聚偏氟乙烯/四氧化三铁复合纳米纤维的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是利用自制静电纺丝装置制备聚偏氟乙烯(PVDF)/四氧化三铁(Fe_3O_4)复合纳米纤维,并使用了现代分析仪器研究了复合纳米纤维的结构及有关性能。本课题的研究内容,进一步促进了复合纳米材料的发展,并为其应用前景提供了一定的依据。
     本论文采用化学共沉淀法制备了纳米四氧化三铁后,分别采用了两种方法直接包覆法和溶胶凝胶法制备了PVDF/Fe_3O_4复合纳米纤维。接着利用X射线能谱仪(EDX)和X射线衍射仪(XRD)验证了四氧化三铁在复合纳米纤维中的存在。同时使用扫描电镜(SEM)、透射电镜(TEM)和原子力显微镜(AFM)对复合纳米纤维的微观结构进行了观察与分析,探索了实验工艺参数与薄膜微观结构之间的关系,发现了较高的浓度将导致纤维的平均直径增大;直接包覆法制得的复合纳米纤维的平均直径在150~200nm,溶胶凝胶法制得的复合纳米纤维的平均直径在30~50nm。除此之外,还分析比较了两种方法制备的复合纳米纤维之间的形貌和内在结构的区别,发现采用溶胶凝胶法比直接包覆法能够更加有效的改善四氧化三铁团聚的现象。
     然后,利用热重实验分析了复合纳米纤维中四氧化三铁的含量。实验表明:四氧化三铁的实际含量与理论含量相近,说明四氧化三铁很好结合到了纳米纤维中。与此同时,本论文对复合纳米纤维的表面粗糙度进行了分析。
     最后,通过磁性实验观察分析了复合纳米纤维的磁性性能。发现纳米复合纤维的饱和磁化强度随浓度的增加而加大,而且溶胶凝胶法制备的纳米纤维的饱和磁化强度明显要高于直接包覆法制备的复合纳米纤维;两种方法制备的复合纳米纤维的剩磁也同饱和磁化强度一样具有同样的规律;两种方法制备的复合纳米纤维的矫顽力则保持不变,均为38Oe,这说明矫顽力和四氧化三铁的浓度无关,只与物质有关。
The issue is the use of home-made device to prepare the nanofiber from polyvinylidene fluoride (PVDF) and iron oxide Fe_3O_4 (magnetite), and the use of the modern analytical instruments to study the structure and related performance of nanofibers. The issue further promotes the development of magnetite nano-materials and provides a certain basis for their application.
     In this paper, after preparing the nano iron oxide Fe_3O_4 (magnetite) by chemical precipitation, it prepares the PVDF/Fe_3O_4 nanofibers by the two methods that are direct coating method and sol-gel method. Then, it uses X-ray spectrometer (EDX) and X-ray diffraction (XRD) to verify the existence of iron oxide Fe_3O_4 (magnetite). At the same time, it uses scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscope (AFM) to observe and analyze the micro-structure of the nanofibers and explore the relationship between the experimental parameters and nanofiber's microstructure. The discovery is that the average diameter of nanofibers will increase because of the increasing of consistence; the average diameter of nanofibers by the direct coating method was 150~200nm, but the average diameter of nanofibers by the sol-gel was 30~50nm. In addition, it also analyzed the distinction of appearance and internal structure between nanofibers from the different method and found that sol-gel method can be more effective to improve the phenomenon of magnetite reunion than the direct coating method.
     Then, the TG experiment analyzed the content of iron oxide Fe_3O_4 (magnetite) in nanofibers. Experiments showed that: the actual content of iron oxide Fe_3O_4 (magnetite) was similar to the theoretic content, which told us iron oxide Fe_3O_4 (magnetite) mostly combining with PVDF. At the same time, the surface roughness of nanofibers was analyzed.
     Finally, through magnetic experiment, it analyzed the magnetic performance of the nanofibers. It found that nanofibers' saturation magnetization intensity was increasing with the increasing of the consistence, and nanofibers' from the sol-gel saturation magnetization intensity was obviously much higher than that prepared by direct coating; the remanence of the nanofibers from the two kinds of method had the same laws with saturation magnetization intensity; nanofibers coercivity remained unchanged and 38Oe, which showed that nanofibers coercivity had nothing to do with the consistence of iron oxide Fe_3O_4 (magnetite), but was related to the materials.
引文
1.Grzeta B.,Ristic M.,Nowik I.,et al.Formation of nanocrystalline magnetite by thermal decomposition of iron choline citrate[J].Alloys Compd.,2002,334:304-306
    2.Sun Z.X.,Su F.W.,Forsling W.,et al.Surface characteristics of magnetite in aqueous suspension[J].Colloid Interface Sci.,1998,197:151
    3.Kucza W..Electrostatically driven charge-ordering in magnetite below the verwey temperature[J].Solid State Sci.,2001,118:401-402
    4.Skumryev V.,Blythe H.J.,Cullen J.,et al.AC susceptibility of a magnetite crystal[J].J Magn Magn Mater,1999,515:196-197
    5.Ljiri Y.,Borchers J.A.,Erwin R.W.,et al.Role of the antiferromagnet in exchange-biased Fe_3O_4/CoO superlattices[J].Appl Phys,1998,83(11):6882-6884
    6.Bandow S.,Kimura K.,Kon-no K.,et al.Magnetic properties of magnetite ultrafine particles prepared by microemulsion method[J].Jpn J Appl Phys,1987,26(5):713-717
    7.Goya G.F.,Berquo T.S.,Fonseca F.C..Static and dynamic magnetic properties of spherical magnetite nanoparticles[J].Appl.Phys.,2003,94(5):3520-3528
    8.都有为,徐明祥,吴坚等.镍超微颗粒的磁性[J].物理学报,1992,41(1):149-154
    9.高勇.纳米材料的性能及其制备技术[J].兵器材料科学与工程,1997,20(6):64-71
    10.赵治贞.电纺制备聚偏氟乙烯超细纤维膜及性能研究[D]:[硕士学位论文].天津:天津大学,2004
    11.吴大诚,杜仲良,高绪珊.纳米纤维[M].北京化学工业出版社.2003,9
    12.章新兵,许民,龙小艺.纳米纤维的研究进展[J].江西化学.2004,3:24-30
    13.宗亚宁,喻红芹.纳米纺织纤维的制造技术[J].中原工学院学报.2003,14(4):56-60
    14.Norris ID,Shaker MM,Ko FK,et al.Electrostatic fabrication of ultrafine conducting fibers:polyaniline/polyethylene oxide blends[J].Synthetic Metals 2000,114(2):109-114
    15.Peter P.T,柯勤飞,Culloch J.G.W.纳米纤维在非织造材料中应用的现状与未来[J].产业用纺织.2005,1:36-40
    16.CSPM4000扫描探针显微镜说明书[Z].广州本原纳米仪器有限公司
    17.朱杰,孙润广.原子力显微镜的基本原理及其方法学研究[J].生命科学仪器.2005,3(1):22-26
    18.Hongfan Guo,Hong Zhu,Haiyan Lin,et al.Polyaniline/Fe3O4 nanocomposites synthesized under the direction of cationic surfactant.Materials Letters,2008,62:2196-2199
    19.王煦漫,张彩,古宏晨.包覆油酸的Fe_3O_4纳米粒子的制备[J].精细化工,2007,24:733-736
    20.王煦漫,张彩宁,古宏晨.Fe_3O_4水基磁分散液的制备研究[J].化学世界,2007,8:453-455
    21.林本兰,沈晓冬,崔升.纳米四氧化三铁磁性微粒的表面有机改性[J].无机盐工业,2006,38:19-21
    22.朱愉洁,文晨,朱华章,等.聚偏氟乙烯/TiO_2杂化膜的结构与性能研究[J].天津工业大学学报,2008,27:64-67
    23.Fong H,Chun I,Reneker D H.Beaded nanofibers formed during electrospinning[J].Polymer,1999,40(16):4585-4592
    24.Siddheswaran R.,Sankar R.,Babu M.R.Preparation and charaterization of ZnO nanofibers by electrospinning[J].Cryst.res.Technol.,2006,41:446-449
    25.马非非,徐亚明.扫描电镜的原理及其在纤维物证鉴定方面的应用[J].中国纤检,2008,5:30-31
    26.方克明,邹兴,黄浪,等.纳米材料微观结构的透射电镜和高分辨电镜表征技术[J].纳米器件与技术,2005(3):26-29
    27.Xu D P,Wang Y T,Yang H,et al.Anomalous strains in the cubic2phase GaN films grown on GaAs(001)by metalorganic chemical vapor deposition[J].Journal of Applied Physics,2000,88(6):3762-3764
    28.Lu Y,Liu X L,Lu D C,et al.The growth morphologies of GaN layer on Si(111) subst rate[J].Journal of Crystal Growth,2003,247(1):91-98
    29.许振嘉.半导体的检测与分析[M].北京:科学出版社,2007:142-146,172-176
    30.Fewster P F,Andrew N L,Hol Y V,et al.X-ray diffraction from polycrystalline multilayers in grazing-incidence geometry:measurement of crystallite size depth distribution[J].Physics Review:B,2005,72(17):174105-174116
    31.Fewster P F,Andrew N L,Foxon C T.Microst ructure and composition analysis of group Ⅲ nit rides by X-ray scattering[J].Journal of Crystal Growth,2001,230(34):398-404
    32.Fewster P F,Andrew N L.St rain analysis by X-ray diffraction[J].Thin Solid Films,1998,319(1):1-8
    33.Raoux S,Jordansweet J L,Kellock A J.Crystallization properties of ult rat hin phase change films[J].Journal of Applied Physics,2008,103(11):11431021-11431027
    34.Sciti D,Guicciardi S,Celotti G,et al.Analysis of residual stresses in ternary elect roconductive composites[J].Applied Physics:A,2006,82(2):317-324.
    35.Birch J,Sundgren J E,Fewster P F.Measurement of the lattice parameters in the individual layers of single crystal superlattices[J].Journal of Applied Physics,1995,78(11):6562-6568.
    36.周元俊,谢自力,张荣,等.薄膜材料研究中的XRD技术[J].微纳电子技术,2009,46(2):108-114
    37.章永化,陈守明,陈建华,等.纳米FeO3O_4/聚苯乙烯均匀分散体系的制备及结构[J].高等学校化学学 报,2003,24(9):1717-1720
    38.娄敏毅,王德平,黄文旵,等.纳米Fe_3O_4磁性粒子合成过程中分散体系的影响[J].建筑材料学报,2005,8(2):169-173
    39.窦永华,张玲,古宏晨.单分散Fe_3O_4纳米粒子的合成、表征及其自组装[J].功能材料,2007,1(38):119-122
    40.Sun S H,Zeng H,Robinson D B,et al.[J].J Am Chem Soc,2004,126:273
    41.Rockenberger J,Scher E C,Alivisatos A P.[J].J Am Chem Soc,1999,121:11595
    42.Sun S H,Zeng H.[J].J Am Chem Soc,2002,124:8204
    43.Hyeon T,Lee S S,Park J,et al.[J].J Am Chem Soc,2001,123:12798
    44.K.P.Pramoda,Tianxi Liu,Zhehui Liu,et al.Thermal degradation behavior of polyamide 6/clay nanocomposites[J].Polymer Degradation and Stability,2003,81:47-56
    45.吴大诚,杜仲良,高绪珊.纳米纤维[M].北京化学工业出版社.2003,9
    46.章新兵,许民,龙小艺.纳米纤维的研究进展[J].江西化学.2004,3:24-30
    47.陈英飞,章海军,张冬仙.原子力显微镜在纳米粗糙度测量中的应用[J].光学仪器,2003,25(4):225-229
    48.韩贤武,陈小安,杨学恒,等.基于原子力显微镜的纳米级表面粗糙度[J].重庆大学学报(自然科学版),2007,30(2):5-8
    49.Peter P.T,柯勤飞,Culloch J.G.W.纳米纤维在非织造材料中应用的现状与未来[J].产业用纺织,2005,1:36-40
    50.汪昆华,罗传秋,周啸.聚合物近现代仪器分析[M].1991,9(1).24-30
    51.吴璧耀,张超灿,章文贡,等.有机-无机杂化材料及其应用[M].北京化学工业出版社:2005.7
    52.欧育湘,吕连英,吴俊浩.原位插层聚合PA6/OMMT纳米复合材料的性能[J].工程塑料应用.2004,32(10):13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700