit., 1999, 12, 77-93.
    [95] E. Ohman, A. Nilsson, A. Madeira, Use of Surface Plasmon Resonance Coupled with Mass Spectrometry Reveals an Interaction between the Voltage-Gated Sodium Channel Type Xα-Subunit and Caveolin-1, [J] J. Proteome Res., 2008, 7 (12), 5333-5338.
    [96] J. G. Bolivar, S. A. Soper, R. L. McCarley, Nitroavidin as a Ligand for the Surface Capture and Release of Biotinylated Proteins, [J] Anal. Chem., 2008, 80(23), 9336-9342.
    [97] J. R. Krone, R. W. Nalson, D. Dogruel, P. Williams, R. Granzow, BIA/MS: Interfacing Biomolecular Interaction Analysis with Mass Spectrometry, [J] Anal. Biochem., 1997, 244, 124-132.
    [98] R. W. Nelson, J. R. Krone, O. Jansson, Surface Plasmon Resonance Biomolecular Interaction Analysis Mass Spectrometry. 1. Chip-Based Analysis, [J] Anal. Chem., 1997, 69, 4363-4368.
    [99] R. W. Nelson, J. R. Krone, O. Jansson, Surface Plasmon Resonance Biomolecular Interaction Analysis Mass Spectrometry. 2. Fiber Optic-Based Analysis, [J] Anal. Chem., 1997, 69, 4369-4374.
    [100] C. P. Sonksen, E. Nordhoff, O. Jansson, M. Malmqvist, P. Roepstorff, Combining MALDI Mass Spectrometry and Biomolecular Interaction Analysis Using a Biomolecular Interaction Analysis Instrument, [J] Anal. Chem., 1998, 70, 2731-2736.
    [101] J. Grote, N. Dankbar et al., Surface Plasmon Resonance/Mass Spectrometry Interface, [J] Anal. Chem., 2005, 77, 1157-1162.
    [102] L. Chen, L. Deng, et al., Immunomagnetic separation and MS/SPR end-detection combined procedure for rapid detection of Staphylococcus aureus and protein A, [J]Biosens. Bioelectron., 2007, 22, 1487-1492.
    [103] J. J. Gilligan, P. Schuck, A. L. Yergey, Mass Spectrometry after Capture and Small-Volume Elution of Analyte from a Surface Plasmon Resonance Biosensor, [J] Anal. Chem., 2002, 74, 2041-2047.
    [104] D. Nedelkov, R. W. Nelson, Surface plasmon resonance mass spectrometry: recent progress and outlooks, [J] Trends Biotechnol., 2003, 21, 301-305.
    [105] A. Zhukov, M. Schürenberg, ?. Jansson, D. Areskoug, J. Buijs, Integration of surface plasmon resonance with mass spectrometry: automated ligand fishing and sample preparation for MALDI MS using a Biacore 3000 biosensor, [J] J. Biomol. Tech., 2004, 15, 112-119.
    [106] J. Borch, P. Roepstorff, Screening for Enzyme Inhibitors by Surface Plasmon Resonance Combined with Mass Spectrometry, [J] Anal. Chem., 2004, 76, 5243-5248.
    [107]聂松,陈平,梁宋平,表面等离子共振-质谱法对相互作用的生物分子在10-15 mol水平的微量鉴定, [J]高等学校化学学报, 2005, 26(1) 68-72.
    [108] A. J. Jory, G. W., Bradbarry, P. S. Cann, J. R. Sambles, A surface-plasmon-based optical sensor using acousto-optics, [J] Meas. Sci. Technol., 1995, 6, 1193-1200.
    [109] Y. Tian, L. Zhao, D. Song, X. Liu, Y. Cao, Z. Peng, Z. Liu, H. Zhang, Acousto-optic tunable filter-based surface plasmon resonance biosensor for determination of human factor B, [J] Anal. Chim. Acta, 2004, 511, 97-104.
    [110] S. G. Nelson, K. S. John, S. S. Yee, High sensitivity surface plasmon resonace sensor based on phase detection, [J] Sens. Actuators, B, 1996, 35, 187-191.
    [111] V. E. Kochergin, M. V. Valeiko, A. A. Beloglazov, T. I. Ksensvich, P. I. Nikitin, VaVisualisation of the angular dependence of the reflected-radiation phase under conditions of a surface-plasmon resonance and its sensor application, [J] Quantum Electronics, 1998, 28, 835-839.
    [112] S. Owega, E. P. C. Lai, A. D. O. Bawagan, Surface Plasmon Resonance-Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry, [J] Anal. Chem., 1998, 70, 2360-2365.
    [113] S. Owega, E. P. C. Lai, W. M. Mullett, Laser desorption ionization of gramicidin S onthin silver films with matrix isolation in surface plasmon resonance excitation, [J] J. Photochem. Photobiol. A., 1998, 119, 123-135.
    [114] A. H. Severs, R. B. M. Schasfoort, Enhanced surface plasmon resonance inhibition test (ESPRIT) using latex particles, [J] Biosens. Bioelectron., 1993, 8, 365-370.
    [115] P. T. Leung, D. Pollard-Knight, G. P. Malan, M. F. Finlan, Modelling of particle-enhanced sensitivity of the surface-plasmon-resonance biosensor, [J] Sens. Actuators, B, 1994, 22, 175-180.
    [116] L. He, Y. Emily, L. Smith, L. Andrew, G. S. Frank, S. J. Benkovic, M. J. Natan, [M] 99’Pittcon Book of Abstracts, Orlando, Floreida, 1999, 21, 82.
    [117] E. Hutter, M. P. Pileni, Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy, [J] J. Phys. Chem. B, 2003, 107, 6497-6499.
    [118] S. Kubitschko, J. Spinke,T. Bruckner, S. Pohl, N. Oranth,Sensitivity Enhancement of Optical Immunosensors with Nanoparticles, [J] Anal. Biochem., 1997, 253, 112-122
    [119] L. A. Lyon, M. D. Musick, M. J. Natan, Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing, [J] Anal. Chem., 1998, 70, 5177-5183.
    [120] X. Liu, Y. Sun, D. Song, Q. Zhang, Y. Tian, S. Bi, H. Zhang, Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4, [J] Anal. Biochem., 2004, 333, 99-104.
    [121] U. Pieper-Fürst .W. F. M. St?cklein, A. Warsinke, Gold nanoparticle-enhanced surface plasmon resonance measurement with a highly sensitive quantification for human tissue inhibitor of metalloproteinases-2, [J] Anal. Chim. Acta, 2005, 550, 69-76.
    [122] J. Yuan, R. Oliver, M. I. Aguilar, Y. Wu, Surface Plasmon Resonance Assay for Chloramphenicol, [J] Anal. Chem., 2008, 80, 8329-8333.
    [123] S. Chah, E. Hutter, D. Roy, J. H. Fendler, J. Yi, The effect of substrate metal on 2-aminoethanethiol and nanoparticle enhanced surface plasmon resonance imaging, [J] Chem. Phys., 2001, 272, 127-136.
    [124] L. He, M. D. Musick, S. R. Nicewarner, F. G. Sallinas, S. J. Benkovic, M. J. Natan, C. D. Keating, Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detectionof DNA Hybridization, [J] J. Am. Chem. Soc., 2000, 122, 9071-9077.
    [125] M. Zayats, S. P. Pogorelova, A. B. Kharitonov, O. Lioubashevski, E. Katz, I. Willner, Au Nanoparticle-Enhanced Surface Plasmon Resonance Sensing of Biocatalytic Transformations, [J] Chem. Eur. J., 2003, 9, 6108-6114.
    [126] T. Okamoto, I.Yamaguchi, Optical Absorption Study of the Surface Plasmon Resonance in Gold Nanoparticles Immobilized onto a Gold Substrate by Self-Assembly Technique, [J] J. Phys. Chem. B, 2003, 107, 10321-10324.
    [127] J. Wang, H. S. Zhou, Aptamer-Based Au Nanoparticles-Enhanced Surface Plasmon Resonance Detection of Small Molecules, [J] Anal. Chem., 2008, 80, 7174-7178.
    [128] K. A. Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, [J] Annu. Rev. Phys. Chem., 2007, 58, 267-297.
    [129]贾少杰,徐抒平,郑先亮等,激光诱导沉积银膜制备光纤SERS传感器, [J]高等学校化学学报, 2006, 27(3), 523-526.
    [130] P. K. Jain, X. H. Huang, I. H. El-sayed, et al., Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems, [J] Plasmonics, 2007, 2, 107-118.
    [131] N. T. K. Thanh, Z. Rosenzweig, Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles, [J] Anal. Chem., 2002, 74(7), 1624-1628.
    [132] F.Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, J. Erlebacher, Simultaneous Excitation of Propagating and Localized Surface Plasmon Resonance in Nanoporous Gold Membranes, [J] Anal. Chem., 2006, 78, 7346-7350.
    [133] P. Neuzil, J Reboud, Palm-Sized Biodetection System Based on Localized Surface Plasmon Resonance, [J] Anal. Chem., 2008, 80 (15), 6100-6103.
    [134] A. B. Dahlin, J. O. Tegenfeldt, F. Hk, Improving the Instrumental Resolution of Sensors Based on Localized Surface Plasmon Resonance, [J] Anal. Chem., 2006, 78 (13), 4416-4423.
    [135] G. H. Chan, J. Zhao, G. C. Schatz, R. P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles, [J] J. Phys. Chem. C, 2008, 112 (36), 13958-13963.
    [136]王烨,卜凤泉,谷玥娇等,静电组装金纳米粒子制备局域表面等离子体共振传感膜, [J]高等学校化学学报, 2008, 29(8), 1539-1543.
    [137] H. M. Hiep, T. Endo, M. Saito, et al., Label-Free Detection of Melittin Binding to a Membrane Using Electrochemical-Localized Surface Plasmon Resonance, [J] Anal. Chem., 2008, 80, 1859-1864.
    [138] S. D. Soelberg, R. C. Stevens, A. P. Limaye, C. E. Furlong, Surface Plasmon Resonance Detection Using Antibody-Linked Magnetic Nanoparticles for Analyte Capture, Purification, Concentration, and Signal Amplification, [J] Anal. Chem., 2009, 81(6), 2357-2363.
    [139] X. Zhou, D. Xing, D. Zhu, L. Jia, Magnetic Bead and Nanoparticle Based Electrochemiluminescence Amplification Assay for Direct and Sensitive Measuring of Telomerase Activity, [J] Anal. Chem., 2009, 81 (1), 255-261.
    [140] R. Pei, X. Yang, E. Wang, Enhanced surface plasmon resonance immunoassay for human complement factor 4, [J] Anal. Chim. Acta., 2002, 453, 173-179.
    [141] X. Cui, F. Yang, Y. Sha, X. Yang, Real-time immunoassay of ferritin using surface plasmon resonance biosensor, [J] Talanta, 2003, 60, 53-61.
    [142] A. Hanning, J. Roeraade, J.J. Delrow, R.C. Jorgenson, Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution, [J] Sens. Actuators, B, 1999, 54, 25-36.
    [143] S. H. Choi, J. W. Lee, S. J. Sim,Enhancement of the sensitivity of surface plasmon resonance (SPR) immunosensor for the detection of anti-GAD antibody by changing the pH for streptavidin immobilization, [J] Enzyme Microb. Technol., 2004, 35, 683-687.
    [144] C. Boozer, Q. Yu, S. F. Chen, C. Y. Lee, J. Homola, S. S. Yee, S. Y. Jiang, Surface functionalization for self-referencing surface plasmon resonance (SPR) biosensors by multi-step self-assembly, [J] Sens. Actuators, B, 2003, 90, 22-30.
    [145] T. Akimoto, K. Ikebukuro, I. Karube, A surface plasmon resonance probe with a novel integrated reference sensor surface, [J] Biosens. Bioelectron., 2003, 18, 1447-1453.
    [146] Y. C. Li, Y. F. Chang, L. C. Su, C. Chou, Differential-Phase Surface Plasmon Resonance Biosensor, [J] Anal. Chem., 2008, 80, 5590-5595.
    [1] C. T. Chen, Y. C. Chen, Fe3O4 /TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, [J] Anal. Chem., 2005, 77, 5912-5919.
    [2] S. H. Chen, Y. H. Yen, C. L. Wang, et al., Reversible immobilization of lysozyme via coupling to reversibly soluble polymer, [J] Enzyme Microb. Technol., 2003, 33, 643-649.
    [3] S. F. Dsouza, S. S. Godbole, Immobilization of invertase on rice husk using poly-ethylenimine. [J] J. Biochem. Bioph. Methods, 2002, 52, 59-62.
    [4] C. J. Tan, Y. W. Tong, Preparation of Superparamagnetic Ribonuclease A Surface-Imprinted Submicrometer Particles for Protein Recognition in Aqueous Media, [J] Anal. Chem., 2007, 79, 299-306.
    [5] D. Maxwell, M. J. Taylor, S. Nie, Self-Assembled Nanoparticle Probes for Recognition and Detection of Biomolecules, [J] J. Am. Chem. Soc., 2002, 124, 9606-9612.
    [6] B. R. Azamian, J. J. Davis, M. L. H. Green, et al., Bioelectrochemical Single-Walled Carbon Nanotubes, [J] J. Am. Chem. Soc., 2002, 124, 12664-12665.
    [7] O. V. Salata, Applications of nanoparticles in biology and medicine, [J] J. Nanobiotechnology, 2004, 2, 3-8.
    [8] I. ?afa?ík, M. ?afa?íková, Use of magnetic techniques for isolation of cells, [J] J. Chromatogr B, 1999, 722, 33-53.
    [9] J. Richardson, P. Hawkins, R. Luxton, The use of coated paramagnetic particles as a physical label in a magneto-immunoassay, [J] Biosens. Bioelectron., 2001, 16, 989-993.
    [10] Y. R. Chemla, H. L. Grossman, Y. Poon, et al., Ultrasensitive magnetic biosensors for homogeneous immunoassay, [J] Proc Natl Acad Sci., 2000, 97, 14268-14272.
    [11] M. S. Kim, S. M. Ahn, A. Moon, In vitro bioassay for transforming growth factor-beta using XTT method, [J] Archives Pharm. Research, 2002, 25, 903-909.
    [12] C. Duan, M. E. Meyerhoff, Separation-Free Sandwich Enzyme Immunoassays Using Microporous Gold Electrodes and Self-Assembled Monolayer/Immobilized Capture Antibodies, [J] Anal. Chem., 1994, 66, 1369-1377.
    [13] J. Ni , R. J. Lipert, G. B. Dawson et al., Immunoassay Readout Method Using Extrinsic Raman Labels Adsorbed on Immunogold Colloids, [J] Anal. Chem., 1999, 71, 4903-4908.
    [14] E. Schrobck, S. du Manoir, T. Veldman et al., Multicolor spectral karotyping of human chromosomes, [J] Science, 1996, 273, 494-497.
    [15] X. Wu, H. Liu, J. Liu et al., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, [J] Nat. Biotechnol., 2003, 21, 41-46.
    [16] L. Josephson, J. M. Perz, R. Weissleder, Magnetic Nanosensors for the Detection of Oligonucleotide Sequences, [J] Angew. Chem. Int. Ed., 2001, 40, 3204-3206.
    [17] S. Bucak, D. A. Jones, P. E. Laibinis et al., Protein Separations Using Colloidal Magnetic. Nanoparticles, [J] Biotechnol. Prog., 2003, 19, 477-484.
    [18] A. G. Tibbe , B. G. de Grooth, J. Greve et al., Magnetic field design for selecting and aligning immunomagnetic labeled cells, [J] Cytometry, 2002, 47, 163-172.
    [19] T. Leakakos, C. Ji, G. Lawson et al., Intravesical administration of doxorubicin to swine bladder using magnetically targeted carriers, [J] Cancer Chemoteraphy Pharm., 2003, 51, 445-450.
    [20] J. A. Frank, B. R. Miller, A. S. Arbab et al., Clinically applicable labeling of mammalian and stem cells by combing superparamagnetic iron oxides and transfection agents, [J] Radiology, 2003, 228, 480-487.
    [21] H. Isomoto, M. Oka, Y. Yano, Y. Kanazawa, H. Soda, Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer, [J] Cancer letters, 2003, 198, 219-228.
    [22] E. Scofield, R. T. Bowyer, L. K. Duffy, Baseline levels of Hsp 70, a stress protein and biomarker, in halibut from the Cook Inlet region of Alaska. [J] Total Environ., 1999, 226, 85-88.
    [23]李景镇主编,光学手册, [M]西安:陕西科学技术出版社, 1986, 1335.
    [24] J. Melendez, R. Carr, Bartholomew, et al., A commercial solution for surface plasmon sensing, [J] Sens. Actuators, B, 1996, 35, 212-216.
    [25] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, J. Ward, C. A. Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, [J] Appl. Opt., 1983, 11, 1099-1120.
    [26]光学仪器设计手册, [M]北京:国防工业出版社, 1971
    [27]光学玻璃汇编,天津硅酸盐材料试验厂编, [M]北京:机械工业出版社, 1977
    [28] T. Fischer, M. Beyermann, K. W. Koch, Application of Different Surface Plasmon Resonance Biosensor Chips to Monitor the Interaction of the CaM-Binding Site of Nitric Oxide Synthase I and Calmodulin, [J] Biochem. Biophys. Res. Commu., 2001, 285, 463-469.
    [29] J. Homola, I. Koudela, S. S.Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, [J] Sens. Actuators, B, 1999, 54, 16-24.
    [30] O. Crespo-Biel, B. Dordi, D. N. Reinhoudt, et al., Supramolecular Layer-by-Layer Assembly: Alternating Adsorptions of Guest- and Host-Functionalized Molecules and Particles Using Multivalent Supramolecular Interactions, [J] J. Am. Chem. Soc., 2005, 127, 7594-7600.
    [31] F. Davis, S.P.J. Higson, Structured thin films as functional components within biosensors, [J] Biosens. Bioelectron., 2005, 21, 1-20.
    [32] P. T. Hammond, Form and Function in Multilayer Assembly: New Applications at the Nanoscale, [J] Adv. Mater., 2004, 16, 1271-1293.
    [33] S. Bai, Z. Wang, X. Zhang, et al. Hydrogen-Bonding-Directed Layer-by-Layer Films: Effect of Electrostatic Interaction on the Microporous Morphology Variation, [J] Langmuir, 2004, 20, 11828-11832.
    [34] X. Wang, K. Naka, H. Itoh, et al., Preparation of Oriented Ultrathin Films via Self-Assembly Based on Charge Transfer Interaction betweenπ-Conjugated Poly (dithiafulvene) and Acceptor Polymer, [J] Macromolecules, 2003, 36, 533-535.
    [35] N. Krasteva, B. Guse, I. Besnard, et al., Gold nanoparticle/PPI-dendrimer based chemiresistors: Vapor-sensing properties as a function of the dendrimer size, [J] Sens. Actuators, B, 2003, 92, 137-143.
    [36] P. Kohli, G. J. Blanchard, Design and Demonstration of Hybrid Multilayer Structures: Layer-by-Layer Mixed Covalent and Ionic Interlayer Linking Chemistry, [J] Langmuir, 2000, 16, 8518-8524.
    [37] G. Decher, J. D. Hong, J. Schmitt, Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces, [J] Thin Solid Film, 1992, 210, 832-835.
    [38]林全愧,计剑,谭庆刚,任科峰,沈家骢,层层自组装技术在生物医用材料领域中的应用研究进展, [J]高分子通报, 2006, 08, 58-63.
    [39] J. Chluba, M. F. Rubner, Methods of Loading and Releasing Low Molecular Weight Cationic Molecules in Weak Polyelectrolyte Multilayer Films, [J] Langmuir, 2002, 18, 1176-1183.
    [40] X. Qiu, S. Leporatti, H. Mohwald, Studies on the Drug Release Properties of Polysaccharide Multilayers Encapsulated Ibuprofen Microparticles, [J] Langmuir, 2001, 17, 5375-5380.
    [41] R. J. Pei, X. Cui, X. R. Yang, et al., Assembly of Alternating Polycation and DNA Multilayer Films by Electrostatic Layer-by-Layer Adsorption, [J] Biomacromolecules, 2001, 2, 463-468
    [42] J. Chluba, J. C. Voegel, G. Decher, et al., Peptide Hormone Covalently Bound to Polyelectrolytes and Embedded into Multilayer Architectures Conserving Full Biological Activity, [J] Biomacromolecules, 2001, 2, 800-805.
    [43] E. Vazquez, D. M. Dewitt, P. T. Hammond, et al., Construction of Hydrolytically-Degradable Thin Films via Layer-by-Layer Deposition of Degradable Polyelectrolytes, [J] J. Am. Chem. Soc., 2002, 124, 13992-12993.
    [44] F. Caruso, K. Niikura, D. N. Furlong, Y. Okahata, Ultrathin Multilayer Polyelectrolyte Films on Gold: Construction and Thickness Determination, [J] Langmuir, 1997, 13, 3422-3426.
    [45] S. B. Khoo, F. Chen, Studies of Sol-Gel Ceramic Film Incorporating Methylene Blue on Glassy Carbon: An Electrocatalytic System for the Simultaneous Determination of Ascorbic and Uric Acids, [J] Anal. Chem., 2002, 74, 5734-5741.
    [46] N. Carmona, E. Herrero, J. Llopis, M. A. Villegas, Chemical sol-gel-based sensors for evaluation of environmental humidity, [J] Sens. Actuators, B, 2007, 126, 455-460.
    [47] P. Kumar, Sonia, R. K. Patel, C. Prakash, T.C. Goel, Effect of substrates on phaseformation in PMN-PT 68/32 thin films by sol–gel process, [J] Mater. Chem. Phys., 2008, 110, 7-10.
    [48] I. Piwoński, A. Ilik, Vapor phase modification of sol–gel derived titania (TiO2) surfaces, [J] Appl. Surf. Sci., 2006, 253, 2835-2840.
    [49] C. X. Wang, S. L. Chen, Surface treatment of cotton usingβ-cyclodextrins sol–gel method, [J] Appl. Surf. Sci., 2006, 252, 6348-6352.
    [50] Y. G. Lee, J. H. Park, C. Oh, S. G. Oh, Y. C. Kim, Preparation of Highly Monodispersed Hybrid Silica Spheres Using a One-Step Sol?Gel Reaction in Aqueous Solution, [J] Langmuir, 2007, 23, 10875-11342.
    [51] J. Yu, H. Ju, Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol–gel film, [J] Anal. Chim. Acta, 2003, 486, 209-216.
    [52] J. Yu, H. Ju, Preparation of Porous Titania Sol?Gel Matrix for Immobilization of Horseradish Peroxidase by a Vapor Deposition Method, [J] Anal. Chem., 2002, 74, 3579-3583.
    [53] B. Wang, J. Zhang, S. Dong, Silica sol–gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor, [J] Biosens. Bioelectron., 2000, 15, 397-402.
    [54] S. B. Khoo, F. Chen, Studies of Sol?Gel Ceramic Film Incorporating Methylene Blue on Glassy Carbon: An Electrocatalytic System for the Simultaneous Determination of Ascorbic and Uric Acids, [J] Anal. Chem., 2002, 74, 5734-5741.
    [55] J. Di, J. Cheng, Q. Xu, H. Zheng, J. Zhuang, Y. Sun, K. Wang, X. Mo, S. Bi, Direct electrochemistry of lactate dehydrogenase immobilized on silica sol–gel modified gold electrode and its application, [J] Biosens. Bioelectron., 2007, 23, 682-687.
    [56] X. Xu, J. Zhao, D. Jiang, J. Kong, B. Liu, J. Deng, TiO2 sol-gel derived amperometric biosensor for H2O2 on the electropolymerized phenazine methosulfate modified electrode, [J] Anal. Bioanal. Chem., 2002, 374, 1261-1266.
    [1] I. Lundstrom, Real-time biospecific interaction analysis, [J] Biosens. Bioelectron., 1994, 9, 725-736.
    [2] M. Zayats, S. P. Pogorelova, A. B. Kharitonov, O. Lioubashevski, E. Katz, I. Willner, Au Nanoparticle-Enhanced Surface Plasmon Resonance Sensing of Biocatalytic Transformations, [J] Chem. Eur. J., 2003, 9, 6108-6114.
    [3] T. Okamoto, I.Yamaguchi, Optical Absorption Study of the Surface Plasmon Resonance in Gold Nanoparticles Immobilized onto a Gold Substrate by Self-Assembly Technique, [J] J. Phys. Chem. B, 2003, 107, 10321-10324.
    [4] E. Hutter, J. H. Fendler, D. Roy, Surface Plasmon Resonance Studies of Gold and Silver Nanoparticles Linked to Gold and Silver Substrates by 2-Aminoethanethiol and 1,6-Hexanedithiol, [J] J. Phy. Chem. B, 2001, 105, 11159-11168.
    [5] R. Pei, X. Yang, E. Wang, Enhanced surface plasmon resonance immunoassay for human complement factor 4, [J] Anal. Chim. Acta, 2002, 453, 173-179.
    [6] X. Cui, F.Yang, Y. Sha, X. Yang, Real-time immunoassay of ferritin using surface plasmon resonance biosensor, [J] Talanta, 2003, 60, 53-61.
    [7] U. Pieper-Fürst .W F.M. St?cklein, A. Warsinke, Gold nanoparticle-enhanced surface plasmon resonance measurement with a highly sensitive quantification for human tissue inhibitor of metalloproteinases-2, [J] Anal. Chim. Acta, 2005, 550, 69-76.
    [8] T. Wink, S. J. Zuilen, A. Bult, W. P. Bennekom, Liposome-Mediated Enhancement of the Sensitivity in Immunoassays of Proteins and Peptides in Surface Plasmon Resonance Spectrometry, [J] Anal. Chem., 1998, 70, 827-832.
    [9] E. F. A. de Vries, R. B. M. Schasfoort, J. van der Plas, J. Greve, Nucleic acid detection with surface plasmon resonance using cationic latex, [J] Biosens. Bioelectron., 1994, 9, 509-514.
    [10] S. H. Choi, J. W. Lee, S. J. Sim, Enhancement of the sensitivity of surface plasmon resonance (SPR) immunosensor for the detection of anti-GAD antibody by changing the pH for streptavidin immobilization, [J] Enzyme Microb. Technol., 2004, 35, 683-687.
    [11] T. Akimoto, K. Ikebukuro, I. Karube, A surface plasmon resonance probe with a novel integrated reference sensor surface, [J] Biosens. Bioelectron., 2003, 18, 1447-1453.
    [12] K.V. Gobi, M. Sasaki, Y. Shoyama, Highly sensitive detection of polycyclic aromatic hydrocarbons (PAHs) and association constants of the interaction between PAHs and antibodies using surface plasmon resonance immunosensor, [J] Sens. Actuators, B, 2003, 89, 137-143.
    [13] B. A. Morris, A. Sadana, A fractal analysis for the binding of riboflavin binding protein to riboflavin immobilized on a SPR biosensor, [J] Sens. Actuators, B, 2005, 106, 498-505.
    [14] H. Isomoto, M. Oka, Y. Yano, Y. Kanazawa, H. Soda, Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer, [J] Cancer letters, 2003, 198, 219-228.
    [15] E. Scofield, R. T. Bowyer, L. K. Duffy, Baseline levels of Hsp70, a stress protein and biomarker, in halibut from the Cook Inlet Region of Alaska, [J] Total Environ., 1999, 226, 85-88.
    [16] T. Fischer, M. Beyermann, K. W. Koch, Application of Different Surface Plasmon Resonance Biosensor Chips to Monitor the Interaction of the CaM-Binding Site of Nitric Oxide Synthase I and Calmodulin, [J] Biochem. Biophys. Res. Commu., 2001, 285, 463-469.
    [1]王重庆,分子免疫学基础, [M]北京大学出版社, 1999.
    [2] I. Lundstrom, Real-time biospecific interaction analysis, [J] Biosens. Bioelectron., 1994, 9, 725-736.
    [3] L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, M. J. Natan, Surface plasmon resonance of colloidal Au-modified gold films, [J] Sens. Actuators, B, 1999, 54, 118-124.
    [4]张逢春,曾常茜,杨瑞亭,朱淑范主编, [M]医学免疫学,吉林科学技术出版社, 1999, 42-43.
    [5] S. S. Pathak, H. F. J. Savelkoul, Biosensors in immunology: the story so far, [J] Immunol. Today., 1997, 18, 464-467.
    [6] A. C. Malmborg, C. A. K. Borrebaeck, BIAcore as a tool in antibody engineering, [J] J. Immunol. Methods, 1995, 183, 7-13.
    [7] P. Rainard J. Complement factor B and the alternative pathway of complement activation in bovine milk, [J] Dairy Research, 2002, 69, 1-12.
    [8] G. Cai, T. Satoh, H. Hoshi, Isolation from Fetal Bovine Serum of a Fragment b of Complement Factor B-like Protein Improving a Long-Term Survival of Human Endothelial Cells, [J] Arch. Biochem. Biophys., 1997, 345, 150-155.
    [9] V. Montinaro, L. Serra, S. Perisutti, Biosynthesis of C3 by human mesangial cells. Modulation by proinflammatory cytokines, [J] Kindny Int., 1995, 47, 829-836.
    [10]李琦棼,曹青,血尿纤维结合蛋白的ELISA检测及应用, [J]中国实验临床免疫学杂志, 1993, 2, 34-35.
    [11]洪喜莲,王建军,常勇超,肾脏病患者血浆纤维连接蛋白检测分析, [J]中国实验临床免疫学杂志, 1998, 10, 47-48.
    [12] Y. Tian, L.W. Zhao, D.Q. Song, X. Liu, H.Q. Zhang, Acousto-optic tunable filter-based surface plasmon resonance biosensor for determination of human factor B, [J] Anal. Chim. Acta, 2004, 511, 97-104.
    [13] M. Johnson, C. Helegeson, Fibronectin biosynthesis and cell-surface expression bycardiac and non- cardiac endothelial cells, [J] Am. J. Pathol., 1993, 142, 1401-1408.
    [14]刘虹,刘瑞洪,夏运成,许向青,原发性肾病综合征患者尿纤维结合蛋白测定的临床意义, [J]中国现代医学杂志, 2002, 12, 29-30.
    [15] B. Gmeiner, H. Leibl, G. Zerlauth, C. Seelos, Affinity Binding of Distinct Functional Fibronectin Domains to Immobilized Metal Chelates, [J] Arch. Biochem. Biophys., 1995, 321, 40-42.
    [16] H. Ito, S. Soutome, M. Inoue, Inhibition of fibronectin binding of some bacterial cells by subtle pH increase within the physiological range, [J] J. Microbiol. Methods, 2003, 55, 29-34.
    [17] R. Pei, X. Cui, X. Yang, E. Wang, Real-time immunoassay of antibody activity in serum by surface plasmon resonance biosensor, [J] Talanta, 2000, 53, 481-488.
    [18] X. Liu, Y. Sun, D.Q. Song, Q.L. Zhang, Y. Tian, H.Q. Zhang, Sensitivity-enhancement of wavelength-modulation surface plasmon resonance biosensor for human complement factor 4, [J] Anal. Biochem., 2004, 333, 99-104.
    [19] Y. Tian, Y. H. Chen, D. Q. Song, X. Liu, H. Q. Zhang, Acousto-optic tunable filter-surface plasmon resonance immunosensor for fibronectin, [J] Anal. Chim. Acta, 2005, 551, 98-104.
    [20] A.S. Duwez, J. Electron. Exploiting Electron Spectroscopies to Probe the Structure and Organization of Self-assembled Monolayers: a Review, [J] Spectrosc. Relat. Phenom, 2004, 134, 97-138.
    [21] S. F. Chou, W. L. Hsu, J. M. Hwang, C. Y. Chen, Development of an immunosensor for human ferritin, a nonspecific tumor marker based on surface plasmon resonance, [J] Biosens. Bioelectron., 2004, 19, 999-1005.
    [1]杨贵贞,周正任,田景先, [M]医学免疫学,吉林科学技术出版社, 1995
    [2] I. Dahlbom, D. Agardh, T. Hansson, Protein A and protein G ELISA for the detection of IgG autoantibodies against tissue transglutaminase in childhood celiac disease, [J] Clin. Chim. Acta, 2008, 395, 72-76.
    [3] L. Zhang, Y. Liu, T. Chen, A mediatorless and label-free amperometric immunosensor for detection of h-IgG, [J] Int. J. Biol. Macromol., 2008, 43, 165-169.
    [4] Y. Li, J. Ren, H. Nakajima, B. K. Kim, N. Soh, K. Nakano, T. Imato, Flow sandwich immunoassay for specific anti-OVA IgG antibody by use of surface plasmon resonance sensor, [J] Talanta, 2008, 77, 473-478.
    [5] K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, G. B. Lee, Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay, [J] Biosens. Bioelectron., 2007, 23, 466-472.
    [6] D. A. Gish, F. Nsiah, M. T. McDermott, M. J. Brett, Localized Surface Plasmon Resonance Biosensor Using Silver Nanostructures Fabricated by Glancing Angle Deposition, [J] Anal. Chem., 2007, 79, 4228-4232.
    [7] Y. M. Bae, B. K. Oh, W. Lee, W. H. Lee, J. W. Choi, Study on orientation of immunoglobulin G on protein G layer, [J] Biosens. Bioelectron., 2005, 21, 103-110.
    [8] M. Kobayashi, M. Sato, Y. Li, et al., Flow immunoassay of trinitrophenol based on a surface plasmon resonance sensor using a one-pot immunoreaction with a high molecular weight conjugate, [J] Talanta, 2005, 68, 198-206.
    [9] A. R. de Boer, C. H. Hokke, A. M. Deelder, M. Wuhrer, Serum antibody screening by surface plasmon resonance using a natural glycan microarray, [J] Glycoconjugate J., 2008, 25, 75-84.
    [10] J. W. Chung, J. M. Park, R. Bernhardt, J. C. Pyun, Immunosensor with a controlled orientation of antibodies by using NeutrAvidin–protein A complex at immunoaffinity layer, [J] J. Biotechnol., 2006, 126, 325-333.
    [11] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, J. Ward, C. A.Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared, [J] Appl. Opt., 1983, 22, 1099-1120.
    [12] J. Homola, I. Koudela, S. S. Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, [J] Sens Actuators, B, 1999, 54, 16-24.
    [13] B. H. Ong, X. Yuan, S.C. Tjin, J. Zhang, H. M. Ng, Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor, [J] Sens Actuators, B, 2006, 114, 1028-1034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700