Ti-Ni系储氢电极合金的微结构和电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在对国内外Ti基储氢合金材料的研究进展进行全面综述的基础上,确定以抗腐蚀能力强、抗粉化性能好、合金组分数低、在实际生产中使用更为方便的Ti-Ni系合金为研究对象。本研究采用机械合金化法,以前过渡族金属和后过渡族金属Ti、Ni为基础进行机械球磨制备了TiNi、Ti_3Ni_2、Ti_2Ni三种二元非晶合金粉末,运用XRD、RDF、SEM、DSC等材料研究方法和恒电流充放电、循环伏安、电化学阻抗和阶跃等电化学测试方法对不同球磨态的Ti-Ni系合金进行了结构与电化学性能的系统研究,并从中选出具有较高放电容量且综合性能较好的球磨70h的合金样品,进一步研究了退火热处理对该Ti-Ni系合金相结构与电化学性能的影响,力求进一步提高合金的综合电化学性能。
     对三种合金的XRD分析显示,在机械合金化的过程中,Ti逐渐向Ni里扩散,二者在机械力的作用下融合形成合金。球磨10h后形成了部分TiNi、Ti_2Ni、Ti_3Ni_2合金,球磨70h后形成了典型的非晶漫散射峰,合金转变为非晶相。由XRD数据进行RDF和g(r)计算表明,球磨70h后合金具有典型的长程无序、短程有序的非晶结构。采用DSC测量了不同球磨时间TiNi合金粉末放热曲线。对于球磨30h的粉末,由于在球磨过程中积累的应变能的释放,约从2000C到4000C出现了一个宽的放热平台。对于球磨70h、100h的合金粉末,基体变成了非晶态,在加热过程中非晶晶化,约在530℃其DSC曲线上有一个明显的相变点。晶化过程中应力完全释放,形成以Ti_2Ni、TiNi相为主的多晶相组织。
     随着球磨时间的增加,合金非晶化程度增大,从而导致放电容量增大。三种非晶合金中,球磨70h的Ti3Ni2合金电极的放电容量最高,为173.3mAh/g。TiNi合金电极活化困难,随充放电循环进行,放电容量不断增加,而Ti_2Ni和Ti_3Ni_2合金电极初始放电容量较高,但循环稳定性不好,放电容量逐渐降低。对球磨70h的三种非晶合金样品进行退火热处理,晶化后样品的放电容量均明显增加,其中Ti_2Ni合金电极容量高达289.2mAh/g,但循环稳定性不好,除TiNi外放电容量都急剧下降。电化学性能测试表明,合金电极的动力学性能较好,氢的氧化还原反应控制着电极反应。退火热处理及延长球磨时间可使合金电极表现出相对较好的反应活性和放电容量,所有合金电极中,Ti3Ni2的综合电化学性能较好。
In this thesis, the Ti-Ni based hydrogen storage electrode alloys were selected as the subject on the basis of precious research works on Ti based hydrogen storage alloys which have been extensively reviewed and due to its excellent resistance of corrosion,strong resistance to pulverization, low component number and can be easily used in practical application .In this research,TiNi,Ti_2Ni and Ti_3Ni_2 binary amorphous alloys were prepared by mechanical alloying with Ti and Ni. The microstructure and electrochemical properties of different as-milled Ti-Ni based hydrogen alloys were investigated systemically by means of XRD、RDF、SEM、DSC analysis and the electrochemical test methods, from which the Ti-Ni based alloys milled for 70h with the highest discharge capacity and a better overall electrode properties were selected for further study. Then the effect of annealing treatment on the phase structures and electrochemical properties of Ti-Ni based hydrogen storage alloy’s electrodes were investigated in order to improve the overall electrochemical properties of the alloys.
     The results of the study of XRD analysis indicate that Ti diffuse into Ni ,as a result, alloys formed under mechanical force during the process of mechanical alloying. After milling 10h, part alloys of TiNi,Ti_2Ni and Ti_3Ni_2 were formed,and amorphisation occured for longer milling time, after milling for 70h amorphous were formed with representative broad amorphous peak.Applied XRD data to calculate RDF and g(r) indicated that the samples after milling 70h had long-range ordering and disorder in shorter distance charceteristic.The exothermal curves of TiNi alloys powder with different milling time were measured by DSC.For powder milling 30h, there exists a wide exothermal platue from about 2000C to 4000C which cause by the relaxation of strain energy accumulated during milling. The sharp exothermal peaks appear for the powder milling for 70h and 100h which caused by crystallization of amorphous phase.The stress released completely during crystallization process and formed polycrystal phase structure with mostly TiNi and Ti_2Ni phase.
     With the ball-milling time postponement the amorphorization degree increased, thus leading to the increment of discharge capacity. The Ti3Ni2 alloy electrode for milling 70h had the maximum discharge capacity (173.3mAh/g) among three kinds of amorphous alloys. Alloy electrodes of TiNi was difficult to be activated ,which discharge capacity increased gradually during the charge-discharge cycles. Alloy electrodes of Ti_2Ni and Ti_3Ni_2 had high initial discharge capacity, but the cycling stability and discharge capacity decreased with the increase of cycle number. The crystallizations of three kinds of amorphous alloys by annealing heattreated improved their discharge capacity,and Ti2Ni alloy electrode had the maximum discharge capacity(289.2mAh/g) among those,but the cyclic capability deteriorated quickly except TiNi alloy eledtrode.The electrochemical performance tests indicated that dynamic performances of alloy electrodes were relatively preferable and the oxidation and deoxidization of hydrogen dominated electrode reaction. Annealing heattreatment and prolong ball-milling time can improve the reactive ability of alloy electrodes and among those electrodes Ti_3Ni_2 alloy electride had the best integrated electrochemical properties.
引文
[1] [英]L.O.Willarns. Hydrogen Power[M].Oxford :Pergamon Press, 1980.
    [2]申伴文.《氢与氢能》[M].北京:科学出版社,1984.
    [3] [日]大角泰章.金属水素化合物—その物性と应用—[M].化学工业出版社,1990.
    [4]朱相丽.国外储氢材料的研究现状[J].Advanced Materials Industry,2007.
    [5]郑青榕,顾安忠.储氢技术的新进展[J].新能源.2000,22(12):120-127.
    [6]鲍德佑.太阳能-氢能系统的发展前景[J].太阳能学报.1995,16(1):114-120.
    [7]胡子龙.储氢材料[M].北京:化学工业出版社,2002.
    [8]雷永泉.新能源材料[M].天津:天津大学出版社,2000.
    [9]袁华堂,邹雅冰,王一餐.储氢材料及其应用进展[J].化学通报,2004,12:891-896.
    [10] Andreas Zuttel, Hydrogen storage methods[J]. Naturwissenschaften 2004, 91:157–172
    [11] Jun wang,Armin D.On the Reversibility of Hydrogen Storage in novel Complex Hydrides[J].Business Media,Inc.Manufactured in The Netherlands.2005,11:811-816.
    [12] Robert A, Huggins. Use of Non-Aqueous Electrochemical Cells to Investigate Air-and Water-Sensitive Hydrogen Storage Materials[J]. Ionics .2004,10:327-334.
    [13] V.Meregalli, M.Parrinello. Review of theoretical calculations of hydrogen storage in carbon-based materials[J].Appl Phys, 2001,72:143-146
    [14] [日]大角太章著.金属氢化物的性能及应用[M].吴永宽,苗艳秋译.北京:化学工业出版社,1990,5.
    [15] K.jurewicz,E.frackowiak,F.beguin.Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials[J].App Phys, 2004,78:981-987.
    [16]徐光宪.稀土储氢材料[M].北京:冶金工业出版社,1995,286.
    [17]Tuillon.P.P,The Potential for metal hydrides in heat PumPing applieation [J].Less-common Met,1980,89:322
    [18]任学佑. MH/ Ni电池的发展现状[J].电源技术,1993,17(4):42
    [19] V.Guther,A.otto.Recent developments in hydrogen storage applications based on metalhydrides[J]. Alloys Comp,1999,(293/295):889-892.
    [20]郑庆元,余守志,彭亦如等.储氢合金的开发与研究进展[J].河南科学,1998,16(4):422-428.
    [21] Tetsuo Sakai,Ituki Uehara,Hiroshi Ishikawal. R&D on metal hydride materials and Ni-MH batteries in Japan[J]. Alloys Comp,1999,(293/295):762-769
    [22] Yu C Z,Lai W H,Yan G J,et.al Study of Preparation technology for high Perofrmance AA size Ni-MH batteries[J]. Alloys Comp ,1999,(293/295):784-787.
    [23] Xianyou Wang,Bing Liu,Jie Yan,et.al. Effect of state of charge on Impedance spectrum of sealed Ni-MH cells[J]. Alloys Comp,1999,(293/295):788-794.
    [24] Zhan F,Jiang L J,Wu B R,et.al. Characteristics of Ni/MH Power batteries and Its application to electric vehicles[J]. Journal of Alloys and Compounds,1999,(293/295):804-808.
    [25]谭玲生.Ni-MH电池发展的新动向[J].电池世界,1999,(2):5-81.
    [26]杨全民.贮氢合金电极材料进展[J].金属热处理学报,2000,21(2):46-491.
    [27]吴伯荣.电动车用Ni-MH动力电池[J].电源技术,2000,24(1):45-561.
    [28]郝玉.小型二次电池的现状和发展[J].电池工业,1999,4(3):114-116.
    [29]张允什.负极贮氢合金材料[J].电源技术,1996,20(1):36.
    [30]徐艳辉,陈长聘,王国元等.Ni-MH二次电池负极用贮氢合金的研究发展[J].材料科学与过程, 2002,20(1):97-103.
    [31]尹树峰,李全安,文九巴等.MH-Ni电池的发展与展望[J].有色金属,2004,2(56):52-55.
    [32]王荣明,朱义华,杨福湖.储氢材料及其载能系统[J].重庆出版社,1988,16.
    [33]颜鸣.吸氢材料[M].材料科学前沿研究.北京:航空工业出版社,1994,160-218.
    [34]黄建彬.稀土金属间化合物的吸氢性能及其应用[J].天然气化工,1981,1: 37-45.
    [35]Bwrry G D,Pasternak D,Rambach G D.Hydrogen as a future transportation fuel[J].Enery,1996,21(4): 289-303.
    [36] Hempelmann R.Localized Hydrogen Modes in LaNi//5H//x. [J]. Less-Cmon Met,1984,101:69
    [37]孙作民.结构化学[M].陕西:陕西师范大学出版社,1990.
    [38] G.Bohmholdt, E. Wicke. Physic Chem[M],NF.1987,56:133。
    [39]E.Justi,H-H.Ewe,A.W.Kalberlan,N.M.Saridakis and M.H.Schaefer[J].Energy Conversion,1970(10),183
    [40] M.W.Earl,J.D.Dunlop.Procedings of the 26th Power Sources Symposium[J],1974,24.
    [41] J.J.Willems.review of hydrogen energy[J].Philips Journal of Research.1984,19.
    [42] Tsukahara M.,Takahashi K.,Mishima T.,Sakai T.,Miyamura H.,Kuriyama N.,Uehara I.Phase structure of V-based solid solutions containing Ti and Ni and their hydrogen absorption-desorption Properties[J].Alloys ComP.,(1995),224:162-167.
    [43]高学平,卢志威,张欢,吴锋,宋德瑛.储氢材料与金属氢化物一镍电池[R].物理与新能源材料专题,2004,33:170-176.
    [44]M.H.J. Van Rijiswick.In:Hydride for Energy Storage[M].Editor:Anderson and A.J.Maeland.Oxford: Pergamon Press,1978,261.
    [45] J.J.G Willems,K.H.J.Buschow.From Permanent magnets to rechargeable hydride electrodes[J].Less- Common Met,1987,129:13-30.
    [46] J.J.G. Willems. Metal hydride electrodes stability of LaNi5-related compounds[J],Philips.Res.,1984,39(suppl.l):l-94.
    [47]王启东,吴京,陈长聘,方添水.镧镍稀土金属储氢材料[J].稀土材料.1984,3:8-13.
    [48] Y.Q.Lei,Z.P. Li,C.P Chen,J Wu,Q.D. Wang. The cycling behavior of mischmetal-nickel-based metal hydride electrodes and the effects of copper plating on their performance[J].Less-Common Met.,1991,172-174:1265-1272.
    [49] T. Sakai,T.Hazama,H. Miyamura,N.Kuriyama,A.Kato,H. Ishikawa. Rare-earth-based alloy electrodes for a nickel-metal hydride battery,J.Less-Common Met.,1991,172-174:1175-1184.
    [50]雷永泉.镍氢电池产业化开发研讨会文集[C].杭州:电子工业出版社,1996:38.
    [51] Y.Q.Lei,S.K.Zhang,G.L Lu,L.X.Chen,Q.D.Wang. Wu Influence of the material proeessing on the electrochemieal properties of cobalt-free Ml(NiMnAlFe)5 alloy[J]. Alloys Compds.,2002,330-332:861-865.
    [52] C.Iwakura,K.Ohkawa,H. Senoh,H.Inoue.Electroehemical and crystallographic characterizationof Co-free hydrogen storage alloys for use in nickel-metal hydridebatteries[J].Electrochemical.,2001,46:4383-4388
    [53] C.Iwakura,K.Ohkawa,H.Senoh,H.Inoue.A Co-free AB5-type hydrogen storage alloy for nickel-metal hydride batteries:LmNi4.0Al0.3Si0.1Fe0.6[J].Electrochem.Soc.,2002,149(4):A462-A465
    [54]马建新.合金化、热处理及磁化处理对AB5型储氢电极合金微结构与电化学性能的影响[D].杭州:浙江大学材料学博士学位论文,2002.
    [55] K.Sapru,B.Reichman,A.Reger,S.R Ovshinsky. Rechargeable battery and electrode used there in[P].USA patent,USP 4623597,1986.
    [56] Y.Q.Lei,Q.M.Yang,J.Wu,Q.D.Wang.Electrochemical behavior of Some mechanically alloyed Mg-Ni based amorphous hydrogen storage alloys[J].Phys Chem,1994,183:379-384
    [57] Y.Chen,C.Sequeira,C.P.Chen,Q.D.wang.Electrochemical properties of the ball-milled La1.8 Ca0.2Mg14Ni3+xwt% Ni composites(x=0,50,100 and 200)[J].Alloy Compds,2003,354:120-123.
    [58]M.Tsukahara,K.Takahashi,T.Mishima,T.Sakai,H.Miyamura,N.Kuriyama,I.Uehara.Metal hydride electrodes based on solid solution type alloy TiV3Nix(0≤x≤0.75)[J]. Alloys Compds,1995,226:203-207.
    [59] M.Tsukahara,K.Takahashi,T.Mishima,A.Isomura,T.Sakai. Vanadium-based solid solution alloys with three-dimensional network Structure for high capacity metal hydride electrodes[J]. Alloys Compds.,1997,253-254;583-586
    [60]朱云峰.钛钒基储氢电极合金结构和电化学性能研究[D].杭州:浙江大学材料学博士学位论文,2003.
    [61] H.G.Pan,Y.F.Zhu,M.X.Gao,Q.D.Wang.Investigation of the Structural and Electrochemical Properties of Superstoichiometric Ti-Zr-V-Mn-Cr-Ni Hydrogen Storage Alloys[J].Electrochem.Soc,2002,149:A829-A833.
    [62] Tsushio Y,Akiba E. Hydrogen desorption properties of the quaternary alloy system Mg2-XM1XNi1-YM2Y [J]. Alloy Comp,1998,246-251.
    [63] M Kandavel and S Ramaprabhu.Hydrogen storage properties of Mg-based composites prepared by reaction ball milling[J].J.Phys.2006,18:11275-11290.
    [64] H.A.Peretti,A.A.Ghilarducci,H.L.Corso.Elaboration and hydriding behavior characterization of a magnesium matrix composite containing intermetallic particles[J].Granular Matter.2001,3:121-124.
    [65] Hong Tae Whan,Kim Young Jin. Hydrogenation properties of partially remelted Mg-Ni alloys[J]. Alloy Comp,2002,43(7)1741-1747.
    [66] Nam Hoon Goo,Kyung Sub Lee. Improvement of electrode performances of Mg2Ni by mechanicalalloying [J]. Hydrogen Energy,2002,27:433.
    [67] Wei-Hong Liu,Yong-quan Lei,Da-lin Sun,et al.Charge/discharge hyteresis characteristics of an amorphous Mg50Ni50 hydride electrode[J].Journal of Shanghai University,2003,7(1):93-96.
    [68] Pebler A.Transmission electron micrscopic examination of phosphoric acid fuel cell components[C].Electrochemical Society Extended Abstracts,1984,84:839-840.
    [69] Libowitz G G. Metallic hydrides; fundamental properties and applications [J]. Journal of Physics and Chemistry of Solids,1994,55(12):1461-1470.
    [70]S.A.Cheng,Y.Q.Lei,H.Liu,Q.D.Wang.Effect of Br-on electrochemical performance of the hydrogenstorage alloy MlNi3.45(CoMnTi)1.55 electrode[J].Journal of Applied Electrochemistry.1997,27:1307-1309.
    [71] Catjahr M.A[D].PhD Thesis,Geneva Univ,1974.
    [72] Jordy C,Latroche M,Percheron-Guegan A.Achard J.C[M].USA:Phys.Chem.1994,185:119.
    [73] Wakao S,Sawa H,Nakano H et al. [J].Less Common Metals, 1987.131:311.
    [74] Schmidt R,Schlereth M,Wipf H et al [J].Phys. Condens. Matter.1989,1:2473.
    [75]赵建民,李国勋.Ti-Ni储氢电极的制备技术研究[J].电源技术.1992,2.
    [76] Murata T,Kashira K[Z].GS News.1991,50:11.
    [77]王春生,雷永泉,潘洪革,吴京,王启东. Ti-Ni系储氢电极[J].稀有金属材料与工程.1994;23:5
    [78] Gajahr M A[J].Power Sources1973;4:79
    [79]宋德英.全国第二届储氢材料基础与应用学术讨论会[C],杭州,1992,81
    [80]高小霞等.电分析化学导论[M].北京:科学出版社,1986
    [81] Nam T H,Shimiau K,Saburi T. Materials Transactions[J],1989,30:539
    [82] Song Deying. Surface analysis of a Ti-Ni-B hydrogen storage electrode [J].Alloys and Compo-unds.1993,199:161-163.
    [83] Wakao S,Yonemura Y,Nakano H et al.Electrochemical capacities and corrosion of TiNi//x and its zirconium-substituted alloy hydride electrodes[J].Less-common Metals,1984;104:365-373.
    [84] Wakao S,Haruo Swa et a1.Behaviour of hydrogen-absorbing metao alloys in an alkaline solution containing hydrazine[J].1984,104:385-393.
    [85]徐艳辉,陈长聘,王启东.新型储氢合金电极Ti3Ni2的电化学性能[J].稀有金属材料与工程.2001,30(1):23-26.
    [86] Boris Drenchev,Tony Spassov.Electrochemical hydriding of amorphous and nanocrystallineTiNi-based alloys[J].renewable energy.2004,441:197.
    [87] C.Suryanaryana,Mechanical alloying and milling[Z],Progress in Mater.Sci.,2001.46.
    [88] Hightower A,Withma C K,Bowman R C Jr,Ratnakumar B V, Fultz B.Performance of LaNi4.7Sn0.3metal hydride electrodes in sealed cells[J].proceedings of the Annual Battery Conference onApplications and Advances,1998:399-404.
    [89]Benjamin J S.Dispersion Strengthened Super alloys by Mechanical Alloying[J]. Metal Trans 1970,1:2943-2951.
    [90]迟红忠,陈长聘,李弘波,任国新.镁基储氢材料研究进展[J].材料工程.2002(8),44-47.
    [91]Yan-hui Xu,Qi-Dong Wang, Li-Xin Chen.The effect of temperature on the electrode propertiesofthe directly prepared Ti3Ni2 alloy [J].Hydrogen energy. 2001,26:1177-1181.
    [92] Rui Li, Hongge Pan, Mingxia Gao, He Miao,Yongquan Lei. Investigationof microstructure and electrochemical properties of Ti0.8Zr0.2V2.7Mn0.5+xCr0.8Ni1.5-x hydrogenstorage alloys [J].Alloys Comp.2007,432:183-188.
    [93]查全性.电极过程动力学导论[M].北京:科学出版社,1987:375.
    [94]袁华堂,高学平,杨化滨,宋得英,张允什,申泮文.MgNi合金的合成及电化学性能研究.[J].化学通报.2006,64:423-427.
    [95] Boris Drenchev, Tony Spassov.Electrochemical hydriding of amorphous and nanocrystalline TiNi-based alloys[J]. Alloys and Compounds 2007,441:197-201.
    [96]陈世柱,黎文献,尹志民.行星式高能球磨机工作原理研究[J].矿冶工程,1997(17):62-65
    [97]陈振化,陈鼎.机械合金化与固液反应球磨[M].化学工业出版社,2006,32-40
    [98] F. von Zeppelin, H. Reule, M. Hirscher[J]. Alloys Comp. 330-332 (2002) 723-726
    [99]王俊桥,陈济舟.非晶态物质径向分布函数的微机程序X-RDF[J].计算物理,1994,11.
    [100] www.crystalstar.org/soft/showclass.asp?classID=11&page=2[Z]
    [101]Shangzhao Shi,Jiann-Yang H wang . Research frontier on new materials and concepts for hydrogen storage [J].hydrogen energy.2007,24:224-228.
    [102]N.Cui,J.L.Luo.Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt%Ti2Ni[J].Alloy Comp.1995,240:229-234.
    [103]Rui Li, Hongge Pan, Mingxia Gao, He Miao,Yongquan Lei Investigation of microstructure and electrochemical properties of Ti0.8Zr0.2V2.7Mn0.5+xCr0.8Ni1.5-xhydrogen storage alloysJ]. Alloys and Compounds 2007,432:183–188.
    [104]M.Matsuoka,C.Iwakura Factors affecting the characteristics of the negative electrodes for nickel-hydrogen batteries[J].Applied Electrochemistry.1993,23:1051-1055.
    [105]B.Luan,N.Cui,H.Zhao,H.K.Liu,S.X.Dou.Mechanism of early capacity loss of Ti2Ni hydrogen-storage alloy electrode[J]. Power Sources 1995,55: 101-106.
    [106]Hellstern E, Schultz L.Amorphization of transition metal Zr alloys by mechanical alloying[J].Applied Physics Letters,1986,48:124~126
    [107]Petkov et al. [Z]. Non-Cryst. Sol. 1989, 75.
    [108] V.Petkov[Z]. Appl. Cryst. 1989,22:387-389.
    [109] R.B.Schwarz,C.C.Koch. Formation of amorphous alloys by the mechanical alloying of cyrstalline Powders of pure metals and Powders of intermetallics[J].Applied physics Letters,1986.49(3):146-148
    [110]王春生,雷永泉,杨晓光,江建军,吴京,王启东.TiNi合金的相结构对电化学性能的影响[J].金属学报, 1995,10:31.
    [111]戴道生,韩汝琪著.非晶态物理[M].北京:电子工业出版社.1989,3
    [112]莫志深,张宏放著.非晶聚合物结构和X射线衍射[M].北京:科学出版社.2003.337~340
    [113]王春生,雷永泉,潘洪革,吴京,王启东.Ti-Ni系储氢电极[J].稀土材料. 1994,23.
    [114]陈异,蒋利军,黄悼.热处理对Ti-Mn基Laves相贮氢合金性能的影响[J].稀有金属.2001,(3):215-215.
    [115] T.Tamura,Y.Tominaga,K.Matsumoto,et.al.Protium absorption ProPerties of Ti-V-Cr-Mn alloys with a b.c.c. structure[J].Journal of Alloys and Copounds.2002,330-332:522-525.
    [116] C.Suryanarayana. Mechanical alloying and milling [J].Progress in Materials Science.2001,46:1-184.
    [117] Luan B, Cui N, Zhao H et al.Effects of potassium-boron addition on the performance of Tianium based hydrogen storage alloy electrodes[J].Hydrogen Energy .1996,21,373-379.
    [118] Gutjahr MA, Buchner H, Beccu KD et al. A new type ofreversible negative electrode for alkaline storage batteriesbased on metal alloy hydrides[J]. Power Sources Symposium,Brighton, 1972.
    [119] Wakao S, Sawa H, Nankano H et al[J]. Less-Common Metals1987;131:311–9.
    [120] Uchida H, Fromm E[J]. Less-Common Metals 1987;131:125.
    [121] T.I.Bratanich,O.I.Get’man,T.V.Permyakova,V.V.Skorokhod. Destructive hydrogenation as methodfor improvement of TiNi exploitation properties[J].Hydrogen energy.2007,32:3941-3946.
    [122] L·B·Wang,J·B.Wang,H.T.Yuan,Y.J.wang,Q.D.Li. An electroehemieal Investigation of Mg1- xAlxNi(0≤x≤0.6)hydrogen storage alloys[J]. Alloys, Compds.2004,385:304-308.
    [123]周伟舫著.电化学测量[M].上海:上海科学技术出版社,1985.
    [124]田昭武著.电化学研究方法[M].福建:福建科学技术出版社,1985
    [125] Huabin Yang,Jingtao Ji,Hua sun et al.The corrosion behavior of ternary Mg2-xMmxNi alloys [J].Electrochemical Society.2002,149:A543-A545.
    [126] Kuriyama N,SakaiT,Miyamura H,Uehara I,Ishikawa H.,Iwasaki T.Electrochemical impedance and deterioration behavior of metal hydride electrodes[J].Alloys Comp.1993,202:183-197.
    [127]中国腐蚀与防护学会编.金属腐蚀手册[S].1987,370-371.
    [128]展西国,姜训勇,张建.采用机械合金化方法制备Ti3Ni2合金的结构及电化学储氢性能[C].功能材料.2007,增刊4(38):1643-1644.
    [129]陈济舟,王俊桥.取向对径向分布函数的影响[J].物理学报.1994,43(7):1105-1109.
    [130]孙长增,孙立玲等. MonteCarlo法计算大块非晶合金径向分布函数[J].中国科学,2004,34(4)448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700