基于双面金属包覆波导中古斯汉欣效应的位移传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
古斯汉欣位移最早在1947年被提出。其描述的是全反射过程中,反射光会经历一个侧向位移,而从非几何光学指出的反射点出射。自从古斯汉欣效应提出以来,关于其产生原因和相关属性的理论研究不断发展,同时发现了古斯汉欣位移在不同情况下的增强效应。
     基于以下几个因素,本文提出了基于双面金属包覆波导中古斯汉欣效应的位移传感方法。首先,反射光经历的古斯汉欣位移对于导波层厚度具有很高的灵敏度。其次,双面金属包覆波导中古斯汉欣位移的增强效应非常显著,达到几百微米,如果利用一维位置敏感探测器进行观测,可以获得极高的探测精度。同时,亚毫米尺度的双面金属包覆波导中的超高阶导模对导波层厚度也具有极高的灵敏度,这进一步增强了最终的传感精度。最后,观测古斯汉欣效应与入射光能量波动无关,使得传感器的信号噪声得以降低。本文利用双面金属包覆波导的电磁场模型对于其中的导波模式进行了分析,并利用静态相位法和高斯光束数值模拟方法对双面金属包覆波导中的古斯汉欣位移增强效应进行了理论计算。由此,推导出了增强的古斯汉欣位移对导波层厚度变化的灵敏度,并进行了定量的数值模拟。而后,本文给出了具体的传感器设计和实验方案,在实验中验证了数值模拟的结果。
     随着双面金属包覆波导中古斯汉欣位移的增强效应被越来越多的应用于光器件的设计当中,进一步认识反射光束在发生古斯汉欣位移时的具体行为十分必要。因此,本文基于以往对双面金属包覆波导中古斯汉欣位移的研究,对反射光斑内的能量分布进行了高斯光束数值模拟。我们发现,当古斯汉欣位移被增强到束腰宽度的尺度,即出现了明显的形变,其表现为反射光斑内的能量分布出现双峰结构。这和以往对于其他多层结构表面的古斯汉欣位移的研究结果是非常相似的。为了直观的认识反射光斑能量分布的演化,我们利用CCD直接观测了波长调谐下反射光斑能量分布的变化,实验结果与理论分析十分吻合。光束形变的研究对于深入认识古斯汉欣位移以及基于此的光器件设计具有建设性。
Goos-H?nchen effect was first discovered in 1947. It describes a phenomenon that the reflected beam in total reflection experiences a lateral shift from the incident point. Since it was discovered, the researches regarding the intrinsic reason of GH shift and its property have being reported continuously. Meanwhile, researchers have found the enhancement effect of GH shift under various conditions.
     We present the displacement sensing using GH shift in the Double Metal Cladding Waveguide (DMCW) based on the following factors: Firstly, the GH shift of reflected beam is sensitive to the thickness change of guiding layer. Then, the enhancement effect of GH shift in DMCW is significant, which research a scale of several hundred microns. If a one dimensional Position Sensitive Detector (PSD) is used to monitoring the GH shift, a very high degree of accuracy can be obtained. At the same time, the ultra-high modes in the sub-millimeter scale DMCW are highly sensitive to the thickness change of guiding layer. Finally, the energy fluctuation of incident light will not affect the proposed sensor since the GH shift is irrelevant to the incident energy. In this thesis, we begin the electromagnetic field model of DMCW to analyze the guided modes. Further, Stationary Phase method and Gauss Beam model are applied in the theoretical calculation to evaluate the enhancement effect of GH shift. The sensitivity of proposed sensor is derived from the previous analysis, and numerical simulation is performed to get the quantitative result. After that, we carry out the experiment based on the parameters in the simulation. The experimental result shows good accordance to the theoretical prediction.
     As the enhancement effect of GH shift in DMCW is applied to optical device design more frequently, it is necessary to further understand the beam behavior during the GH shift. Therefore, we use the Gauss Beam model to simulate the practical energy distribution inside the reflected beam spot. We find from the simulation that when the GH shift is enhanced to the scale of beam waist width, obvious beam distortion appears, the reflected spot changes into a double-peak shape. This is very similar to previous researches about the GH shift on multilayered structures. In order to observe the evolution of the reflected beam spot, we use CCD to monitor the reflected beam during wavelength tuning. Experimental result turns out to be good verification to our theoretical analysis. The research regarding beam distortion is a contribution to the understanding of GH shift and the related optical device designs.
引文
[1].曹庄琪,《导波光学》,科学出版社,2007.
    [2]. F. Goos and H. Hachen,“Ein neuer und fundamentaler Versuch zur Totalreflexion,”Ann. Phys. (Leipzig) (1947) 1, 333-346
    [3]. F. Goos and H. Hanchen,“Neumessung des Strahlversetzungseffektes bei Totalreflexion,”Ann. Phys., (1949), 5, 251.
    [4]. K. Artmann,“Berechnung der Seitenversetzung des totalreflektieren Strahles,”Ann. Phys., (1948), 2, 87.
    [5]. R. H. Renard,“Total reflection: a new evaluation of the Goos-H?nchen shift,”J. Opt. Soc. Am., (1964), 54, 1190.
    [6]. M. McGuirk and C. K. Carniglia,“An angular spectrum representation approach to the Goos-H?nchen shift,”J. Opt. Soc. Am., (1977), 67, 103.
    [7]. T. Tamir and H. L. Bertoni,“Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,”J. Opt. Soc. Am., (1971), 61, 1397.
    [8]. B. R. Horowitz and T. Tamir,“Lateral Displacement of a Light Beam at a Dielectric Interface,”J. Opt. Soc. Am., (1971), 61, 586.
    [9]. V. Shah and T. Tamir,“Absorption and lateral shift of beams incident upon lossy multilayered media,”J. Opt. Soc. Am. A, (1983), 73, 37.
    [10]. C.-W. Hsue and T. Tamir,“Lateral displacement and distortion of beams incident upon a transmitting-layer configuration,”J. Opt. Soc. Am. A, (1985), 2, 978.
    [11]. T. Tamir,“Nonspecular phenomena in beam fields reflected by multilayered media,”J. Opt. Soc. Am. A, (1986), 3, 558.
    [12]. J. L. Birman, D. N. Pattanayak, and A. Puri,“Prediction of a Resonance-Enhanced Laser-Beam Displacement at Total Internal Reflection in Semiconductors,”Phys. Rev. Lett. (1983), 50, 1664.
    [13]. F. Schreier, M. Schmitz, O. Bryngdahl,“Beam displacement at diffractive structures under resonance conditions,”Opt. Lett. (1998), 23, 576.
    [14]. C. F. Li, Q. Wang,“Prediction of simultaneously large and opposite generalized Goos-H?nchen shifts for TE and TM light beams in an asymmetric double-prism configuration,”Phys. Rev. E, (2004), 69, 055601(R).
    [15]. C. F. Li and X. Y Yang,“Thin-Film Enhanced Goos–H?nchen Shift in Total Internal Reflection,”Chin. Phys. Lett., (2004), 21, 485.
    [16]. L. G. Wang,“Beam Displacement in a Layered Configuration due to Formation of Standing Waves,”Chin. Phys. Lett., (2006), 23, 113.
    [17]. H. Lai and S. Chan,“Large and negative Goos-H?nchen shift near the Brewster dip on reflection from weakly absorbing media,”Opt. Lett., (2002), 27, 680.
    [18]. L. Wang, H. Chen, and S. Zhou,“Large negative Goos-H?nchen shift from a weakly absorbing dielectric slab,”Opt. Lett., (2005), 30, 2936.
    [19]. N. F. Declercq, J. Degrieck, R. Briers, et al.,“Theoretical verification of the backward displacement of waves reflected from an interface having superimposed periodicity,”Appl. Phys. Lett., (2003), 82, 2533.
    [20]. C. F. Li,“Negative Lateral Shift of a Light Beam Transmitted through a Dielectric Slab and Interaction of Boundary Effects,”Phys. Rev. Lett. (2003), 91, 133903.
    [21]. H. M. Lai, F. C. Cheng, and W. K. Tang,“Goos-H?nchen effect around and off the critical angle,”J. Opt. Soc. Am. A, (1986), 3, 550.
    [22]. H. M. Lai, C. W. Kwok, Y. W. Loo, et al.,“Energy-flux pattern in the Goos-H?nchen effect,”Phys. Rev. E, (2000), 62, 7330.
    [23]. E. Pfleghaar, A. Marseille, and A. Weis,“Quantitative investigation of the effect of resonant absorbers on the Goos-H?nchen shift,”Phys. Rev. Lett., (1993), 70, 2281.
    [24]. W. J. Wild and C. L. Giles,“Goos-H?nchen shifts from absorbing media,”Phys. Rev. A, (1982), 25, 2099.
    [25]. J. J. Cowan and B. Anicin,“Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection,”J. Opt. Soc. Am., (1977), 67, 1307.
    [26]. J. A. Kong, B.-L. Wu, and Y. Zhang,“Lateral displacement of a Gaussian beamreflected from a grounded slab with negative permittivity and permeability,”Appl. Phys. Lett., (2002), 80, 2084.
    [27]. J. Broe and O. Keller,“Quantum-well enhancement of the Goos-H?nchen shift for p-polarized beams in a two-prism configuration,”J. Opt. Soc. Am. A, (2002), 19, 1212.
    [28]. X. Hu, Y. Huang, W. Zhang, D. K. Qing and J. Peng,“Opposite Goos-H?nchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials,”Opt. Lett., (2005), 30, 899.
    [29]. D. Felbacq, A. Moreau and R. Smaali,“Goos- H?nchen effect in the gaps of photonic crystals,”Opt. Lett., (2003), 28, 1633.
    [30]. A. Puri and J. L. Birman,“Goos-H?nchen beam shift at total internal reflection with application to spatially dispersive media,”J. Opt. Soc. Am. A, (1986), 3, 543.
    [31]. F. Bretenaker, A. Le Floch, and L. Dutriaux,“Direct measurment of optical Goos- H?nchen shift,”Phys. Rev. Lett., (1992), 68, 931.
    [32]. C. Bonnet, D. Chauvat, O. Emile, et al.,“Measurement of positive and negative Goos-H?nchen effects for metallic gratings near Wood anomalies,”Opt. Lett., (2001), 26, 666.
    [33]. H. Gilles, S. Girard and J. Hamel,“Simple technique for measuring the Goos-H?nchen effect with polarization modulation and a position-sensitive detector,”Opt. Lett., (2002), 27, 1421.
    [34]. D. J. Rhodes and C. K. Carniglia,“Measurement of the Goos-H?nchen shift at grazing incidence using Lloyd's mirror,”J. Opt. Soc. Am., (1977), 67, 679.
    [35]. B. M. Jost, A. R. Al-Rashed, and B. E. A. Saleh,“Observation of the Goos-H?nchen Effect in a Phase-Conjugate Mirror,”Phys. Rev. Lett., (1998), 81, 2233.
    [36]. O. Emile, T. Galstyan, A. Le Floch, and F. Bretenaker,“Measurement of the Nonlinear Goos-H?nchen Effect for Gaussian Optical Beams,”Phys. Rev. Lett., (1995), 75, 1511.
    [37]. R. Schlesser and A. Weis,“Light-beam deflection by cesium vapor in atransverse-magnetic field,”Opt. Lett., (1992), 17, 1015.
    [38]. T. Sakata, H. Togo and F. Shimokawa,“Reflection-type 2×2 optical waveguide switch using the Goos–H?nchen shift effect,”Appl. Phys. Lett., (2000), 76, 2841.
    [39]. X. Yin, L. Hesselink, Z. Liu, et al.“Large positive and negative lateral optical beam displacements due to surface plasmon resonance,”Appl. Phys. Lett., (2004), 85, 372.
    [40]. G. Abbate, P. Maddalena, and E. Santamato, P. Mormile, and G. Pierattini,“Observation of lateral displacement of an optical beam enhanced by surface plasmon excitation,”J. Mod. Opt. (1988), 35, 1257.
    [41]. S. L. Chuang,“Lateral shift of an optical beam due to leaky surface-plasmon excitations,”J. Opt. Soc. Am. A. (1986), 3, 593-599.
    [42]. P. Mazur, and B. Djafari-Rouhani,“Effect of surface polaritons on the lateral displacement of a light beam at a dielectric interface,”Phys. Rev. B. (1984), 30, 6759.
    [43]. X. Liu, Z. Cao, P. Zhu, Q. Shen, and X. Liu,“Large positive and negative lateral optical beam shift in prism-waveguide coupling system,”Phys. Rev. E (2006), 73, 056617.
    [44]. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao,“Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,”Opt. Lett. (2007), 32, 1432-1434.
    [45]. T. Hashimoto and T. Yoshino,“Optical heterodyne sensor using the Goos - Haenchen shift,”Opt. Lett. (1989), 14, 913-.
    [46]. H. Lu, Z. Cao, H. Li, and Q. Shen,“Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide,”Appl. Phys. Lett. (2004), 85, 4579-4581.
    [1].曹庄琪,《导波光学》,科学出版社,2007.
    [2]. R.Ulrich, Theroy of Prism-Film Coupler by Plane-Wave Analysis, J.Opt.Soc.Ammer., 1970, 60(10):1337~1349
    [3]. Li H., Cao Z. Lu H., and Shen Q., Free-space coupling of light beam into a symmetrical metal-cladding optical waveguide, Appl. Phys. Lett., 2003, 83(14):2757~2759
    [4]. T.Tamir and S.T.Peng, Analysis and design of grating couplers, Appl.Phys., 1977,14(3):235~253
    [5]. J.T.Boya and D.B.Anderson., Radiation Pattern of an End-Fire Optical Waveguide Coupler. Opt.Commun., 1975,13(3):353~358
    [6].邓元龙,姚建铨,阮双琛,孙秀泉,“大功率激光光纤透镜耦合系统设计”,光电技术应用,2005,Vol. 20(3):p7~9
    [7]. Uematsu Y , Ozeki T , Unno Y . Efficient power coupling between an MH L ED and a taper ended multimode fiber[J ] . IEEE J . Quantum Electron. , 1979, QE215 : 86~92.
    [8]. DiVita P , Rossi U. Theory of power coupling between multimode optical fibers [ J ] . Opt . Quantum Electron. ,1978 , 10 : 107~117
    [9]. P.K.Tien and R.J Martin,Experiments on Light Waves in a Thin Tapered Film and a New Lightwave Coupler,Appl. Phy.Lett., 1971, 18(9):398~400.
    [10]. Lu H., Cao Z., Li H., and Shen Q., Study of ultrahigh-order modes, Appl. Phys. Lett.,2004, 85(21):1~3
    [1].曹庄琪,《导波光学》,科学出版社,2007.
    [2]. .Sergio B. Mendes and S. Scott Saavedra,“Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory”, App. Opt., (2000), 39, 612.
    [3]. Y. J. IM and C. M. KIM,“Complex angle of incidence for planar optical waveguide analysis”, Opt. Quantum Electron, (1997), 29, 877.
    [4]. Yi-Zhen Lin, Jing-Hong Zhan and Shiao-Min Tseng,“A new method of analyzing the light transmission in leaky and absorbing planar wavegudie”, IEEE Photonics Technol. Lett., (1997), 9, 1241.
    [5]. J. F. Offersgaard,“Waveguides formed by multiple layers of dielectric, semiconductor, or metallic media with optical loss and anisotropy”, J. Opt. Soc. Am. A, (1995), 12, 2122.
    [6]. Ajoy K. Ghatak, K. Thyagarajan, and M. R. Shenoy,“Numerical Analysis of planar optical waveguide using matrix approach”, J. Lightwave Tech., (1987), 5, 660.
    [7]. G. L. Mitchell,“Absorption spectroscopy in scattering samples using integrated optics”, J. Quantum Electron., (1977), 13, 173.
    [8]. A. Reisinger,“Characteristics of optical guided modes in lossy waveguides”, App. Opt., (1973), 12, 1015.
    [9]. X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu,“Large positive and negative lateral optical beam shift in prism-waveguide coupling system”, Phys. Rev. E, (2006), 73, 056617.
    [10]. T. Okamoto, M. Yamamoto, and I. Yamaguchi,“Optical waveguide absorption sensor using a single coupling prism,”J. Opt. Soc. Am. A, (2000), 17, 1880.
    [11]. K. Artmann,“Berechnung der Seitenversetzung des totalreflektieren Strahles”, Ann. Phys., (1948), 2, 87.
    [12]. F. Schreier, M. Schmitz, O. Bryngdahl,“Beam displacement at diffractive structures under resonance conditions”, Opt. Lett., (1998), 23, 576.
    [13]. T. Tamir and H. L. Bertoni,“Lateral Displacement of Optical Beams at Multilayered and Periodic Structures”, J. Opt. Soc. Am., (1971), 61, 1397.
    [14]. C. F. Li, Q. Wang,“Prediction of simultaneously large and opposite generalized Goos-H?nchen shifts for TE and TM light beams in an asymmetric double-prism configuration,”Phys. Rev. E, (2004), 69, 055601.
    [15]. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao,“Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,”Opt. Lett. 32, 1432-1434 (2007).
    [16]. H. Gilles, S. Girard, and J. Hamel,“Simple technique for measuring the Goos-Hanchen effect with polarization modulation and a position-sensitive detector,”Opt. Lett. 27, 1421-1423 (2002)
    [1]. J. Czarske, J. Mobius and K. Moldenhauer,“Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces,”Appl. Opt. 44, 5180-5189 (2005).
    [2]. E. B. Cooper, E. R. Post, S. Griffith, J. Levitan, S. R. Mnanlis, M. A. Schmidt, and C. F. Quate, "High-resolution micromachined interferometric accelerometer," Appl. Phys. Lett. 76, 3316-3318 (2000).
    [3]. H. Shuji, S. Ichiro, T. Fuhito, and H. Rei, Curr. Appl. Phys., 2(2002) 465.
    [4]. L. Seojoon, M. Takashi, T. Yasuhiro, and T. Satoru, J. Mater. Process. Technol., 127 (2002) 286.
    [5]. T. Renu, G. S. Pati, K. Arvind, and K. Singh,“In-plane displacement measurement using a photorefractive speckle correlator”, Opt. Commun., 149(1998) 355.
    [6]. G. L. Cloud, X. Ding, and B. B. Raju,“Real-time digital speckle interferometry to measurecrack length," Experimental Techniques”, Exp. Tech., 26 (2002)19.
    [7]. A. Otto., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., 216 (1968) 398.
    [8]. E.Kretschmann, Z.Physik,“The determination of the optical con-. stants of metals by excitation of surface plasmons”, 248 (1971)313.
    [9]. Jian Shi, Zhuangqi Cao, Jun Zhu, and Qishun Shen,“Displacement measurement in real time using the attenuated total reflection technique”, Appl. Phys. Lett., 84 (2003) 3253.
    [10]. F. Chen, Z. Cao, Q. Shen, and X. Deng,“Nanoscale displacement measurement in a variable-air-gap optical waveguide,”Appl. Phys. Lett. 88, 161111(2006).
    [11]. R. Knobel,“Piezoelectric displacement sensing with a single-electron transistor”, Appl. Phys. Lett., 81 (2002) 2258.
    [12]. M. P. Blencowe and M. N. Wybourne,“Sensitivity of a Micromechanical Displacement Detector Based on the Radio-Frequency Single-Electron Transistor”, Appl. Phys. Lett., 77(2000) 3845.
    [13]. A. D. Armour, M. P. Blencowe, and K. C. Schwab,“Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box”, Phys. Rev. Lett., 88 (2002) 148301.
    [14]. A. N. Cleland, J. S. Aldridge, D. C. Driscoll, and A. C. Gossard,“A Single Electron Transistor as a Radio Frequency Mixer”, Appl. Phys. Lett., 81 (2002) 1699.
    [15]. Henry Helvajian, Microengineering Aerospace Systems, chapter1, AIAA, (1999) pp1-30.
    [16].黄玉,《扭杆弹簧倾斜仪与二维垂直摆倾斜仪研究》,[硕士学位论文],湖北武汉华中科技大学图书馆,华中科技大学,2003.
    [17]. V. Iafolla and S. Nozzoli,“Italian spring accelerometer (ISA) a high sensitive accelerometer for‘BepiColombo’ESA CORNERSTONE”, Planet. Space Sci., 45, (2001)1.
    [18]. C. Chao, Z. Wang, and W. Zhu,”Modulated laser interferometer with picometer resolution for piezoelectric characterization”, Rev. Sci. Instrum., 75 (2004) 4642.
    [19]. J. F. Li, P. Moses, and D. Viehland,“Simple, high-resolution interferometer for The measurement of frequency-dependent complex piezoelectric responses in ferroelectric ceramics”, Rev. Sci. Instrum., 66 (1995) 215.
    [20]. W. Y. Pan and L. E. Cross,“A Sensitive Double Beam Laser Interferometer for StudyingHigh-Frequency Piezoelectric and Electrostrictive Strains”, Rev. Sci. Instrum. 60(1989) 2701.
    [21]. Jian Shi, Zhuangqi Cao, Jun Zhu, and Qishun Shen,“Displacement measurement in real time using the attenuated total reflection technique”, Appl. Phys. Lett., 84 (2003) 3253.
    [22]. A. Otto., "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys., 216 (1968) 398.
    [23]. W. P. Chen and J. M. Chen,”Use of surface plasma waves for determination of the thickness and optical. constants of thin metallic films”, J. Opt. Soc. Am. 71 (1981) 189.
    [24]. F. Chen, Z. Cao, Q. Shen, and X. Deng,“Nanoscale displacement measurement in a variable-air-gap optical waveguide,”Appl. Phys. Lett. 88, 161111(2006).
    [25]. W. P. Chen and J. M. Chen,“Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,”J. Opt. Soc. Am. 71, 189- (1981).
    [26].微位移的平面光波导测量方法;陈凡;曹庄琪;沈启舜;邓晓旭;冯耀军CN200510023454.1
    [27].实现倍角转动的转台;邵加峰;沈启舜;曹庄琪;李红根;邓晓旭CN200410067137.5
    [28]. P. K. Tien, R. Ulrich, and R. J. Martin,“Modes of propagating light waves in thin deposited semiconductor films,”Appl. Phys. Lett. 14, 291-294 (1969).
    [1]. X. B. Liu, Z. Q. Cao, P. F. Zhu, Q. S. Shen, and X. M. Liu,“Large positive and negative lateral optical beam shift in prism-waveguide coupling system”, Phys. Rev. E, (2006), 73, 056617.
    [2]. L. Chen, Z. Q. Cao, F. Ou et al,“Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides”, Opics Letters, (2007), 32, 1432.
    [3]. T. Yu, H. Li, Z. Cao, Y. Wang, Q. Shen, and Y. He, "Oscillating wave displacement sensor using the enhanced Goos–H?nchen effect in a symmetrical metal-cladding optical waveguide," Opt. Lett. 33, 1001-1003 (2008)
    [4]. Yi Wang, Honggen Li, Zhuangqi Cao, Tianyi Yu, Qishun Shen, and Ying He, " Oscillating wave sensor based on the Goos–H?nchen effect",Appl. Phys. Lett. 92, 061117 (2008);
    [5]. Y. Wang, Z. Cao, T. Yu, H. Li, and Q. Shen, "Enhancement of the superprism effect based on the strong dispersion effect of ultrahigh-order modes," Opt. Lett. 33, 1276-1278 (2008)
    [6]. T. Tamir and H. L. Bertoni,“Lateral Displacement of Optical Beams at Multilayered and Periodic Structures,”J. Opt. Soc. Am., (1971), 61, 1397.
    [7]. R. E. Klinger, C. A. Hulse, C. K. Carniglia, and R. B. Sargent, "Beam displacement and distortion effects in narrowband optical thin-film filters," Appl. Opt. 45, 3237-3242 (2006)
    [8]. M. McGuirk and C. K. Carniglia, "An angular spectrum representation approach to the Goos-H?nchen shift," J. Opt. Soc. Am. 67, 103- (1977)
    [9]. W. P. Chen and J. M. Chen, "Use of surface plasma waves for determination ofthe thickness and optical constants of thin metallic films, " J. Opt. Soc. Am. 71, 189- (1981).
    [10]. P. K. Tien, R. Ulrich, and R. J. Martin, "Modes of propagating light waves in thin deposited semiconductor films, " Appl. Phys. Lett. 14, 291-294 (1969).
    [11]. Y. Feng, Z. Cao, Q. Shen, and F. Chen, "Effect of nonparallelism of guiding air-liquid layers on the reflection dip in attenuated total reflection," Appl. Opt. 46, 58-60 (2007)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700