高稳定性的介孔材料的合成、表征及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis, Characterization and Catalytic Properties of Stable Mesoporous Materials
  • 作者:杜耘辰
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2008
  • 导师:肖丰收
  • 学科代码:070301
  • 学位授予单位:吉林大学
摘要
本论文致力于高稳定性的介孔材料的合成、表征及催化性能研究。首先将介孔材料分为硅基材料和非硅基材料两大类:对于硅基介孔材料,作者系统地研究了影响硅物种缩合的因素,从而设计合成了水热稳定介孔硅基材料;对于非硅基材料,作者试图从不同的角度出发,通过不同的方法有效地提高了非硅基介孔材料的热稳定性。
     第一章为绪论部分,主要介绍了介孔材料的发展,以及介孔材料的形成机理、合成路线、空间结构、化学组成和潜在应用。
     第二章中,作者系统地研究了阴离子对介孔材料中硅物种缩合的影响,优化合成条件,得到了硅物种高度聚合的介孔材料,并且该材料具有较高的水热稳定性。此外,利用尿素的缓慢水解,作者制备了含有大量杂原子的介孔硅基材料,该材料显示了很好的水热稳定性和催化活性。
     第三章中,作者利用一种新颖的半氟表面活性剂(FSO)合成了介孔的铁硅分子筛,与其它酸性条件下合成的材料相比,该材料具有更高的杂原子引入效率,并且在付氏烷基化反应中显示了很好的活性。
     第四章中,作者先是利用FSO为模板合成了热稳定和大比表面积的介孔磷酸铝及铁掺杂的磷酸铝;随后,又通过水热合成的方法,直接制备了磷酸钛与介孔硅复合的材料,间接提高了磷酸钛的热稳定性。得到的样品在催化反应中
     都显示了不错的效果。
     第五章中,作者通过两种方法制备了热稳定介孔硫酸化氧化锡,得到的样品显示了较高的比表面积,并且在一系列酸催化反应中显示了非常好的活性。
     第六章中,作者利用铁酸钴(CoFe_2O_4)为磁源,与介孔材料(SBA-15)复合,得到的材料不仅具有高度有序的介孔结构,而且保持了开放的孔道,更重要的是在高温煅烧之后,依然保持了很好的磁性。
Since the discovery of ordered mesoporous materials, they have received numerous attentions due to their large pore size, high BET surface area and uniform pore array, which make them potentially important in many fields such as ion-exchange, adsorption and separation, bulky molecule catalysis, host-guest assembly. In the last decade, mesoporous materials have become a fresh field gradually, and the composition of mesoporous materials has been developed pure silica into various non-silica systems. However, with the deeper research, many scientists found that lots of aspects should been improved before their practical applications. Among of them, stability is the most important problem.
     Firstly, compared with conventional zeolite, poor hydrothermal stability is primary problem for mesoporous silica-based materials. To solve this problem, many well-known scientific groups have dedicated themselves to improving the hydrothermal stability of mesoporous silica-based materials. Based on previous reports, we realized that wall thickness and silica condensation are two critical factors for hydrothermal stability of mesoporous silica-based materials. Furthermore, improving the degree of silica condensation in mesoporous walls is a direct and effective method for increasing hydrothermal stability. In the end of last century, there was a report about enhancement of the crystallization rate of zeolites in the presence of inorganic anions. In other words, some inorganic anions can accelerate the rate of silica condensation. Subsequently, couples of groups try to use inorganic anions as additives in the synthesis under alkaline media to increase hydrothermal stability of ordered mesoporous materials. However, it is regrettable that these researchers did not study a relationship between the degree of silica condensation in mesoporous materials and these anions. In this paper, we systemically study anionic effect on the degree of silica condensation under various conditions including acidic, neutral, and alkaline media. Then, we found inorganic anions of SO42- and CO32- were suitable promoters for silica condensation under neutral and alkaline condition. Finally, based on the experimental results, we rationally synthesize mesoporous silica-based materials. For example, hydrothermally stable and well ordered hexagonal mesoporous SBA-15 materials with very high degree of silica condensation have been successfully synthesized in the presence of inorganic anions such as sulfate and carbonate species.
     Additionally, many results indicate that there are several advantages for synthesizing mesoporous silica-based materials under strongly acidic medium. Nevertheless, it is difficult to prepare heteroatom-incorporated mesoporous silica-based materials under strongly acidic medium. Although postsynthetic grafting are common methods, it is relatively multistep. It is expected direct synthesis of heteroatom-incorporated mesoporous silica-based materials under strongly acidic medium. Recently, Prof. Xiao et al. in Jilin Univ. have developed a novel method (“pH-adjusting”) for the synthesis of heteroatom-incorporated mesoporous silica-based materials in strong acidic media. However, this method is easily influenced by final pH value and rate of dropping ammonia, improper operation will make theses samples lose their ordered mesopores. In this paper, we have successfully prepared highly ordered mesoporous silica-based materials with very high heteratoms (Al, Zr) loading by using urea as a pH-adjustor. Particularly, the samples of Zr-SBA-15 from this method are highly hydrothermally stable, after sulfation, they exhibit good catalytic activities in esterification and transesterification. A series of results indicated that there are several advantages of this method including simple manipulation, high efficiency, highly ordered products and general applicability. Meanwhile, we also take a novel semi-fluorinated surfactant (FSO-100) to synthesize Fe-containing mesoporous silica-based materials, the resultant products have high Fe-incorporation efficiency and exhibit unusual catalytic activities in Friedel-Crafts alkylations.
     On the other hand, it is found that mesoporous nonsilica-based materials (here is major for metal oxides and metal phosphates) had very poor thermal stability. During the removal of surfactant by high-temperature calcination, the mesostructure always suffers collapse. Actually, people have studied mesoporous metal phosphates since the discovery of M41S, but there are much less successful examples about mesoporous metal phosphates than mesoporous silica-based materials due to their poor thermal stability. Thus, the synthesis of thermally stable mesoporous metal phosphates is still challenging. Recently, Prof. Zhao et al. in Fudan Univ. have fabricated mesoporous metal phosphates with highly thermal stability by an novel“acid-base pair”route, which opens a door to multicomponent mesostructured minerals. Faultily, these mesoporous metal phosphates generally exhibit relatively low surface area (BET, 140~260 m2/g) due to thick mesoporous walls, which is not favorable for practical application. Herein, by using a template of semi-fluorinated surfactant and“acid-base pair”route, we have synthesized thermally stable mesoporous aluminophosphates (MAP) and Fe-aluminophosphates (Fe-MAP) with large surface area (430-580 m2/g). The catalytic tests of phenol hydroxylation with hydrogen peroxide show that Fe-MAPs are very catalytically active. Moreover, the combination of metal phosphates with mesoporous silica can, to a certain extent, not only improve its thermal stability, but also enhance its catalytic properties. However, up to now, there are few successful examples. In this paper, we demonstrated a facile method for preparing ordered mesoporous materials of functionalized SBA-15 with various contents of titanium phosphates. These samples retained well ordered mesostructure like SBA-15, besides they exhibit high catalytic activity and well regenerated ability in dehydration of cyclohexanol.
     Transition metal oxides have always been popular in catalysis area for its broad applications as industrial catalysts and catalyst supports. Particularly, when some of them are treated in dilute sulfuric acid or ammonium sulfate solution, it will generate strong acidic sites on their surface, which can transform n-butane to i-butane even at room temperature. In contrast, conventional solid acidic catalysts, such as ZSM-5, are inactive in the same condition. However, it is found that this kind of catalysts has two fatal disadvantages: low surface area (70~100 m2/g) and quick deactivation, which restrict their practical application. In order to solve low surface area, many researchers have tried to prepared mesostructured sulfated metal oxides. Presently, sulfated zirconia, as a typical example, has been studied adequately. Nevertheless, several researchers have pointed out that sulfated tin oxides have better catalytic activity than sulfated zirconia in many reactions. Unfortunately, papers concerning on sulfated tin oxides have been quite few. Here, we have prepared successfully mesostructured sulfated tin oxides (MST) with strong acidity and high surface area by using the tri-block copolymer (P123) as a surfactant. The sample shows high catalytic activity on the esterification and Friedel-Crafts acylation. Alternatively, we also prepared sulfated silica-doped tin oxides from hydrothermal synthesis, followed by sulfation and calcination. Very interestingly, these samples have much high BET surface areas (113-188 m2/g) and well catalytic activity in transesterification. Noticeably, the presence of tiny SiO2 is very important for these samples, which suppresses the agglomeration of SnO2 nanoparticles and improves the stability of these samples during calcination and reaction.
     Moreover, there is the same problem, the thermal stability, for some functional mesoporous materials. For example, some magnetic mesoprous materials in previous reports will encounter fatal challenge under condition of high temperature in air, because this can lead to transformation of usual magnetic species (such as Co、Fe3O4、γ-Fe2O3), giving drastically decrease of magnetism. In this paper, we have successfully synthesized highly ordered mesoporous silica materials with good heat-resistant magnetism and open pore system from a combination of SBA-15 with CoFe2O4.
引文
[1] D. H. Everett, in IUPAC Mannul of Symbols and Terminology, Pure Appl. Chem. 1972, 31, 578.
    [2] 中国科学院大连化物所分子筛组 沸石分子筛 科学出版社, 1978 年。
    [3] 徐如人, 庞文琴等 分子筛与多孔化学 科学出版社, 2004 年。
    [4] Barrer R. M., J. Chem. Soc. 1948, 10, 2158.
    [5] Barrer R. M., Baynham J. W., Bultitude F. W., et al. J. Chem. Soc. 1959, 1, 195.
    [6] Breck D. W., Eversole W. G., Milton R. M., J. Am. Chem. Soc. 1956, 78, 2338.
    [7] Barrer R. M., Denny P. J., J. Chem. Soc. 1961, 971.
    [8] Milton R. M., U. S. Pat 1959, 2, 82, 243.
    [9] Breck D. W., U. S. Pat 1964, 3, 130, 007.
    [10] Kokotailo G. T., Lawron S. L., Olson, D. H., Meier W. M., Nature 1978, 272, 437.
    [11] Wilson S. T., Lok B. M., Flanigen E. M., U. S. Pat 1982, 4, 310, 440.
    [12] Marcilly C., J. Catal. 2003, 216, 47.
    [13] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature 1992, 359, 710.
    [14] Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E.W., McCullen S. B., Higgins J. B., Schlenker J. L., J. Am. Chem. Soc. 1992, 114, 10834.
    [15] 陈逢喜,黄茜丹,李全芝,科学通报 1999, 44, 1905.
    [16] Corma A., Chem. Rev. 1997, 97, 2373.
    [17] Ying J., Mehnert C., Wong M., Angew. Chem. Int. Ed. 1999, 38, 56.
    [18] Yiu H., Botting C., Botting N. P., Phys. Chem. Chem. Phys. 2001, 3, 2983.
    [19] Yang H., Kuperman A., Coombs N., Mamicheafara S., Ozin G. A., Nature 1996,379, 703.
    [20] Wang Y., Caruso F., Chem. Commun. 2004, 1528.
    [21] Krishna R. M., Prakash A. M., Kevan L., J. Phys. Chem. B 2000, 104, 1796.
    [22] Lai C. Y., Trewyn B. G., Jeftinija D. M., Jeftimija K., Xu S., Lin V. S. Y., J. Am. Chem. Soc. 2003, 125, 4451.
    [23] Velev O. D., Jede T. A., Lobo R. F., Lenhoff A. M., Nature 1997, 389, 447.
    [24] Caruso F., Caruso R. A., Mohwald H., Science 1998, 282, 1111.
    [25] Imhof A., Pine D. J., Nature 1998, 396, 152.
    [26] Blin J. L., Leonard A., Yuan Z. Y., Gigot L., Vantomme A., Cheetham A. K., Su B. L., Angew. Chem., Int. Ed. 2003, 42, 2875.
    [27] Wang H., Zhou X., Yu M., Wang Y., Han L., Zhang J., Yuan P., Auchterlonie G., Zou J., Yu C., J. Am. Chem. Soc. 2006, 128, 15992.
    [28] DiRenzo F., Cambon H., Dutartre R., Micropor. Mater. 1997, 10, 283.
    [29] Yanagisawa T., Shimizu T., Kuroda K., Kato C., Bull. Chem. Soc. Jpn. 1990, 63, 988.
    [30] Inagaki S., Koiwai A., Suzuki N., Fukushima Y., Kuroda K., Bull. Ckem. Soc. Jpn. 1996, 69, 1449.
    [31] Huo Q., Leon R., Petroff P. M., Stucky G. D., Science 1995, 268, 1324.
    [32] Huo Q., Margolese D. I., Stucky G. D., Chem. Mater. 1996, 8, 1147.
    [33] Sakamoto Y., Kaneda M., Terasaki O., Zhao D., Kim J. M., Stucky G. D., Shin H. J., Ryoo R., Nature 2000, 408, 449.
    [34] Zhao D., Huo Q., Feng J., Kim J. M., Han Y., Stucky G. D., Chem. Mater. 1999, 11, 2668.
    [35] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science 1998, 279, 548.
    [36] Zhao D., Huo Q., Feng J., Chmelka B. F., Stucky G. D., J. Am. Chem. Soc. 1998,120, 6024.
    [37] Tanev P. T., Pinnavaia T. J., Science 1995, 267, 865.
    [38] Bagshaw S. A., Prouzet E., Pinnavaia T. J., Science 1995, 269, 1242.
    [39] Prouzet E., Pinnavaia T. J., Angew. Chem. Int. Ed. 1997, 36, 516.
    [40] Ryoo R., Kim J. M., Shin C. H., J. Phys. Chem. B 1996, 100, 17718.
    [41] Clark J. H., Macquarrie D. J., Chem. Commun. 1998, 853.
    [42] Huo Q., Margolese D. I., Ciesla U., Feng P. Y., Gier T. E., Sieger P., Leon R., Petroff P. M., Schuth F., Stucky G. D., Nature 1994, 368, 317.
    [43] Soler-illia G. J. D., Sanchez C., Lebeau B., Patarin J., Chem. Rev. 2002, 102, 4093.
    [44] Yang P. D., Zhao D. Y., Margolese D. I., Chmelka B. F., Stucky G. D., Chem. Mater. 1999, 11, 2813.
    [45] MacLachlan M., Coombs N., Ozin G., Nature 1999, 397, 681.
    [46] MacLachlan M., Coombs N., Bedard R., White S., Thompson L., Ozin G., J. Am. Chem. Soc. 1999, 121, 12005.
    [47] Monnier A., Schuth F., Huo Q., Kumar D., Margolese D. I., Maxwell R. S., Stucky G. D., Krishnamrty M., Petroff P., Firouzi A., Janicke M., Chmelka B. F., Science 1993, 261, 10834.
    [48] Huo Q., Margolese D. I., Ciesla U., Demuth D. G., Feng P. Y., Gier T. E., Sieger P., Firouzi A., Chmelka B. F., Schuth F., Stucky G. D., Chem. Mater. 1994, 6, 1176.
    [49] Inagaki S., Fukushima Y., Kuroda K., Chem. Commun. 1993, 680.
    [50] Goltner C. G., Antonietti M., Adv. Mater. 1997, 9, 431.
    [51] Goltner C. G., Henke S., Weissenberger M. C., Antonietti M., Angew. Chem. Int. Ed. 1998, 37, 613.
    [52] Vartuli J. C., Kresge C. T., Leonowicz M. E., Chu A. S., McCullen S. B.,Johnsen I. D., Sheppard E. W., Chem. Mater. 1994, 6, 2070.
    [53] Chen C. Y., Li H. X., Davis M. E., Micropor. Mater. 1993, 2, 17.
    [54] Chen C. Y., Burkette S. L., Li H. X., Davis M. E., Micropor. Mater. 1993, 2, 27.
    [55] Firouzi A., Kumar D., Bull L. M., Besier T., Sieger P., Huo Q., Walker S. A., Zasadzinski J. A., Glinka C., Nicol J., Margolese D. I., Stucky G. D., Chmelka B. F., Science 1995, 267, 1138.
    [56] Chen F. X., Huang L. M., Li Q. Z., Chem. Mater. 1997, 9, 2685.
    [57] Liu X. Y., Tian B. Z., Yu C. Z., Gao F., Xie S. H., Tu B., Che R. C., Peng L. M., Zhao D. Y., Angew. Chem. Int. Ed. 2002, 41, 3876.
    [58] Che S., Lim S., Kaneda M., Yoshitake H., Terasaki O., Tatsumi T., J. Am. Chem. Soc. 2002, 124, 13962.
    [59] Zhou W., Hunter H., Wright P., Ge. Q., Thomas J., J. Phys. Chem. B 1998, 102, 6933.
    [60] Sakamoto Y., Diaz I., Teresaki O., Zhao D. Y., Perez-Pariente J., Kim J. M., Stucky G. D., J. Phys. Chem. B 2002, 106, 3118
    [61] Yu C. Z., Yu Y. H., Zhao D. Y., Chem. Commun. 2000, 575.
    [62] Che S., Liu Z., Ohsuna T., Sakamoto K., Teresaki O., Tatsumi T., Nature 2004, 429, 281.
    [63] Han Y., Zhao L., Ying J. Y., Adv. Mater. 2007, 19, 2454.
    [64] Liu Y., Karkamkar A., Pinnavaia T. J., Chem. Commun. 2001, 1822.
    [65] Tolbert S. H., Landry C. C., Stucky G. D., Chrmelka B. F., Hanson J. C., Monnier A., Chem. Mater. 2001, 13, 2247.
    [66] Israelachvili J. N., Mitchell D. J., Ninham B. W., J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525.
    [67] Israelachvili J. N., Intermolecular & Surface Forces London, Academic Press, 1991.
    [68] Zhao D., Luan Z. H., Kevan L., Chem. Commun. 1997, 1009.
    [69] Sayari A., Karra V. R., Reddy J. S., Moudrakovski I. L., Chem. Commun. 1996, 411.
    [70] Feng P. Y., Xia Y., Feng J. L., Bu X. H., Stucky G. D., Chem. Commun. 1997, 949.
    [71] Kimura T., Sugahara Y., Kuroda K., Chem. Commun. 1998, 559.
    [72] Zhao X. S., Lu G. Q., Micropor. Mesopor. Mater. 2001, 44-45, 185.
    [73] Lin K., Wang L., Sun Z., Yang Q., Di Y., Zhang D., Jiang D., Xiao F.-S., Chem. Lett. 2005, 34, 516.
    [74] Froba M., Tiemann M., Chem. Mater. 1998, 10, 3475.
    [75] Tiemann M., Froba M., Rapp G., Funari S. S., Chem. Mater. 2000, 12, 1342.
    [76] Oliver S., Kuperman A., Coombs N., Lough A., Ozin G. A., Nature 1995, 378, 47.
    [77] Tian B., Liu X., Tu B., Yu C., Fan J., Wang L., Xie S., Stucky G. D., Zhao D., Nat. Mater. 2003, 2, 159.
    [78] Bagshaw S. A., Pinnavaia T. J., Angew. Chem. Int. Ed. Engl. 1996, 35, 1102.
    [79] Vaudry F., Khodabandeh S., Davis M. E., Chem. Mater. 1996, 8, 1451.
    [80] Carbrera S., El Haskouri J., Alamo J., Beltran A., Beltran D., Mendioroz S., Dolores Marcos M., Amoros P., Adv. Mater. 1999, 11, 379.
    [81] Yada M., Machida M., Kijima T., Chem. Commun. 1996, 769.
    [82] Yada M., Ohya M., Machida M., Kijima T., Chem. Commun. 1998, 1941.
    [83] Yang P., Zhao. D., Margolese D. I., Chmelka B. F., Stucky G. D., Nature 1998, 396, 152.
    [84] Yang P., Zhao. D., Margolese D. I., Chmelka B. F., Stucky G. D., Chem. Mater. 1999, 111, 2813.
    [85] Zhao D., Goldfarb D., Chem. Mater. 1996, 8, 2571.
    [86] Blanchard J., Schuth F., Trens P., Hudson M., Micropor. Mesopor. Mater. 1998, 21, 411.
    [87] Antonelli D. M., Ying J. Y., Chem. Mater. 1996, 8, 874.
    [88] Luo J., Suib S. L., Chem. Commun. 1997, 1031.
    [89] Tian Z. R., Tong W., Wang J.-Y., Duan N.-G., Krishnan V. V., Suib S. L., Science 1997, 276, 926.
    [90] Braun P. V., Osenar P., Stupp S. I., Nature 1996, 380, 325.
    [91] Osenar P., Braun P. V., Stupp S. I., Adv. Mater. 1996, 8, 1022.
    [92] Braun P. V., Osenar P., Tohver V., Kennedy S. B., Stupp S. I., J. Am. Chem. Soc. 1999, 121, 7302.
    [93] Bonnehomme F., Kanatzidis M. G., Chem. Mater. 1998, 10, 1153.
    [94] Rangan K. K., Trikalitis P. N., Kanatzidis M. G., J. Am. Chem. Soc. 2000, 122, 10230.
    [95] Rangan K. K., Billinge S. J. L., Petkov V., Heising J., Kanatzidis M. G., Chem. Mater. 1999, 11, 2629.
    [96] MacLachlan M. J., Coombs N., Ozin G. A., Nature 1999, 397, 681.
    [97] MacLachlan M. J., Coombs N., Bedard R. L., White S., Thompson L. K., Ozin G. A., J. Am. Chem. Soc. 1999, 121, 12005
    [98] Trikalitis P. N., Bakas T., Papaefthymiou V., Kanatzidis M. G., Angew. Chem. Int. Ed. 2000, 39, 4558.
    [99] Attard G. S., Goltner C. G., Corker J. M., Henke S. Templer R. H., Angew. Chem. Int. Ed. Engl. 1997, 36, 1315.
    [100] Antonietti M., Goltner C. G., Adv. Mater. 1997, 9, 431.
    [101] Attard G. S., Bartlett P. N., Coleman N. R. B., Elliott J. M., Owen J. R., Wang J. H., Science 1999, 278, 838.
    [102] Whitehead A. H., Elliott J. M., Owen J. R., Attard G. S., Chem. Commun.1999, 331.
    [103] Ryoo R., Joo S. H., Jun S., J. Phys. Chem. B 1999, 103, 7743.
    [104] Ryoo R., Joo S. H., Kruk M., Jaroniec M., Adv. Mater. 2001, 13, 677.
    [105] Joo S. H., Chl S., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R., Nature 2001, 412, 169.
    [106] Jun S., Joo S. H., Ryoo R., Kruk M., Jaroniec M., Liu Z., Oshuma T., Terasaki O., J. Am. Chem. Soc. 2000, 122, 10712.
    [107] Liang C. D., Hong K. L., Guiochon G. A., Mays J. W., Dai S., Angew. Chem. Int. Ed. 2004, 43, 5785.
    [108] Tanaka S., Nishiyama N., Egashira Y., Ueyama K., Chem. Commun. 2005, 2125.
    [109] Meng Y., Gu D., Zhang F. Q., Shi Y. F., Yang H. F., Li Z., Yu C. Z., Tu B., Zhao D., Angew. Chem. Int. Ed. 2005, 44, 7053.
    [110] Zhang F. Q., Meng Y., Gu D., Yan Y., Yu C. Z., Tu B., Zhao D., J. Am. Chem. Soc. 2005, 127, 13508.
    [111] Liang C. D., Dai S., J. Am. Chem. Soc. 2006, 128, 5316.
    [112] Corma A., Navarro M. T., Perez-Pariente J., J. Chem. Soc. Chem. Commun. 1994, 147.
    [113] Corma A., Camblor M. A., Esteve P., Martinez A., Perez-Pariente J., J. Catal. 1994, 145, 151.
    [114] Tanev P. T., Chibwe M., Pinnavaia T. J., Nature 1994, 368, 321.
    [115] Corma A., Martinez A., Martinez-Soria V., Monton J. B., J. Catal. 1995, 153, 25.
    [116] Reddy K. M., Song C., Catal. Lett. 1996, 36, 103.
    [117] Reddy K. M., Song C., Catal. Today 1996, 31, 137.
    [118] Yuan Z., Liu S., Chen T., Wang J., Li X., J. Chem. Soc. Chem. Commun. 1995,973.
    [119] Zhu Z., Chang Z., Keven L., J. Phys. Chem. B 1999, 103, 2680.
    [120] Reddy J. S., Sayari A., J. Chem. Soc. Chem. Commun. 1995, 2231.
    [121] Tuel A., Gontier S., Teissier R., Chem. Commun. 1996, 651.
    [122] Zhang Z. T., Han Y., Zhu L., Wang R. W., Yu Y., Qiu S. L., Zhao D. Y., Xiao F. S., Angew. Chem. Int. Ed. 2001, 40, 1258.
    [123] Zhang Z. T., Han Y., Xiao F. S., Qiu S. L., Zhu L., Wang R. W., Yu Y., Zhang Z., Zou B. S., Wang Y. Q., Sun H. P., Zhao D. Y., Wei Y., J. Am. Chem. Soc. 2001, 123, 5014.
    [124] Xiao F. S., Han Y., Yu Y., Meng X. J., Yang M., Wu S., J. Am. Chem. Soc., 2002, 124, 888.
    [125] Han Y., Xiao F. S., Wu S., Sun Y., Meng X., Li D., Lin S., Deng F., Ai X., J. Phys. Chem. B 2001, 105, 7963.
    [126] Hutter R., Mallat T., Peterhans A., Baiker A., J. Mol. Catal. A 1999, 138, 241.
    [127] Belhekar A. A., Awate S. V., Anand R., Catal. Commun. 2002, 3, 453.
    [128] Piquemal J. Y., Briot E., Chottard G., Tougne P., Manoli J. M., Bregeault J. M., Micropor. Mesopor. Mater. 2003, 58, 279.
    [129] Zhang R. Y., Ding W., Tu B., Zhao D. Y., Chem. Mater. 2007, 19, 4379.
    [130] Chen C. L., Cheng S. F., Lin H. P., Wong S. T., Mou C. Y., Appl. Catal. A 2001, 215, 21.
    [131] Sun Y. Y., Zhu L., Lu H. J., Wang R. W., Lin S., Jiang D. Z., Xiao F. S., Appl. Catal. A 2002, 237, 21.
    [132] Yang C. M., Sheu H. S., Chao K. J., Adv. Funct. Mater. 2002, 12, 143.
    [133] Sinha A. K., Seelan S., Tsubota S., Haruta M., Angew. Chem. Int. Ed. 2004, 43, 1546.
    [134] Konya Z., Puntes V. F., Kiricsi I., Zhu J., Ager J. W., Ko M. K., Frei H.,Alivisatos P., Somorjai G. A., Chem. Mater. 2003, 15, 1242.
    [135] Stinner C., Prins R., Weber Th., J. Catal. 2001, 202, 187.
    [136] Stinner C., Tang Z., Haouas M., Weber Th., Prins R., J. Catal. 2002, 208, 456.
    [137] Zuzaniuk V., Prins R., J. Catal. 2003, 219, 85.
    [138] Koranyi T., Vit Z., Poduval D. G., Ryoo R., Kim H. S., Hensen E. J. M., J. Catal. 2008, 253, 119.
    [139] Corma A., Esteve P., Martinez A., Valencia S., J. Catal. 1995, 152, 18.
    [140] Han Y., Meng X., Guan H., Yu Y., Xu X., Yang X., Wu S., Li N., Xiao F.-S., Micropor. Mesopor. Mater. 2003, 57, 191.
    [141] Meng X., Li D., Yang X., Yu Y., Wu S., Han Y., Yang Q., Jiang D., Xiao F.-S., J. Phys. Chem. B 2003, 107, 8972.
    [142] Kloetstra K. R., Van Bekkum H., J. Chem. Soc. Chem. Commun. 1995, 1005.
    [143] Kresge C. T., Marler D. O., Rav G. S., Rose B. H., US-A 5366 945, 1994 [Chem. Abstr. 1995, 122, 110416].
    [144] Ying J. Y., Mehnert C. P., US Pat. 1997.
    [145] Liu A. M., Hidajat K., Kawi S., Zhao D. Y., Chem. Commun. 2000, 1145.
    [146] Wang X. G., Lin K. S. K., Chan J. C. C., Cheng S. F., J. Phys. Chem. B 2005, 109, 1763.
    [147] Mbaraka I. K., Radu D. R., Lin V. S. Y., Shanks B. H., J. Catal. 2003, 219, 329.
    [148] Diaz I., Mohino F., Perez-Pariente J., Sastre E., Appl. Catal. A 2001, 205, 19.
    [149] Zeidan R. K., Hwang S. J., Davis M. E., Angew. Chem. Int. Ed. 2006, 45, 6332.
    [150] Margelefsky E. L., Zeidan R. K., Dufaud V., Davis M. E., J. Am. Chem. Soc. 2007, 129, 13691.
    [151] Mehnert C. P., Ying J. Y., Chem. Commun. 1997, 2215.
    [152] Mehnert C. P., Weaver D, W., Ying J. Y., J. Am. Chem. Soc. 1998, 120, 12289.
    [153] Johnson B. F. G., Raynor S. A., Shephard D. S., Mashmeyer T., Thomas J. M., Sankar G., Bromley S., Oldroyd R., Gladden L., Mantle M. D., Chem. Commun. 1999, 1167.
    [154] Li L., Shi J.-L., Yan J., Chem. Commun. 2004,1990.
    [155] Crudden C. M., Sateesh M., Lewis R., J. Am. Chem. Soc. 2005, 127, 10045.
    [156] Paetzold E., Oehme G., Fuhrmann H., Richter M., Echelt R., Pohl M.-M., Kosslick H., Micropor. Mesopor. Mater. 2001, 44-45, 517.
    [157] Meng X., Sun J., Lin K., Jiang D., Xiao F.-S., Current Topics in Catalysis 2002, 3, 183.
    [158] Antonelli D. M., Ying J. Y., Angew. Chem. Int. Ed. Engl. 1995, 34, 2014.
    [159] 程虎民, 马玉荣, 廖复辉, 马季铭, 齐利民, 物理化学学报, 2003, 19, 251.
    [160] Hyodo T., Shimizu Y., Egashira M., Electrochemistry 2003, 71, 387.
    [161] Jiao F., Jumas J.-C., Womes M., Chadwick A. V., Harrson A., Bruce P. G., J. Am. Chem. Soc. 2006, 128, 12905.
    [162] Tian B. Z., Liu X. Y., Yang H. F., Xie S. H., Yu C. Z., Tu B., Zhao D. Y., Adv. Mater. 2003, 15, 1370.
    [163] Lai X. Y., Li X. T., Geng W. C., Tu J. C., Li J. X., Qiu S. L., Angew. Chem. Int. Ed. 2007, 46, 738.
    [164] Yuan Q., Liu Q., Song W., Feng W., Pu W., Sun L., Zhang Y., Yan C., J. Am. Chem. Soc. 2007, 129, 6698.
    [165] Blin J. L., Leonard A., Yuan Z. Y., Gigot L., Vantomme A., Cheetham A. K., Su B. L., Angew. Chem. Int. Ed. 2003, 42, 2872.
    [166] Jiao T., Harrison A., Hill A. H., Bruce P. G., Adv. Mater. 2007, 19, 4063.
    [167] Kluson P., Kacer P., Cajthaml T., Kalaji M., J. Mater. Chem. 2001, 11, 644.
    [168] Yu J. C., Zhang L. Z., Yu J. G., Chem. Mater. 2002, 14, 4647.
    [169] 乐英红, 马臻, 华伟明, 高滋, 化学学报, 2000, 58, 777.
    [170] 王金忠, 赵岩, 张彩碚, 物理化学学报, 2003, 19, 251.
    [171] Dai Q., Shi L. Y., Luo Y. G., Blin J. L., Li D., Yuan C. W., Su B. L., J. Photoch. Photobio. A 2002, 148, 295.
    [172] Wang Z. P., Cai W. M., Hong X. T., Zhao X. L., Xu F., Cai C. G., Appl. Catal. B 2005, 57, 223.
    [173] Karvinen S., Lamminmaki R. J., Solid State Sci. 2003, 5, 1159.
    [174] Alvaro M., Aprile C., Benitez M., Carbonell E., Garcia H., J. Phys. Chem. B 2006, 110, 6661.
    [175] Chen L., Yao B., Cao Y., Fan K., J. Phys. Chem. C 2007, 111, 11849.
    [176] Yu J. G., Liu S. W., Yu H. G., J. Catal. 2007, 249, 59.
    [177] Holm V. C. F., Bailey G. C., US Pat. 1962, 3032599.
    [178] Hino M., Kobayashi S., Arata K., J. Am. Chem. Soc. 1979, 101, 6439.
    [179] Hino M., Arata K., Chem. Commun. 1979, 1148.
    [180] Ciesla U., Schacht S., Stucky G. D., Unger K. K., Schuth F., Angew. Chem. Int. Ed. Engl. 1996, 35, 541.
    [181] Yang X., Jentoft F. C., Jentoft R. E., Girgsdies F., Ressler T., Catal. Lett. 2002, 81, 25.
    [182] Huang Y. Y., McCarthy T. J., Sachlter W. M. H., Appl. Catal. A 1996, 148, 135.
    [183] McIntosh D. J., Kydd R. A., Micropor. Mesopor. Mater. 2000, 37, 281.
    [184] Sun Y. Y., Yuan L. N., Wang W., Chen C. L., Xiao F. S., Catal. Lett. 2003, 87, 57.
    [185] Sun Y. Y., Yuan L. N., Ma S. Q., Han Y., Zhao L., Wang W., Chen C. L., Xiao F. S., Appl. Catal. A 2004, 268, 17.
    [186] Bhaumik A., Inagaki S., J. Am. Chem. Soc. 2001, 123, 691.
    [187] Mizuno N., Hatayama H., Uchida S., Taguchi A., Chem. Mater. 2001, 13, 179.
    [188] Jimenez-Jimenez J., Maireles-Torres P., Olivera-Pastor P., Rodrigurz-Castellon E., Jimenez-Lopez A., Jones D. J., Roziere J., Adv. Mater. 1998, 10, 812.
    [189] Guo X. F., Ding W. P., Wang X. G., Yan Q. J., Chem. Commun. 2001, 709.
    [190] Nenoff T. M., Thomas S. G., Provencio P., Maxwell R. S., Chem. Mater. 1998, 10, 3077.
    [191] Mal N. K., Ichikawa S., Fujiwara M., Chem. Commun. 2002, 112.
    [192] Pillai U. R., Sahle-Demessie E., Chem., Commun. 2004, 826.
    [193] Selvam P., Mohapatra S. K., J. Catal. 2005, 233, 276.
    [194] Selvam P., Mohapatra S. K., J. Catal. 2006, 238, 88.
    [195] Zhao J., Tian B. Z., Yue Y. H., Hua W. M., Zhao D. Y., Gao Z., J. Mol. Catal. A 2005, 242, 218.
    [1] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature 1992, 359, 710.
    [2] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science 1998, 279, 548.
    [3] Ryoo R., Kim J. M., Chem. Commun. 1995, 711.
    [4] Landau M. V., Varkey S. P., Herskowitz M., Regev O., Pevzner S., Sen T., Luz Z., Micropor. Mesopor. Mater. 1999, 33, 149.
    [5] Ryoo R., Jun S., J. Phys. Chem. B 1997, 101, 317.
    [6] Kim J. M., Jun S., Ryoo R., J. Phys. Chem. B 1999, 103, 6200.
    [7] Mokaya R., J. Phys. Chem. B 1999, 103, 10204.
    [8] Mokaya R., Chem. Commun. 2001, 933.
    [9] Lin W., Cai Q., Pang W., Yue Y., Zou B., Micropor. Mesopor. Mater. 1999, 33, 187.
    [10] Das D., Tsai C.-M., Cheng S., Chem. Commun. 1999, 473.
    [11] Corma A., Chem. Rev. 1997, 97, 2373.
    [12] Kim S. S., Zhang W., Pinnavaia T .J., Science 1998, 282, 1302.
    [13] Han Y., Li D.-F., Zhao L., Song J., Yang X., Li N., Di Y., Li C., Wu S., Xu X., Meng X., Lin K., Xiao F.-S., Angew. Chem. Int. Ed. 2003, 42, 3633.
    [14] Li D.-F., Han Y., Song J., Zhao L., Xu X., Di Y., Xiao F.-S., Chem. Eur. J. 2004, 10, 5911.
    [15] Yang X., Zhang S., Qiu Z., Tian G., Feng Y., Xiao F.-S., J. Phys. Chem. B 2004, 108, 4696.
    [16] Wang L., Lin K., Di Y., Zhang D., Li C., Yang Q., Yin C., Sun Z., Jiang D., Xiao F.-S., Micropor. Mesopor. Mater. 2005, 86, 81.
    [17] Liu Y., Zhang W., Pinnavaia T. J., J. Am. Chem. Soc. 2000, 122, 8791.
    [18] Liu Y., Zhang W., Pinnavaia T. J., Angew. Chem., Int. Ed. 2001, 40, 1255.
    [19] Zhang Z., Han Y., Zhu L., Wang R., Yu Y., Qiu S., Zhao D., Xiao F.-S., Angew. Chem., Int. Ed. 2001, 40, 1258.
    [20] Xiao F.-S., Han Y., Meng X.-J., Yu Y., Yang M., Wu S., J. Am. Chem. Soc. 2002, 124, 888.
    [21] Kremer S. P. B., Kirschhock C. E. A., Aerts A., Villani K., Martens J. A., Lebedev O. I., Van Tendeloo G., Adv. Mater. 2003, 15, 1705.
    [22] Gies H., Grabowski S., Grunert W., Stud. Surf. Sci. Catal. 2004, 154, 2869.
    [23] Trong On D., Kaliaguine S., Angew. Chem., Int. Ed. 2001, 40, 3248.
    [24] Trong On D., Kaliaguine S., Angew. Chem., Int. Ed. 2002, 41, 1036.
    [25] Trong On D., Kaliaguine S., J. Am. Chem. Soc. 2003, 125, 618.
    [26] Trong On D., Nossov A., Springuel-Huet M. A., Schneider C., Bretherton J. L., Fyfe C. A., Kaliaguine S., J. Am. Chem. Soc. 2004, 126, 14324.
    [27] Sakthivel A., Huang S., Chen W., Lan Z., Chen K., Kim T., Ryoo R., Chiang A., Liu S., Chem. Mater. 2004, 16, 3168.
    [28] Kirschhock C. E. A., Kremer S. P. B., Vermant J., Van Tendeloo G., Jacobs P. A., Martens J. A., Chem. Eur. J. 2005, 11, 4306.
    [29] Li D., Su D., Song J., Guan X., Hofmann K., Xiao F.-S., J. Mater. Chem. 2005, 15, 5063.
    [30] Meng X., Fan W., Kubota Y., Tatsumi T., J. Catal. 2006, 244, 192.
    [31] Mokaya R., Chem. Commun. 1998, 1839.
    [32] Mokaya R., Angew. Chem., Int. Ed. Engl. 1999, 38, 2930.
    [33] Mokaya R., Chem. Commun. 2001, 633.
    [34] Wu P., Tatsumi T., Komatsu T., Yashima T., Chem. Mater. 2002, 14, 1657.
    [35] Shao Y., Wang L., Zhang J., Anpo M., J. Phys. Chem. B 2005, 109, 20835.
    [36] Selvaraj M., Kawi S., Chem. Mater. 2007, 19, 509.
    [37] Yang X., Vantomme A., Lemaire A., Xiao F.-S., Su B.-L., Adv. Mater. 2006, 18, 2117.
    [38] Wu Z., Jiang Q., Wang Y., Wang H., Sun L., Shi L., Xu J., Wang Y., Chun Y., Zhu J. H., Chem. Mater. 2006, 18, 4600.
    [39] Wang Y., Liu X., Zhao R., Wang Y., Guo Y., Zhang Z., Wang Y., Lu G., Micropor. Mesopor. Mater. 2007, 102, 325.
    [40] Zhao X. S., Lu G. Q., Hu X., Micropor. Mesopor. Mater. 2000, 41, 37.
    [41] Park J. H., Nishiyama N., Egashira Y., Ueyama K., Ind. Eng. Chem. Res. 2001, 40, 6105.
    [42] Yang H. Q., Zhang G. Y., Hong X. L., Zhu Y. Y., Micropor. Mesopor. Mater. 2004, 68, 119.
    [43] Liu Y., Lin H., Mou C. Y., Langmuir 2004, 20, 3231.
    [44] Daehler A., Boskovic S., Gee M. L., Separovic F., Stevens G. W., O’Connor A. J., J. Phys. Chem. B 2005, 109, 16263.
    [45] Castricum H. L., Mittelmeijer-Hazeleger M. C., Sah A., ten Elshof J. E., Micropor. Mesopor. Mater. 2006, 88, 63.
    [46] Ji X., Hu Q., Hampsey J. E., Qiu X., Gao L., He J., Lu Y., Chem. Mater. 2006, 18, 2265.
    [47] O'Neil A. S., Mokaya R., Poliakoff M., J. Am. Chem. Soc. 2002, 124, 10636.
    [48] Wang K. X., Lin Y. J., Morris M. A., Holmes J. D., J. Mater. Chem. 2006, 16, 4051.
    [49] Kumar R., Bhaumik A., Ahedi R. K., Ganapathy S., Nature 1996, 381, 298.
    [50] Voegtlin A. C., Ruch F. J., Guth L., Patarin J., Huve L., Micropo. Mater. 1997, 9, 95.
    [51] Schmidt-Winkel P., Yang P., Margolese D. I., Chmelka B. F., Stucky G. D., Adv.Mater. 1999, 11, 303.
    [52] Kim W. J., Yoo J. C., Hayhurst D. T., Micropor. Mesopor. Mater. 2001, 49, 125.
    [53] Okabe A., Fukushima T., Ariga K., Niki M., Aida T., J. Am. Chem. Soc. 2004, 126, 9013.
    [54] Wang L., Shao Y., Zhang J., Anpo M., Micropor. Mesopor. Mater. 2006, 95, 17.
    [55] Yue Y., Gedeon A., Bonardet J.-L., Melosh N., D’Esinose J.-B., Fraissard J., Chem. Commun.1999, 1697.
    [56] Vinu A., Sawant D. P., Ariga K., Hossain K. Z., Halligudi S. B., Hartmann M., Nomura M., Chem. Mater. 2005, 15, 5339.
    [57] Wu S., Han Y., Zou Y., Song J., Zhao L., Di Y., Liu S., Xiao F.-S., Chem. Mater. 2004, 16, 486.
    [58] Du Y., Sun Y., Di Y., Zhao L., Liu S., Xiao F.-S., J. Porous Mater. 2006, 13, 167.
    [59] Newalkar B. L., Olanrewaju J., Komarneni S., J. Phys. Chem. B 2001, 105, 8356
    [60] Yang X.-Y., Vantomme A., Lemaire A., Xiao F.-S., Su B.-L., Adv. Mater. 2006, 18, 2117.
    [61] Hosono E., Fujihara S., Honma I., Zhou H., Adv. Mater. 2005, 17, 2091.
    [62] Fyfe C. A., Lyerla J. R., Yannoni C. S., J. Am. Chem. Soc. 1979, 101, 1351.
    [63] Sindorf D. W., Maciel G. E., J. Am. Chem. Soc. 1981, 103, 4263.
    [64] Haukka S., Lakomma E. L., Root A., J. Phys. Chem. 1993, 97, 5085.
    [65] Steel A., Carr S. W., Anderson M. W., Chem. Mater. 1995, 7, 1829.
    [66] Zhao X. S., Lu G. Q., Whittaker A. K., Millar G. L., Zhu H. Y., J. Phys. Chem. B 1997, 101, 6525.
    [67] Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T. W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B.,Schlenker J. L., J. Am. Chem. Soc. 1992, 114, 10834.
    [68] Fan J., Yu C., Gao F., Lei J., Tian B., Wang L., Luo Q., Tu B., Zhou W., Zhao D., Angew. Chem. Int. Ed. 2003, 42, 3146.
    [69] Fan J., Yu C., Gao F., Lei J., Zhang Q., Li T., Tu B., Zhou W., Zhao D., J. Am. Chem. Soc. 2005, 127, 10794.
    [70] Lee C., Lang J., Yen C., Shih P., Lin T., Mou C. Y., J. Phys. Chem. B 2005, 109, 12277.
    [71] Han Y., Lee S., Ying J. Y., Chem. Mater. 2006, 18, 643.
    [72] Yang X., Li Z., Liu B., Hofmann K., Tian G., Feng Y., Ding Y., Su D., Xiao F.-S., Adv. Mater. 2006, 18, 410.
    [73] Ryoo R., Ko C. H., Kruk M., Antochshuk M., Jaroniec M., J. Phys. Chem. B 2000, 104, 11465.
    [74] Kruk M., Antochshuk V., Jaroniec M., Sayari A., J. Phys. Chem.B 1999, 103, 10670.
    [75] Kruk M., Jaroniec M., Sakamoto Y., Terasaki O., Ryoo R., Ko C. H., J. Phys. Chem. B 2000, 104, 292.
    [76] Ryoo R., Jun S., Kim J., Kim M., Chem. Commun. 1997, 2225.
    [77] Luan Z., Harmann M., Zhao D., Zhou W., Kevan L., Chem. Mater. 1999, 11, 1621.
    [78] Du Y., Lan X., Liu S., Ji Y., Zhang Y., Zhang W., Xiao F.-S., Micorpor. Mesopor. Mater. (2007) doi:10.1016/j.micromeso.2007.09.033
    [79] Wong M. S., Huang H. C., Ying J. Y., Chem. Mater. 2002, 14, 1961.
    [80] Morey M. S., Stucky G. D., Schwarz S., Froba M., J. Phys. Chem. B 1999, 103, 2037.
    [81] Ciuparu D., Ensuque A., Shafeev G., Bozon-Verduraz F., J. Mater. Sci. Lett. 2000, 19, 931.
    [82] Fernández Lopez E., Sanchez Escribano V., Panizza M., Carnasciali M. M., Busca G., J. Mater. Chem. 2001, 11, 1891.
    [83] Rodríguez-Castellón E., Jiménez-López A., Maireles-Torres P., Jones D. J., Rozière J., Trombetta M., Busca G., Lenarda M., Storarod L., J. Solid State Chem. 2003, 175, 159.
    [84] Liu J., Liao S.-J., Jiang G., Zhang X., Petrik L., Micropor. Mesopor. Mater. 2006, 95, 306.
    [85] Zhang F., Yan Y., Yang H., Meng Y., Yu C., Tu B., Zhao D., J. Phys. Chem. B 2005, 109, 8723.
    [86] Xia Q.-H., Hidajat K., Kawi S., Chem. Commun. 2000, 2229.
    [87] Xia Q.-H., Hidajat K., Kawi S., J. Catal. 2002, 205, 318.
    [88] Hua W., Yue Y., Gao Z., J. Mol. Catal. A 2001, 170, 195.
    [89] Matsuhashi H., Tanaka M., Makamura H., Arata K., Appl. Catal. A 2001, 208, 1.
    [90] Chen C.-L., Cheng S., Lin H.-P., Wong S.-T., Mou C.-Y., Appl. Catal. A 2001, 215, 21.
    [91] Chen C.-L., Li T., Cheng S., Lin H.-P., Bhongale C. J., Mou C.-Y., Micropor. Mesopor. Mater. 2001, 50, 201.
    [92] Sun Y., Zhu L., Lu H., Wang R., Lin S., Jiang D., Xiao F.-S., Appl. Catal. A 2002, 237, 21.
    [93] Wang Y., Lee K.-Y., Choi S., Liu J., Wang L.-Q., Peden C. H. F., Green Chem. 2007, 9, 540.
    [94] Chen X.-R., Ju Y.-H., Mou C.-Y., J. Phys. Chem. C 2007, 111, 18731.
    [95] Akkari R., Ghorbel A., J. Sol-Gel Sci. Techn. 2005, 33, 121.
    [96] Akkari R., Ghorbel A., Essayem N., Figueras F., Appl. Catal. A 2007, 328, 43.
    [97] Ogliaruso M. A., Wolfe J. F., Synthesis of Carboxylic Acids Esters and theirDerivatives, Wiley, New York, 1991.
    [98] Lauridsen J. B., J. Am. Oil Chem. Soc. 1976, 53, 400.
    [99] Jungermann E., Cosmet. Sci. Technol. Serv. 1991, 11, 97.
    [100] Ma F., Hanna M. A., Bioresour. Technol. 1999, 70, 1.
    [101] Lu G., Appl. Catal. A 1995, 133, 11.
    [102] Furata S., Matsuhashi H., Arata K., Appl. Catal. A 2004, 269, 187.
    [103] Furata S., Matsuhashi H., Arata K., Catal. Commun. 2004, 5, 721.
    [104] Du Y., Liu S., Zhang Y., Yin C., Di Y., Xiao F.-S., Catal. Lett. 2006, 108, 155.
    [105] Shamshuddin S. Z. M., Nagaraju N., J. Mol. Catal. A 2007, 273, 55.
    [1] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature 1992, 359, 710.
    [2] Corma A., Chem. Rev. 1997, 97, 2373.
    [3] Yang H., Kuperman A., Coombs N., Mamicheafara S., Ozin G. A., Nature 1996, 379, 703.
    [4] Krishna R. M., Prakash A. M., Kevan L., J. Phys. Chem. B 2000, 104, 1796.
    [5] Hoelderich W. F., Catal. Today 2000, 62, 115.
    [6] He N., Bao S., Xu Q., Appl. Catal. A 1998, 169, 29.
    [7] Corma A., Fornés V., Navarro M. T., Pérez-Pariente J., J. Catal. 1994, 148, 569.
    [8] Vinu A., Krithiga T., Murugesan V., Hartmann M., Adv. Mater. 2004, 16, 1817.
    [9] Parvulescu V., Su B.-L., Catal. Today 2001, 69, 315.
    [10] Zhang Q. H., Guo Q., Wang X. X., Shishido T., Wang Y., J. Catal. 2006, 239, 105.
    [11] Zhao D., Feng J., Huo Q., Melosh N., Fredickson G. H., Chmelka B. F., Stucky G. D., Science 1998, 279, 548.
    [12] Luan Z., Hartmann M., Zhao D., Zhou W., Kevan L., Chem. Mater. 1999, 11, 1621.
    [13] Zhao X. S., Lu G. Q., Song C., Chem. Commun. 2001, 2306.
    [14] Vinu A., Sawant D. P., Ariga K., Hossain K. Z., Halligudi S. B., Hartmann M., Nomura M., Chem. Mater. 2005, 17, 5339.
    [15] Bachari K., Millet J. M. M., Benaichouba B., Cherifi O., Figueras F. J. Catal. 2004, 221, 55.
    [16] Mohamed M. M., Eissa N. A., Mater. Res. Bull. 2003, 38, 1993.
    [17] Meng X., Di Y., Zhao L., Jiang D., Li S., Xiao F.-S., Chem. Mater. 2004, 16,5518.
    [18] Matsuhashi H., Tanaka M., Nakamura H., Arata K., Appl. Catal. A 2001, 208, 1.
    [19] Ghattas M. S., Micropor. Mesopor. Mater. 2006, 97, 107.
    [20] Kruk M., Jaroniec M., Sayari A., Langmuir 1999, 15, 5683.
    [21] Echchahed B., Moen A., Nicholson D., Bonneviot L., Chem. Mater. 1997, 9, 1716.
    [22] Wang Y., Zhang Q., Shishido T., Takehira K., J. Catal. 2002, 209, 186.
    [23] Han Y., Meng X., Guan H., Yu Y., Zhao L., Xu X., Yang X., Wu S., Li N., Xiao F.-S., Micropor. Mesopor. Mater. 2003, 57, 191.
    [24] Sun Y., Walspurger S., Tessonnier J.-P., Louis B., Sommer J., Appl. Catal. A 2006, 300, 1.
    [25] Goldfarb D., Bernardo M., Strohmaier K. G., Vaughan D. E. W., Thomann H., J. Am. Chem. Soc. 1994, 116, 6344.
    [26] Park J. W., Chon H., J. Catal. 1992, 133, 159.
    [27] Ratnasami P., Kumar R., Catal. Today 1991, 9, 328.
    [28] Bordiga S., Buzzoni R., Geobalda F., Lamberti C., Giomello E., Zecchina A., Leofani G., Petrini G., Tozzola G., Vlaic G., J. Catal. 1996, 148, 486.
    [29] Vinu A., Sawant D. P., Ariga K., Hossain K. Z., Halligudi S. B., Hartmann M., Nomura M., Chem. Mater. 2005, 17, 5339.
    [30] Wang L., Tian B., Fan J., Liu X., Yang H., Yu C., Tu B., Zhao D., Micropor. Mesopor. Mater. 2004, 67, 123.
    [31] Olah G. A., Friedel-Crafts Chemistry, Wiley, New York, 1973.
    [32] Choudhary V. R., Jana S. K., Kiran B. P., Catal. Lett. 1999, 59, 217.
    [33] Choudhary V. R., Jana S. K., Appl. Catal. A 2002, 224, 51.
    [34] Newman M. S., Steric Effects in Organic Chemistry, John Wiley & Sons, Inc., New York, 1956.
    [1] Yang P., Zhao D., Margolese D. I. Chmelka, B. F., Stucky G. D., Nature 1998, 396, 512.
    [2] Antonelli D. M., Ying J. Y., Angew. Chem., Int. Ed. 1999, 38, 56.
    [3] Oliver S., Kuperman A., Coombs N., Lough A., Ozin G. A., Nature 1995, 378, 47.
    [4] Sayari A., Karra V. R., Reddy J. S., Moudrakovski I. L., Chem. Commun. 1996, 411.
    [5] Meng Y., Gu D., Zhang F., Shi Y., Yang H., Li Z., Yu C., Tu B., Zhao D., Angew. Chem., Int. Ed. 2005, 44, 7053.
    [6] Liang C. D., Dai S., J. Am. Chem. Soc. 2006, 128, 5316.
    [7] Hartmann M., Kevan L., Chem. Rev. 1999, 99, 635.
    [8] Serre C., Auroux A., Gervasini A., Hervieu M., Férey G., Angew. Chem., Int. Ed. 2002, 41, 1594.
    [9] Yu D., Qian J., Xue N., Zhang D., Wang C., Guo X., Ding W., Chen Y., Langmuir 2007, 23, 382.
    [10] Bhaumik A., Inagaki S., J. Am. Chem. Soc. 2001, 123, 691.
    [11] Holland B. T., Isbester P. K., Blanford C. F., Munson E. J., Stein A., J. Am. Chem. Soc. 1997, 119, 6796.
    [12] Kimura T., Sugahara Y., Kuroda K., Micropor. Mesopor. Mater. 1998, 22, 115.
    [13] Zhao D., Luan Z. H., Kevan L., Chem. Commun. 1997, 1009.
    [14] Feng P. Y., Xia Y., Feng J. L., Bu X. H. Stucky, G. D., Chem. Commun. 1997, 949.
    [15] Kimura T., Sugahara Y., Kuroda K., Chem. Commun. 1998, 559.
    [16] Cabrera S., Haskouri J. E., Guillem C., Beltrán-Porter A., Beltrán-Porter D., Mendioroz S., Marcos M. D., Amorós P., Chem. Commun. 1999, 333.
    [17] Kimura T., Sugahara Y., Kuroda K., Chem. Mater. 1999, 11, 508.
    [18] Zhao X. S., Lu G. Q., Micropor. Mesopor. Mater. 2001, 44-45, 185.
    [19] Mal N. K., Ichikawa S., Fujiwara M., Chem. Commun. 2002, 112.
    [20] Lin K., Wang L., Sun Z., Yang Q., Di Y., Zhang D., Jiang D., Xiao F.-S., Chem. Lett. 2005, 34, 516.
    [21] Froba M., Tiemann M., Chem. Mater. 1998, 10, 3475.
    [22] Tiemann M., Froba M., Rapp G., Funari S. S., Chem. Mater. 2000, 12, 1342.
    [23] Tiemann M., Froba M., Chem. Mater. 2001, 13, 3211.
    [24] Guo X., Ding W., Wang X., Yan Q., Chem. Commun. 2001, 709.
    [25] Tiemann M., Schulz M., J?ger C., Froba M., Chem. Mater. 2001, 13, 2885.
    [26] Pan C., Yuan S., Zhang W., Appl. Catal. A 2006, 312, 186.
    [27] Tian B., Liu X., Tu B., Yu C., Fan J., Wang L., Xie S., Stucky G. D., Zhao D., Nat. Mater. 2003, 2, 159.
    [28] Meng X., Di Y., Zhao L., Jiang D., Li S., Xiao F.-S., Chem. Mater. 2004, 16, 5518.
    [29] Blin J. L., Lesieur P., Stebe M. J., Langmuir 2004, 20, 491.
    [30] Rankin S. E., Bing T., Lehmler H. J., Hindman K. P., Knutson B. L., Micropor. Mesopor. Mater. 2004, 73, 197.
    [31] Di Y., Meng X., Wang L., Li S., Xiao F.-S., Langmuir 2006, 22, 3068.
    [32] Xiao F.-S., Curr. Opin. Colloid Interface Sci. 2005, 10, 94.
    [33] Michaux F., Blin J. L., Stebe M. J., Langmuir 2007, 23, 2138.
    [34] Wang L., Tian B., Fan J., Liu X., Yang H., Yu C., Tu B., Zhao D., Micropor. Mesopor. Mater. 2004, 67, 123.
    [35] Kim S. S., Zhang W., Pinnavaia T. J., Science 1998, 282, 1302.
    [36] Mortlock R. F., Bell A. T., Radke C. J., J. Phys. Chem. 1993, 97, 775.
    [37] Sayari A., Moudrakovski I., Reddy J. S., Ratcliffe C. I., Ripmeester J. A., Preston K. F., Chem. Mater. 1996, 8, 2080.
    [38] Luan Z., Zhao D., He H., Klinowski J., Kevan L., J. Phys. Chem. B 1998, 102, 1250.
    [39] Selvam P., Sonavane S. U., Mohapatra S. K., Jayaram R. V., Adv. Synth. Catal. 2004, 346, 542.
    [40] Selvam P., Mohapatra S. K., J. Catal. 2005, 233, 276.
    [41] Yuan Z.-Y., Chen T.-H., Wang J.-Z., Li H.-X., Colloid Surf. A 2001, 179, 253.
    [42] Karthik M., Vinu A., Tripathi A. K., Gupta N. M., Palanichamy M., Murugesan V., Micropor. Mesopor. Mater. 2004, 70, 15.
    [43] Kapoor K. M., Raj A., Appl. Catal. A 2000, 203, 311.
    [44] Kimura T., Micropor. Mesopor. Mater. 2005, 77, 97.
    [45] Mohapatra S. K., Sahoo B., Keune W., Selvam P., Chem. Commun. 2002, 1466.
    [46] Subrahmanyam C., Viswanathan B., Varadarajan T. K., J. Mol. Catal. A 2004, 233, 149.
    [47] Tu?ar N. N., Logar N. Z., Ar?on I., Mali G., Mazaj M., Risti? A., Lázár K., Kau?i? V., Micropor. Mesopor. Mater. 2005, 87, 52.
    [48] Selvam P., Mohapatra S. K., J. Catal. 2006, 238, 88.
    [49] Bordiga S., Buzzoni R., Geobalda F., Lamberti C., Giomello E., Zecchina A., Leofani G., Petrini G., Tozzola G., Vlaic G., J. Catal. 1996, 148, 486.
    [50] Vinu A., Sawant D. P., Ariga K., Hossain K. Z., Halligudi S. B., Hartmann M., Nomura M., Chem. Mater. 2005, 17, 5339.
    [51] Wang Y., Zhang Q., Shishido T., Takehira K., J. Catal. 1996, 209, 186.
    [52] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature 1992, 359, 710.
    [53] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science 1998, 279, 548.
    [54] Yue Y., Cedeon A., Bonardet J., Melosh N., D’Espinose J.-B., Fraissard J., Chem. Commun. 1999, 1967.
    [55] Vinu A., Murugesan V., Bo1hlmann W., Hartmann M., J. Phys. Chem. B 2004, 108, 11496.
    [56] Zhang W., Lu J., Han B., Li M., Xiu J., Ying P., Li C., Chem. Mater. 2002, 14, 3413.
    [57] Chen S.-Y., Jang L.-Y., Cheng S., Chem. Mater. 2004, 16, 4174.
    [58] Du Y., Sun Y., Di Y., Zhao L., Liu S., J Porous Mater 2006, 13, 163.
    [59] Selvaraj M., Kawi S., Chem. Mater. 2007, 19, 509.
    [60] Margolese D., Melero J. A., Christiansen S. C., Chmelka B. F., Stucky G. D., Chem. Mater. 2000, 12, 2448.
    [61] Liu A. M., Hidajat K., Kawi S., Zhao D. Y., Chem. Commun. 2000, 1145.
    [62] Goto Y., Inagaki S., Chem. Commun. 2002, 2410.
    [63] Wang Y. Q., Yang C. M., Zibrowius B., Spliethoff B., Schüth F., Chem. Mater. 2003, 15, 5029.
    [64] Wang X. G., Lin K. S. K., Chan J. C. C., Cheng S. F., J. Phys. Chem. B 2005, 109, 1763.
    [65] Alvaro M., Corm A., Das D., Fornes V., Garcia H., Chem. Commun. 2004, 956.
    [66] Hu Q., Hampsey J. E., Jiang N., Li C., Lu Y., Chem. Mater. 2005, 17, 1561.
    [67] Qiao S., Yu C., Xing W., Hu Q., Djojoputro H., Lu G. Q., Chem. Mater. 2005, 17, 6172.
    [68] Bao X. Y., Li X., Zhao X. S., J Phys. Chem. B 2006, 110, 2656.
    [69] Takahashi H., Li H. B., Sasaki T., Miyazaki C., Kajino T., Inagaki S., Chem. Mater. 2000, 12, 3301.
    [70] Yiu H. H. P., Wright P. A., Botting N. P., J. Mol. Catal. B 2001, 15, 813.
    [71] Vinu A., Murugesan V., Hartmann M., J. Phys. Chem. B 2004, 108, 7323.
    [72] Chon A. S. M., Zhao X. S., J. Phys. Chem. B 2003, 107, 12650.
    [73] Hartmann M., Streb C., J. Porous Mater. 2006, 13, 347.
    [74] Yang X.-Y., Li Z.-Q., Liu B., Klein-Hofmann A., Tian G., Feng Y.-F., Ding Y., Su D., Xiao F.-S., Adv. Mater. 2006, 18, 410.
    [75] Frianeza T. N., Clearfield A., J. Catal. 1984, 85, 398.
    [76] La Ginestra A., Patrono P., Berardelli M. L., Galli P., Ferragina C., Massucci M. A., J. Catal. 1987, 103, 346-356.
    [77] Johnstone R. A. W., Liu J.-Y., Whittaker D., J. Mol. Catal. A 2001, 174, 159.
    [78] Rocha G. M. S. R. O., Johnstone R. A. W., Neves M. G. P. M. S., J. Mol.Catal. A 2002, 187, 95.
    [79] Jones D. J., Aptel G., Brandhorst M., Jacquin M., Roziére J., Jiménez-Jiménez J., Jiménez-López A., Maireles-Torres P., Piwonski I., Rodríguez-Castellón E., Zajac J., Rozière J., J. Mater. Chem. 2000, 10, 1957.
    [80] Conesa T. D., Mokaya R., Campelo J. M., Romero A. A., Chem. Commun., 2006, 1839.
    [81] Kovalchuk T. V., Sfihi H., Korchev A. S., Kovalenko A. S., Il’in V. G., Zaitsev V. N., Fraissard J., J. Phys. Chem. B 2005, 109, 13948.
    [82] Jiménez-Jiménez J., Rubio-Alonso M., Eliche-Quesada D., Rodríguez-Castellón E., Jiménez-López A., J. Phys. Chem. Solids 2006, 67, 1007.
    [83] Du Y., Lan X., Liu S., Ji Y., Zhang Y., Zhang W., Xiao F.-S., Micropor. Mesopor. Mater. (2007) doi: 10.1016/j.micromeso.2007.09.033
    [84] Ren T.-Z., Yuan Z.-Y., Azioune A., Pireaux J.-J., Su B.-L., Langmuir 2006, 22, 3886.
    [85] Kapoor M. P., Inagaki S., Yoshida H., J. Phys. Chem. B 2005, 109, 9231.
    [86] Hudson M. J., Workman A. D., J. Mater. Chem. 1991, 1, 375.
    [87] Nakayama H., Eguchi T., Nakamura N., Yamaguchi S., Danjyo M., Tsuhako M., J. Mater. Chem. 1997, 7, 1063.
    [88] Bortun A. I., Khainakov S. E., Bortun L. N., Poojary D. M., Rodriguez J., Garcia J. R., Clearfield A., Chem. Mater. 1997, 9, 1805.
    [89] Kim J., Song K. C., Pratsinis S. E., J. Nanoparticle Res. 2000, 2, 419.
    [90] Zhou Y., Antonietti M., Chem. Commun. 2003, 2564.
    [91] Zhang B. J., Davis S. A., Mann S., Chem. Mater. 2002, 14, 1369.
    [92] Lv L., Lee F. Y., Zhou J., Su F., Zhao X. S., Micropor. Mesopor. Mater.2006, 96, 270.
    [93] Fei L., Zhou X., Zhou H., Shen Z., Sun P., Yuan Z., Chen T., Micropor. Mesopor. Mater.2007, 100, 139.
    [94] Splinter S. J., Rofagha R., Mcintyre N. S., Erb U., Surf. Interface Anal.1996, 24, 81.
    [95] Darensbourg D. J., Yarbrough J. C., J. Am. Chem. Soc 2002, 124, 6335.
    [96] Meng X., Lin K., Yang X., Sun Z., Jiang D., Xiao F.-S., J. Catal. 2003, 218, 460.
    [97] Djakovitch L., Wagne M., Hartun C. G., Beller M., Koehler K., J. Mol. Catal. A 2004, 219, 121.
    [98] Deng Y. Q., Ma Z. F., Wang K., Chen J., Green Chem. 1999, 1, 275.
    [99] Lapisardi G., Chiker F., Launay F., Nogier J. P., Bonardet J. L., Catal. Commun. 2004, 5, 277.
    [100] Chen C.-L., Li T., Cheng S., Lin H.-P., Bhongale C. J., Mou C.-Y., Micropor. Mesopor. Mater. 2001, 50, 201.
    [101] Hua W., Yue Y., Gao Z., J. Mol. Catal. A 2001, 170, 195.
    [1] Holm V. C. F., Bailey G. C., U.S. Patent 1962, 3032599.
    [2] Hino M., Kobayashi S., Arata K., J. Am. Chem. Soc. 1979, 101, 6439.
    [3] Hino M., Arata K., Chem. Commun. 1979, 1148.
    [4] Hino M., Arata K., Chem. Commun. 1980, 851.
    [5] Jin T., Yamaguchi T., Tanabe K., J. Phys. Chem. 1986, 90, 4797.
    [6] Cheung T.-K., d’Itri J. D., Gates B.C., J. Catal. 1995, 151, 464.
    [7] Davis B.H., Keogh R.A., Srinivasan R., Catal. Today 1994, 20, 219.
    [8] Arata K., Appl. Catal. A 1996, 146, 3.
    [9] Song X. M., Sayari A., Catal. Rev. Sci. Eng 1996, 38, 320.
    [10] Yadav G. D., Kirthivasan N., Chem. Commun. 1995, 203.
    [11] Yadav G. D., Nair J. J., Micropor. Mesopor. Mater. 1999, 33, 1.
    [12] Xia Y. D., Hua W. M., Tang Y., Gao Z., Chem. Commun. 1999, 1899.
    [13] Matsuhashi H., Hino M., Arata K., Chem. Lett. 1998, 1027.
    [14] Matsuhashi H., Hino M., Arata K., Appl. Catal. 1990, 59, 205.
    [15] Wang G. W., Hattori M., Tanabe K., Chem. Lett. 1983, 277.
    [16] Arata K., Nakamura H., Shouji M., Appl. Catal. A 2000, 197, 213.
    [17] Matsuhashi H., Miyazaki H., Arata K., Chem. Lett. 2001, 452.
    [18] Furata S., Matsuhashi H., Arata K., Appl. Catal. A 2004, 269, 187.
    [19] Matsuhashi H., Miyazaki H., Kawamura Y., Nakamura H., Arata K., Chem. Mater. 2001, 13, 3038.
    [20] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature 1992, 359, 710.
    [21] Ying J. Y., Mehnert C. P., Wong M. S., Angew. Chem. Int. Ed. 1999, 38, 56.
    [22] Yang P. D., Zhao D. Y., Margolese D. I., Chmelka B. F., Stucky G. D., Chem.Mater. 1999, 11, 2813.
    [23] Ciesla U., Schacht S., Stucky G. D., Unger K. K., Scucth F., Angew. Chem. Int. Ed. Engl. 1996, 35, 541.
    [24] Sun Y., Yuan L., Wang W., Chen C.-L., Xiao F.-S., Catal. Lett. 2003, 87, 57.
    [25] Scott R. W. J., Mamak M., Wong K. K, Coombs N., Ozin G. A., J. Mater. Chem. 2003, 13, 1046.
    [26] Qi L., Ma J., Cheng H., Zhao Z., Langmuir 1998, 14, 2579.
    [27] Li D. L., Zhou H.-S., Honma I., Nat. Mater. 2004, 3, 65.
    [28] Fujihara S., Maeda T., Ohgi H., Hosono E., Imai H., Kim S.-H., Langmuir 2004, 20, 6476.
    [29] Guierrez-Baez R., Toledo-Antonio J. A., Cortes-Jacome M. A., Sebastian P. J., Vazquez A., Langmuir 2004, 20, 4265.
    [30] Yadav G. D., Mehta P. H., Ind. Eng. Chem. Res. 1994, 33, 2198.
    [31] Olah G. A., Friedel-Crafts Chemistry, Wiley, New York, 1973.
    [32] Olah G. A., Friedel-Crafts and Related Reactions, Wiley, New York, 1974.
    [33] Du Y., Liu S., Zhang Y., Yin C., Yan D., Xiao F.-S., Catal. Lett. 2006, 108, 155.
    [34] Ma F., Hanna M. A., Bioresour. Technol. 1999, 70, 1.
    [35] Otera J., J. Chem. Rev. 1993, 93, 1449.
    [36] Freedman B., Butterfield R. O., Pryde E. H., J. Am. Oil Chem. 1986, 63, 1375.
    [37] Corma A., Iborra S., Velty A., Chem. Rev. 2007, 107, 2411.
    [38] Hoelderich W. F., Catal. Today 2000, 62, 115.
    [39] Leclercq E., Finiels A., Moreau C., J. Am. Oil Chem. 2001, 78, 1161.
    [40] Lotero E., Liu Y., Lopez D. E., Suwannakarn K., Bruce D. A., Goodwin J. G., Ind. Eng. Chem. Res. 2005, 44, 5353.
    [41] Chai F., Cao F., Zhai F., Chen Y., Wang X. H., Su Z., Adv. Synth. Catal. 2007,349, 1057.
    [42] Furuta S., Matsuhashi H., Arata K., Catal. Commun. 2004, 5, 721.
    [43] Shamshuddin S. Z. M., Synlett. 2005, 361.
    [44] Babou F., Coudurier G., Vedrine J. C., J. Catal. 1995, 152, 341.
    [45] Sun Y., Ma S., Du Y., Yuan L., Wang S., Yang J., Deng F., Xiao F.-S., J. Phys. Chem. B 2005, 109, 2567.
    [46] Lopez D. E., Goodwin J. G., Bruce D. A., Lotero E., Appl. Catal. A 2005, 295, 97.
    [1] Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Nature 1992, 359, 710.
    [2] Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science 1998, 279, 548.
    [3] Corma A., Chem. Rev. 1997, 97, 2373.
    [4] Yang H., Kuperman A., Coombs N., Mamicheafara S., Ozin G. A., Nature 1996, 379, 703.
    [5] Morey M., Davidson A., Eckert H., Stucky G. D., Chem. Mater. 1996, 8, 486.
    [6] Lai C. Y., Trewyn B. G., Jeftinija D. M., Jeftinija K., Xu S., Jeftinija S., Lin V. S. Y., J. Am. Chem. Soc. 2003, 125, 4451.
    [7] Ho K. Y., McKay G., Yeung K. L., Langmuir 2003, 19, 3019.
    [8] Tkachenko O. P., Klementiev K. V., Loffler E., Ritzkopf I., Schüth F., Bandyopadhyay M., Grabowski S., Gies H., Hagen V., Mühler M., Lu L. H., Fischer R. A., Grunert W., Phys. Chem. Chem. Phys. 2003, 5, 4325.
    [9] Sayari A., Hamoudi S., Yang Y., Chem. Mater. 2005, 17, 212.
    [10] Lee B., Im H. J., Luo H. M., Hagaman E. W., Dai S., Langmuir 2005, 21, 5372.
    [11] Wang S. B., Li H. T., Micropor. Mesopor. Mater. 2006, 97, 21.
    [12] Fr?ba M., K?hn R., Bouffaud G., Chem. Mater. 1999, 11, 2858.
    [13] Zhang L., Papaefthymiou G. C., Ying J. Y., J. Phys. Chem. B 2001, 105, 7414.
    [14] Gross A. F., Diehl M. R., Beverly K. C., Richman E. K., Tolbert S. H., J. Phys. Chem. B 2003, 107, 5475.
    [15] Bourlinos A. B., Simopoulos A., Boukos N., Petridis D., J. Phys. Chem. B 2001, 105, 7432.
    [16] Lu A.-H., Li W.-C., Kiefer A., Schmidt W., Bill E., Fink G., Schüth F., J. Am.Chem. Soc. 2004, 126, 8616.
    [17] Lu A.-H., Schmidt W., Matoussevitch N., B?nnemann H., Spliethoff B., Tesche B., Bill E., Kiefer W., Schüth F., Angew. Chem. Int. Ed. 2004, 43, 4303.
    [18] Lu A.-H., Salabas E. L., Schüth F., Angew. Chem. Int. Ed. 2007, 46, 1222.
    [19] Zhao W., Gu J., Zhang L., Chen H., Shi J., J. Am. Chem. Soc. 2005, 127, 8916.
    [20] Yi D. K., Lee S. S., Papaefthymiou G. C., Ying J. Y., Chem. Mater. 2006, 18, 614.
    [21] Wu P., Zhu J., Xu Z., Adv. Funct. Mater. 2004, 14, 345.
    [22] Kang Y. S., Risbud S., Robalt J. F., Stroeve P., Chem. Mater. 1996, 8, 2209.
    [23] Kodama R. H., J. Magn. Magn. Mater. 1999, 200, 359.
    [24] Verelst M., Ely T. O., Amiens C., Snoeck E., Lecante P., Mosset A., Respaud M., Broto J. M., Chaudret B., Chem. Mater. 1999, 11, 2702.
    [25] Long J. W., Logan M. S., Rhodes C. P., Carpenter E. E., Stroud R. M., Rolison D. R., J. Am. Chem. Soc. 2004, 126, 16879.
    [26] Cheng K., He Y. P., Miao Y. M., Zou B. S., Wang Y. G., Wang T. H., Zhang X. T., Du Z. L., J. Phys. Chem. B 2006, 110, 7259.
    [27] Jiao F., Jumas J.-C., Womes M., Chadwick A. V., Harrison A., Bruce P. G., J. Am. Chem. Soc. 2006, 128, 12905.
    [28] Zheng T., Pang J., Tan G., He J., McPherson G. L., Lu Y., John V. T., Zhan J., Langmuir 2007, 23, 5143.
    [29] Vestal C. R., Zhang Z. J., Nano. Lett. 2003, 3, 1739.
    [30] Hutlova A., Niznansky D., Rehspringer J. L., Estournes C., Kurmoo M., Adv. Mater. 2003, 15, 1622.
    [31] Huang X., Chen Z., J. Cryst. Growth 2004, 271, 287.
    [32] Casu A., Casula M. F., Corrias A., Falqui A., Loche D., Marras S., J. Phys. Chem. C 2007, 111, 916.
    [33] Casula M. F., Loche D., Marras S., Paschina G., Corrias A., Langmuir 2007, 23, 3509.
    [34] Cannas C., Musinnu A., Peddis D., Piccaluga G., Chem. Mater. 2006, 18, 3835.
    [35] Tang D., Yuan R., Chai Y., An H., Adv. Funct. Mater. 2007, 17, 976.
    [36] Silva J. B., Diniz C. F., Viana A. P. P., Mohallem N. D. S., J. Sol-Gel Sci. Techn. 2005, 35, 115.
    [37] Montemayor S. M., García-Cerda L. A., Torres-Lubián J. R., Rodríguez-Fernández O. S., J. Sol-Gel Sci. Techn. 2007, 42, 181.
    [38] Cullity B. D., Stock S. R., Elements of X-Ray Diffraction, Prentice-Hall, New Jersey, 3rded, 2001.
    [39] Schüth F., Wingen A., Sauer V., Micropor. Mesopor. Mater. 2001, 44-45, 465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700