集成膜技术处理制药废水中膜污染机理和防治及药剂对膜结构和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素制药废水有机物含量高,还含有残余抗生素。传统的物理化学和生物法处理这类废水,效果不好,难以达到行业排放标准;用集成膜技术深度处理这类废水有可能使其达标排放甚至回用。本文研究了膜技术处理制药废水中膜污染机理和防治,以及添加药剂对膜结构和性能的影响等关键问题。
     针对深度处理抗生素制药废水的超滤-纳滤集成膜过程,采用多种先进分析手段,探讨了过程中膜污染机理;考察了各种因素对膜污染的影响;研究了不同清洗方案对膜性能恢复的效果。柠檬酸和亚硫酸氢钠是膜技术中常用的药剂。本文系统考察了药剂的浓度,与膜的接触方式、接触时间和接触温度等对聚砜和聚丙烯腈膜结构和性能的影响。
     采用电感耦合等离子(ICP)发光法和离子色谱(IC)法分析了进水水质;使用能谱法(EDX)、扫描电镜法(SEM)以及傅里叶变换衰减全反射红外光谱法(ATR-FTIR)对各种条件下得到的污染膜表面进行了分析。由此推断出,引起膜污染的主要物质是含钙、铁的无机盐以及酚类、醚类、羧酸类等有机物质。这些物质在膜面上沉积吸附,引起膜污染。对于纳滤过程,进料液的CODCr和电导率越大,膜污染越严重;控制较低的操作压力、较大的膜面流速以及适宜的温度能有效地控制膜污染。此外,在料液中添加柠檬酸(0.03 wt%)、盐酸(pH=3)或EDTA(0.5 mM)溶液,都能降低纳滤膜渗透通量的衰减程度。其中,添加EDTA溶液时的效果最好。对污染膜采用水力清洗的方法。结果显示,在压力0.2MPa、膜面流速23.6cm·s-1、温度35.0℃下,清洗100min后,膜通量恢复系数为98.2%。在室温下,对严重污染膜采用纯水浸泡或化学清洗的方法。实验结果显示,在纯水中浸泡10~40小时,膜通量能够恢复。考察化学清洗时,比较了NaOH(pH=11)、盐酸(pH=3)、0.3wt%的柠檬酸溶液以及1.0mM的EDTA溶液的清洗效果。结果表明,清洗效果随以上溶液依次递增;用EDTA溶液清洗时所需的时间最短,约10分钟就能使膜通量完全恢复。对清洗后的膜表面进行SEM和EDX分析。SEM照片显示,膜表面光洁程度依次递增,EDTA清洗后的膜表面SEM照片与清洁膜的最接近;EDX分析表明,膜表面含有的Ca元素依次递减,EDTA清洗后的膜面基本不含Ca元素。
     系统考察了各种操作条件下柠檬酸和亚硫酸氢钠对聚砜和聚丙烯腈膜性能的影响。结果表明,柠檬酸溶液只与膜表面接触后,膜纯水通量变化较小;而柠檬酸溶液与膜整体(包括表面和孔内)充分接触后,膜纯水通量下降。膜整体与柠檬酸充分接触一定时间后,膜截留聚氧化乙烯时的通量衰减变小,膜对聚氧化乙烯的截留率略有提高,膜的抗污染性能提高。对于膜整体与柠檬酸溶液接触,随着柠檬酸浓度增大,膜通量下降百分比有增大的趋势,膜接触角有先增大后减小的趋势。随着接触时间延长或接触温度升高,膜通量下降百分比先增大后趋于稳定。随着膜面流速的增大或操作压力的减小,柠檬酸对膜通量的影响降低,膜通量下降百分比减小。在本文实验条件下,PAN和PS膜与柠檬酸溶液接触充分后,其通量下降百分比分别为15.44%~28.30%和11.38~28.94%。对于亚硫酸氢钠,当其与膜表面接触后,膜纯水通量增大;当其与膜整体充分接触后,膜纯水通量也增大,但增大百分比降低。膜整体与亚硫酸氢钠充分接触一定时间后,膜截留聚氧化乙烯时的通量衰减变小,膜对聚氧化乙烯的截留率基本不变,膜的抗污染性能提高。对于膜整体与亚硫酸氢钠溶液接触,随着亚硫酸氢钠浓度的增大, PAN膜的通量增大百分比先增大后趋于稳定,而PS膜通量增大百分比先降低后趋于稳定,两种膜的接触角均减小。随着接触时间的延长,膜通量增大百分比先增大后趋于稳定。随着接触温度的升高,膜通量增大百分比先降低后趋于稳定。随着膜面流速的增大,亚硫酸氢钠对膜通量的影响降低,膜通量增大百分比减小。随着操作压力的增大,亚硫酸氢钠对PAN膜通量的影响增大,膜通量增大百分比提高;而对PS膜通量的影响减小,通量增大百分比减小。在本文实验条件下,PAN和PS膜与亚硫酸氢钠溶液接触充分后,其通量增大百分比分别为-5.28%~5.22%和26.49%~45.24%。
     对吸附药剂后的膜表面进行了SEM和ATR-FTIR分析以及接触角的测定,由此并根据柠檬酸、亚硫酸氢钠、PAN膜和PS膜的不同化学结构推断出两种药剂与膜的不同作用机理。对于柠檬酸溶液,在膜面上吸附时,可能形成碳氢基向外的表面层,使膜的润湿性降低,膜通量下降。而对于亚硫酸氢钠,可能形成SO32-、HSO3-等极性基团吸附在外表面的结构,使膜的亲水性增强,膜通量增大。比较了药剂对PAN和PS膜影响的差异,结果表明,药剂对PAN和PS膜的影响的差异除了与膜的亲疏水性有关外,还与膜在药剂中化学性质的变化有关。
     本文工作对膜技术深度处理成分复杂的工业废水有一定参考价值,为广泛深入研究药剂对膜结构和性能的影响提供了思路和方法。
The antibiotic wastewater contains high organic content and toxic antibiotic residues. Most existing physical and chemical treatment methods are not effective in treating the wastewater, and the effluent is difficult in compliance with industrial emission standards. Integrated membrane systems could sufficiently remove the pollutants in the wastewater and enable the wastewater to be discharged into the receiving water or even be reused for industrial purposes. In this work, the key problems that membrane fouling mechanism and control during the process of treating antibiotic wastewater by integrated membrane system and impacts of adding reagents in the process on membranes’structure and performance were studied.
     For ultrafiltration-nanofiltration integrated membrane system,membrane fouling mechanism was explored by several advanced analytical methods. Various influencing factors of membrane fouling and cleaning methods in the process were investigated. The impacts of reagents used in the process on the performances of poly acrylonitrile (PAN) membrane and polysulfone (PS) membrane were studied, respectively. Typical reagents citric acid and sodium bisulfite were chosen to investigate in detail. The impacts of various factors including concentration of reagents, contacting ways with membranes, contacting time, contacting temperature etc. on the membranes’structures and performances were investigated.
     The water quality was analyzed by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP) and Ion Chromatography (IC). Fouled membrane samples under different conditions were analyzed by Energy Dispersive X-Ray (EDX), Scanning Electron Microscope (SEM), and Attenuated Total Reflection Spectra-Fourier Transform Infrared Spectrometry (ATR-FTIR). It can be deduced from the analytical results that the membrane fouling in the process is caused by adsorption and deposition of inorganic compounds of calcium and iron, and complex organic compounds which may contain phenolic, etheric and carboxylic functional groups etc. on membrane surface and inside membrane pores. In the nanofiltration process, with increasing COD and conductivity of feed water, the membrane fouling becomes more severe. Under the conditions of lower applied pressure, higher crossflow velocity and proper temperature, the membrane fouling can be efficiently suppressed. In addition, the decline of nanofiltration membrane permeate flux becomes slight after adding citric acid (0.03wt%), HCl (pH=3) or ethylene diamine tetraacetic acid diasodium salt (EDTA, 0.5mM) to feed water, and adding EDTA reaches the best result. The fouled membrane was cleaned with pure water for 100 minutes under conditions of TMP 0.2MPa, crossflow velocity 23.6cm·s-1 and temperature 35.0℃. The flux recovery is 98.2%. The severe fouled membrane was cleaned by immerging it in pure water or washing it with different chemicals under room temperature. The results indicate that immerging severe fouled membrane in pure water for 10~40 hours can recover membrane permeate flux. Chemical cleaning with NaOH (pH=11), HCl (pH=3), citric acid (0.3wt%) and EDTA (1.0mM) were carried out, respectively. The results show that the cleaning efficiency increases in the sequence of solutions mentioned above and it is the highest with EDTA which costs only 10 minutes to recover membrane permeate flux completely. The membrane surfaces were analyzed by SEM and EDX after chemical cleaning. The SEM photos show that the smooth and cleanly degree of membrane surface increases in the above sequence and the SEM photo after cleaning with EDTA is close to that of unfouled membrane. EDX analytical results indicate that the containing percent of element Ca on the membrane surfaces decreases in the above sequence and it is null after cleaning with EDTA.
     The impacts of citric acid and sodium bisulfite on PAN membrane and PS membrane under various operational conditions were systematically investigated. The results show that citric acid has minor influence on membranes’performance when it contacts membranes’surface only. And when citric acid contacts membranes’entirety (including surface and pores) sufficiently, the membranes’pure water permeate flux decreases. After citric acid contacting membranes’entirety for a certain time, the decline of membranes’permeate flux decreases during the process of filtering Poly(ethylene oxide) (PEO) solution, and membranes’rejection of PEO increases. The membranes’antifouling performance is improved. When citric acid contacts membranes’entirety, with increasing concentration of citric acid, the decreasing percent of membranes’permeate flux increases and the contact angle increases first and then decreases. With increasing contacting time or contacting temperature, the decreasing percent of membranes’permeate flux increases first and then becomes stable. With increasing crossflow velocity or decreasing applied pressure, the impact of citric acid on membranes’performance decreases, i.e., and the decreasing percent of membranes’permeate flux decreases. In this work, the permeate flux decreasing percents of PAN and PS membranes after contacting citric acid sufficiently are 15.44%~28.30% and 11.38~28.94%, respectively. As far as sodium bisulfite is concerned, when it contacts membranes’surface only, the membranes’pure water permeate flux increases, and when it contacts membranes’entirety sufficiently, the membranes’pure water permeate flux increases too, but the increasing percent decreases. After sodium bisulfite contacting membranes’entirety for a certain time, the decline of membranes’permeate flux decreases during the process of filtering PEO solution, and membranes’rejection of PEO has no obvious changes. The membranes’antifouling performance is improved. When sodium bisulfite contacts membranes’entirety, with increasing concentration of sodium bisulfite, the increasing percent of membrane permeate flux increases for PAN membrane, but decreases for PS membrane, and the contact angle decreases for two kinds of membranes. With increasing contacting time, the increasing percent of membranes’permeate flux increases first and then becomes stable. With increasing contacting temperature, the increasing percent of membranes’permeate flux decreases first and then becomes stable. With increasing crossflow velocity, the impact of sodium bisulfite on membranes’performance decreases, i.e., the increasing percent of membranes’permeate flux decreases. With increasing applied pressure, the impact of sodium bisulfite on PAN membrane performance increases, i.e., and the increasing percent of membrane permeate flux increases, while, the influence of sodium bisulfite on PS membrane performance decreases, i.e., the increasing percent of membrane permeate flux decreases. In this work, the permeate flux increasing percents of PAN and PS membranes after contacting sodium bisulfite sufficiently are -5.28%~5.22% and 26.49%~45.24%, respectively.
     The membranes’surfaces after adsorbing reagents were inspected by SEM and ATR-FTIR, and their contact angles were measured. According to the results and the chemical structures of citric acid, sodium bisulfite, PAN membrane and PS membrane, it can be concluded that the mechanisms for impacts of citric acid and sodium bisulfite on membranes’performance are different. When the citric acid adsorbs on membranes’surface, carbon hydrogen functional groups are outward to solution, which makes membranes difficultly be wetted, and thus the membranes’permeate flux declines. However, when the sodium bisulfite adsorbs on membranes’surface, the functional groups such as SO32- and HSO3- are on exterior of surface, which helps improve the wetting property of membranes, and thus the membranes’permeate flux increases. With comparisons of the impacts of citric acid and sodium bisulfite on PAN and PS membranes, it can be concluded that the differences of impacts of the reagents on the membranes are not only caused by the hydrophilic/hydrophobic property of the membranes, but also by the chemical characters of the membranes in the reagents.
     This work provides a good example for the membrane technique applying in advanced treatments of industrial wastewater containing complicated compounds. The understanding of impacts of reagents on membranes’structure and performance provides a good basis for further study.
引文
[1]时钧,袁权,高从堦,膜技术手册,化学工业出版社, 2001
    [2] Marcel Mulder,李琳译,膜技术基本原理,清华大学出版社, 1999, 8~10
    [3]孙宏贵,夏海平,蓝伟光,分离膜材料的污染与清洗,功能材料, 2002, 33(1):26~28
    [4]赵媛媛,超滤和纳滤处理模拟工业废水实验研究,硕士学位论文,天津,天津大学, 2005
    [5]陈立军,张心亚,黄洪,沈慧芳,陈焕钦,新型分离纯化技术-亲和超滤及其应用,膜科学与技术, 2006, 26(4):61~65
    [6]汪锰,王湛,李政雄,膜材料及其制备,化学工业出版社, 2003
    [7] Sourirajan S [加],殷琦等译,反渗透与合成膜,中国建筑工业出版杜, 1987
    [8]杨弋星,吴文标,张敏,超滤膜制膜材料研究进展和发展趋势[J],粮食与油脂, 2005, 15~18
    [9]郭明远,杨牛珍,醋酸纤维素超滤膜γ射线辐照改性[J],水处理技术, 1997, 23(6):315~318
    [10]樊芷芸,利用氧,氮低温等离子体对醋酸纤维素超滤膜进行表面改性的比较,精细石油化工, 1998 3:35~37
    [11]罗黎敏,殷宁,醋酸纤维素(CA)共混超滤膜的研究现状[J],中国林业, 2004, (5):35
    [12]邱运仁,张启修,聚乙烯醇-醋酸纤维共混超滤膜的制备与性能研究[J],现代化工, 2001,21(10):28~31
    [13]王湛,吕亚文,王淑梅, PVDF/CA共混超滤膜制备及其特性的研究[J],膜科学与技术, 2002,22(6):4~8
    [14]邓晓玲,姜佩华,迟莉娜,聚氯乙烯/聚砜共混中空纤维超滤膜的研制[J],东华大学学报(自然科学版), 2003, 29(5):104~107
    [15]陆晓锋,刘光全,刘忠英等,紫外辐照改性聚砜超滤膜[J],膜科学与技术, 1998, 18(5):50~54
    [16]陈坚锐,黄加乐, PES超滤膜的制备工艺条件及化学稳定性研究[J]沈阳化工学院学报2002, (4):294~298
    [17]樊文玲,陆晓峰,聚丙烯酸钠复合超滤膜研制初探(I)UP-ANA-I复合膜的制备[J],膜科学与技术, 2003 23(2):15~18
    [18] Blicke C, Peinemann N K V, Ultrafiltration membranes from poly(ethersulfonamide)/ poly (etherimide) blends[J] J Membr Sci, l993, 79~83
    [19]王保国,孙洪亮,蒋维钧, PAN/PS共混中空纤维超滤膜研究,水处理技术, 1996, 22(2):85~89
    [20] Suzana P, Peinemann N K V, Ultrafiltration membranes from PVDF/PMMA blends[J].J. Membr. Sci. 1992, 73(1):25~35
    [21]邱运仁,张启修,改性PVA超滤膜的制备与性能研究,膜科学与技术, 2001, 21(5):25~28
    [22]吴秋林,吴照, PVA-PE复合亲水分相膜的研制[J],膜科学与技术,1995, 15(4):29~32.
    [23]李娜,刘忠洲,耐污染膜-聚乙烯醇膜的研究进展[J],膜科学与技术,1999, 19(3):1~7
    [24]贠延滨,刘丽英,马润宇,聚偏氟乙烯膜的研究进展,膜科学与技术, 2003, 23(2):57~61
    [25]陆晓锋,汪庚华,梁国明,聚偏氯乙烯超滤膜的辐照接枝改性研究[J],膜科学与技术, 1998, 18(6):54~57
    [26] Jianhua Yang and Masashi Asaeda, Permeation mechanism of water through microporous SiO2–ZrO2 membranes for separation of aqueous solutions of organic solvents by pervaporation, Separation and Purification Technology 2003, 32(1-3):29~36
    [27]郝彤,赛普特不锈钢膜分离系统及应用[J],膜科学与技术,1998, 18(6):25~27
    [28]刘振宇,鲍卫民,宋崇立,烧结不锈钢微孔管对模拟体系进行错流过滤的研究[J],膜科学与技术,1999, 19(4): 44~47
    [29]田茂东,张守臣,王立秋,等,用溶胶凝胶法在烧结金属基体上附载SiO2膜[J],大连理工大学学报, 1999, 39(1):49~52
    [30] Christian Guizard, AndréAyral and Anne Julbe, Potentiality of organic solvents filtration with ceramic membranes. A comparison with polymer membranes, Desalination, 2002, 147(1-3):275~280
    [31]王连星,党桂彬,系列孔径多孔陶瓷的研制,功能材料, 1997, 28(2):186~191
    [32]王焕庭,刘杏芹,周勇等,多孔陶瓷支撑体膜材料的制备与性能表征,膜科学与技术, 1997, 17(1):47~52
    [33] Biesheuvel P M, Verweij H, Design of ceramic membrane supports, permeability, tensile strength and stress, J. Membr. Sci. 1999, 156:141~152
    [34]颜正朝,宋军,林晓,徐南平,沸石分子筛膜的合成与应用,石油化工, 2004, 33(9)
    [35] Ana Maria Brites Alves, Maria Norberta Pinho. Ultrafiltration for colour removal of tannery dyeing wastewaters[J]. Desalination, 2000(130):147~154
    [36]裴振琦,韩式荆,用聚砜超滤膜从染色废水中回收染料,环境科学, 1985, 4(2):l~4
    [37]杨磊,王栋,张静姝,周集体,杨凤林,超滤膜生物反应器处理生活污水的试验研究,膜科学与技术, 1999 19(3):29~31
    [38] D. Abdessemed, G.Nezzal, R. Ben Aim, Coagulation-adsorption-ultrafiltration for wastewater treatment and reuse, Desalination, 2000, 131:307~314
    [39] Taraj Mohanmadi, etal, Wastewater treatment using ultrafiltration at a vegetable oil factory, Desalination, 2004, 166:329~337
    [40]王静荣,吴光夏等,超滤法处理乳化油废水的研究,环境科学, 1997, 18:53~56
    [41]张杰,楮良银,陈文梅,膜分离技术在废水处理中的应用,过滤与分离, 2004, 14(3):8~11
    [42] Raman L P, Cheryan M, Rajagapalan N, et al, Nanofiltration for membrane separations, Chemical Engineering Progress, 1994, 5:68~74
    [43] R. Rautenbach, A. Gr?schl, Separation pontential of nanofiltration membranes, Desalination, 1990, 77:73~84.
    [44] R Rautenbach(德),王乐夫(译),膜工艺组件设计基础,化学工业出版社, 1998, 190~192
    [45] Unde Kristina, Joensson, Nanofihration of salt solutions and landfill leachate [J], Desalination, 1995, l03(3):223~232
    [46] Yeomin Yoon, Gary Amy, Jaeweon Cho and Namguk Her, Effects of retained natural organic matter (NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration, Desalination, 2005, 173(3):209~221
    [47]刘路,刘玉荣,膜分离技术在林可霉素发酵液分离浓缩中的应用[J],水处理技术,2000, 26(3):169~171
    [48]杨刚,王焕章,木糖溶液的纳滤浓缩[J],膜科学与技术, 2000, 20(5):21~26
    [49]俞三传张建飞,复合纳滤膜及其应用,水处理技术, 1997, 23(3):139~145
    [50] M.Dohman,姚刚,膜技术在德国城市生活污水处理中的应用,中国给水排水, 2006, 22(6):95~98
    [51]杨军,陆正禹,胡纪萃,顾夏声,抗生素工业废水生物处理技术的现状与展望,环境科学, 1997, 18(3):83–95
    [52] Shi-zhong Li, Xiao-yan Li, Dian-zuo Wang, Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics, Separation and Purification Technology, 2004, 34:109–114
    [53] Anna Zhu, Wanpeng Zhu, Zhuo Wu, Yifeng Jing, Recovery of clindamycin from fermentation wastewater with nanofiltration membranes, Water Research 2003, 37:3718–3732
    [54] Koyuncu. An advanced treatment of high-strength opium alkaloid processing industry wastewaters with membrane technology:pretreatment, fouling and retention characteristics of membranes[J]. Desalination, 2003, 155:263~275
    [55]纪树兰,朱安娜,龙峰,吴卓,荆一凤,平板型纳滤膜处理洁霉素废水的膜性能比较,中国环境科学, 2002, 22(1):36~39
    [56]王学松,现代膜技术及其应用指南,化学工业出版社, 2005, 60~64
    [57] Krzysztof Karakulski, et.a1, Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system[J]. Desalination, 2002, 149:l63~l67
    [58] Wong F S, Qin J J, Wai M N, etal. A pilot study on a membrane process for the treatment and recycling of spent final rinse water from electroless plating, Sep. Purif. Technol, 2002, 29(1):41~51
    [59] Qdais H A, Moussa H, Removal of heavy metals from wastewater by membrane processes, a comparative study, Desalination, 2004, 164:105~110
    [60] Mantturi M, Nuorfla-Jokinen J, Nystram M, Evaluation of nanofiltration membranes for filtration of paper mill total effluent[J].Filtr Sep. 1997, 34(3):275~280
    [61] Per Tomani, etal. Separation methods forclosed-loop manufacture of bleached braft pulp overview of a EU project[J]. Desalination, 1999, 124:217~223
    [62]郭明远,杨牛珍,纳滤膜分离活性染料溶液的研究[J].水处理技术, l996, 22(2):97~98
    [63] B. Van der Bruggen, etal. Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry[J]. Separation and Purification Technology, 2001, 22-23:519~528
    [64] Guohua Chen, etal. Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation[J].J membr Sci., l997, 127:93~99
    [65]聂锦旭,肖贤明,纳滤膜在火电厂循环冷却水处理中的应用,工业水处理, 2005, 25(5):72~73
    [66] M Minhalma, M N de Pinho.Development of nanofiltration/steam stripping sequence for coke plant wastewater treatment[J]. Desalination, 2002, 149:95~100
    [67] Eui-Deog Hwang, Kwang-Won Lee, Kwang-Ho Cho, eta1. Effect of precipitation an decomplexation on nanofiltration of stron-tium-containing nuclear wastewater[J], Desalination, 2002, 147:289~294
    [68] A Cassano, etal. Membrane treatment by nanofiltration of exhaust-edvegetable tannin liquors from the leather industry[J], Water Research, 2003, 37:2426~2434
    [69] A Cassano,E Drioli,R Molinari.Recovery and reuse of chemicals in unhairing,degreasing an d chromium tanning processes by membranes[J], Desalination, l997, 113(2-3):25l~261
    [70] Dr.M.Unger, Celgard, Wiesbaden, "Pulp and Paper" experience of collaboration, -Role for Sustech? SUSTECH 9 FORUM Brussels, 1 Dec 1998
    [71]王立国,膜集成技术处理含铜工业废水,中国给水排水, 2005, 21(11):83~85
    [72]樊智锋,集成膜技术深度处理循环冷却排污水研究,硕士学位论文,天津:天津大学, 2005
    [73] Zhi Wang, Zhifeng Fan, Lixin Xie, Shichang Wang, Study of integrated membrane systems for the treatment of wastewater from cooling towers, Desalination, 2006, 191:117~124
    [74]刘忠洲,续曙光,李锁定,微滤、超滤过程中的膜污染与清洗,水处理技术, 1997, 23(4):187~193
    [75]罗敏,王占生,侯立安,纳滤膜污染的分析与机理研究,水处理技术, 1998, 6:318~323
    [76] B. Van der Bruggen, L. Braeken, C. Vandecasteele, Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds, Desalination, 2002, 147(1-3):281~288
    [77] Kelly S T, Zydney A L.Mechanisms for BSA fouling during microfiltration.Journal of Membrane Science, 1995, 107:115~127
    [78] Marshall A D, Munro P A, Tragardh G. Influence of permeate flux on fouling during microfiltration of lactoglobulin solutions under crossflow conditions[J]. J Membr Sci, 1997, 130:23~30
    [79] Darko M Krstic, Sinisa L Markov, Miodrag N Teki. Membrane fouling daring cross-flow microfiltration of polyporus squamosus fermentation broth[J]. Biochemical Engineering Journal, 2001, 9(2):103~109
    [80] T.J. Carrol, N.A. Booker, Axial features in the fouling of hollow-fibre microfiltration membranes, J. Membr. Sci. 2000, 168:203~213
    [81] Zhi Wang, Yuanyuan Zhao, Jixiao Wang, Shichang Wang, Studies on nanofiltration membrane fouling in the treatment of water solutions containing humic acids, Desalination 2005, 178:171~178
    [82]伍艳辉,王志,何菲,王世昌,膜与蛋白质溶液的相互作用及膜污染机制的能谱研究,化工学报, 2001, 52(11):1026~1029
    [83] Zhi-Ping Zhao, Zhi Wang, Shi-Chang Wang, Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane, Journal of Membrane Science , 2003, 217: 151–158
    [84] Maria DináAfonso, Rodrigo Bórquez, Nanofiltration of wastewaters from the fish meal industry, Desalination, 2002, 151:131~138
    [85] A. Bottino, G. Capannelli, A. Imperato and S. Munari, Ultrafiltration of hydrosoluble polymers.Effect of operating conditions on the performance of the membrane, J. Membr. Sci., 1984, 21(3):247~267
    [86] S.S. Madaeni, S. Koocheki, Application of taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element, Chemical Engineering Journal, 2006, 119:37~44
    [87] A. Seidel and M. Elimelech, Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control, J. Membr. Sci. 2002, 203:245~255
    [88] R. Bian, K. Yamamoto and Y. Watanabe, The effect of shear rate on controlling the concentration polarization and membrane fouling, Desalination, 2000, 131:225~236
    [89]吴光夏,张东华,刘延惠, [P],中国专利, 86101075
    [90]吴光夏,张东华,孙晓伟,等, [P],中国专利, 96241367
    [91]吴光夏,张东华,刘忠洲, [P],中国专利, 97121606.1
    [92]吴光夏,张东华,刘忠洲, [P],中国专利, 97214343.2
    [93] Huimin Ma, Luis F. Hakim, Christopher N. Bowman and Robert H. Davis, Factors affecting membrane fouling reduction by surface modification and backpulsing, Journal of Membrane Science, 2001, 18(2):255~270
    [94] Ren Deqian, Cleaning and Regeneration of Membranes, Desalination, 1987, 62:363~371
    [95] Shobha Muthukumaran, Sandra Kentish, et al, The optimisation of ultrasoniccleaning procedures for dairy fouled ultrafiltration membranes, Ultrasonics Sonochemistry, 2005, 12(1-2):29~35
    [96]贺立中,药液超滤过程中膜污染及其防治[J],膜科学与技术, 2000, 20(5):49~54
    [97]祝生杰,超滤器的膜污染控制与处理,膜科学与技术, 1997, 17(2):1~4
    [98] M.Mietton-peuchot and O.Ranisio(France), Study of Behaviour of Membranes on the Presence of Anionic or Nonionic Surfactants, a presentation at the 7th world filtration congress in Budapest, May 1996.
    [99] Marianne Nystrom, Huihua Zhu, Characterization of cleaning results using combined flux and streaming potential methods, Journal of membrane science 1997, 131:195~205
    [100]郑忠,李宁,分子力与胶体的稳定和聚沉,北京:高等教育出版社, 1995: 33~34
    [101]水和废水分析检测方法[M],中国环境科学出版社, 2002
    [102]中华人民共和国环境保护行业标准, HJ/T 271-2006
    [103] Namguk Her, Gary Amy, and Chalor Jarusutthirak, Seasonal variations of nanofiltration (NF) foulants: identification and control, Desalination, 2000, 132(1-3):143~160
    [104] F. H. Butt, F. Rahman and U. Baduruthamal Characterization of foulants by autopsy of RO desalination membranes, Desalination, 1997, 114(1):51~64
    [105] Sangho Lee, Jaehong Kim, Chung-Hak Lee, Analysis of CaSO4 scale formation mechanism in various nanofiltration modules, Journal of Membrane Science 1999, 163:63~74
    [106] Seong-hoon Yoon, Chung-hak Lee, Kyu-Jin Kim, Anthony G. Fane, Effect of calcium ion on the fouling of nanofiltratiom by humic acid in drinking water production, Wat. Res. 1998, 32:2180~2186
    [107] Piotr Dydo , Marian Turek, Jerzy Ciba, Scaling analysis of nanofiltration systems fed with saturated calcium sulfate solutions in the presence of carbonate ions, Desalination, 2003, 159(3):245~251
    [108] J. Rose, O. Barres, W. Stone, J-Y. Bottero, C. Anselme Khatib, Physico- chemical study of fouling mechanisms of ultrafiltration membrane on Biwa lake (Japan), Journal of Membrane Science, 1997, 13(1-2):53~62
    [109] A. A. Kavitskaya, T. V. Knyazkova , A. A. Maynarovich, Reverse osmosis of concentrated calcium sulphate solutions in the presence of iron (III) ions usingcomposite membranes, Desalination, 2000, 13(1-3):281~286
    [110] Eun-mi Gwon, Myong-jin Yu, Hee-kyong Oh, Yong-hun Ylee, Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater, Water Research, 2003, 37(12):2989~2997
    [111] Daniella B, Mosqueda-Jimenez, Peter M. Huck, Characterization of membrane foulants in drinking water treatment, Desalination, 2006, 198(1-3):173~182
    [112] Li-Fen Liu, San-Chuan Yu, Li-Guang Wu and Cong-Jie Gao, Study on a novel polyamide-urea reverse osmosis composite membrane (ICIC-MPD): II. Analysis of membrane antifouling performance, Journal of Membrane Science, 2006, 283(1-2): 133~146
    [113] Rama Chennamsetty, Isabel Escobar, and Xinglong Xu, Characterization of commercial water treatment membranes modified via ion beam irradiation, Desalination, 2006, 188(1-3):203~212
    [114] Wonho Song, Varadarajan Ravindran, Bruce E. Koel, Massoud Pirbazari, Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization. Journal of Membrane Science, 2004, 241(1):143~160
    [115] Murielle Rabiller-Baudry, Mylène Le Maux, Bernard Chaufer, Lilian Begoin, Characterisation of cleaned and fouled membrane by ATR—FTIR and EDX analysis coupled with SEM: application to UF of skimmed milk with a PES membrane Desalination, 2002, 146(1-3):123~128
    [116] Marcel Mulder, Basic Principles of Membrane Technology, 2nd edn., Kluwer Academic, Dordrecht, 1996, 215~225
    [117] Zhijuan Ji, Yasan He and Guojun Zhang, Treatment of wastewater during the production of reactive dyestuff using a spiral nanofiltration membrane system, Desalination, 2006, 201(1-3): 255-266
    [118] Ana I. Cavaco Mor?o, Ana M. Brites Alves, Manuel C. Costa and Joaquim P. Cardoso, Nanofiltration of a clarified fermentation broth, Chemical Engineering Science,2006, 61(8):2418-2427
    [119] Hiroaki Ozaki, Kusumakar Sharma, Wilasinee Saktaywin, Performance of ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters, Desalination 2002, 144:287~294
    [120] Sangho Lee, Chung-Hak Lee, Effect of operating conditions on CaSO4 scale formation mechanism in nanafiltration for water softening, Wat. Res. 2000,34:3854~3866
    [121] Che-Jen Lin, Saqib Shirazi, Pritesh Rao, Sumeet Agarwal, Effects of operational parameters on cake formation of CaSO4 in nanofiltration, Water Res., 2006, 40:806~816
    [122] C. Ratanatamskul, K. Yamamoto, T. Urase, S. Ohgaki, Effect of operating conditions on rejection of anionic pollutants in the water environment by nanofiltration especially in very low pressure range, Water Science and Technology, 1996, 34(9):149~156
    [123] Sangeeta B. Kulkarni, Arjumand A. Kittur, Srikant S. Kulkarni, and Mahadevappa Y. Kariduraganavar, Investigations on sorption, diffusion and permeation of chloro-alkanes and -alkenes through fluoroelastomeric membranes, Desalination, 2006, 196(1-3):43~54
    [124] Quan Gan, Minling Xue, David Rooney, A study of fluid properties and microfiltration characteristics of room temperature ionic liquids [C10-min][NTf2] and N8881[NTf2] and their polar solvent mixtures, Separation and Purification Technology, 2006, 5(2):185~192
    [125] T. H. Chong, R. Sheikholeslami, Thermodynamics and kinetics for mixed calcium carbonate and calcium sulfate precipitation, Chemical Engineering Science 2001, 56:5391~5400
    [126] J. Wei, X. Jian, C. Wu, S. Zhang, C. Yan, Influence of polymer structure on thermal stability of composite membranes, J. Membr. Sci. 2005, 256:116~121
    [127] James N.Butler, Ionic Equilibrium: Solubility and pH Calculations, Wiley-Interscience 2Rev Ed edition, 1998
    [128] Ismail Koyuncu, Dincer Topacik, Effects of operating conditions on the salt rejection of nanofiltration membranes in reactive dye/salt mixtures, Separation and Purification Technology 2003, 33:283~294
    [129] S. S. Madaeni, Y. Mansourpanah, Chemical cleaning of reverse osmosis membranes fouled by whey, Desalination 2004, 161:13~24
    [130] Yong-Jun Jung, Yoshiaki Kiso, Toshiro Yamada, Toshiyuki Shibata, Tae-Gwan Lee, Chemical cleaning of reverse osmosis membranes used for treating wastewater from a rolling mill process, Desalination, 2006, 190(1-3):181~188
    [131] Wui Seng Ang, Sangyoup Lee and Menachem Elimelech, Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes, Journal of Membrane Science, 2006, 272 (1-2):198~210
    [132]陈宗淇,王光信,徐桂英,胶体与界面化学,北京:高等教育出版社, 2001, 42~44
    [133]朱瑶,赵振国,界面化学基础,北京:化学工业出版社, 1996, 237~257
    [134]窦照英,实用化学清洗技术,北京:化学工业出版社,1998, 94~96.
    [135]武汉水利电力学院,电厂化学教研室.热力发电厂水处理(下册),修订本,北京:水利电力出版社,1985, 601~623
    [136]刘泊东,袁长征,柠檬酸清洗工艺的改进及在运行锅炉上的应用,天津电力技术, 2001, (2-3):53~57
    [137] B. Bansal, R. Al-Ali, R. Mercadé-Prieto, X.D. Chen, Rinsing and cleaning ofα-lactalbumin fouled MF membranes, Separation and Purification Technology, 2006, 48(2):202~207
    [138] Lilian Bégoin, Murielle Rabiller-Baudry, Bernard Chaufer, Christine Faille, Pascal Blanpain-Avet, Thierry Bénézech and Teodora Doneva Methodology of analysis of a spiral-wound module. Application to PES membrane for ultrafiltration of skimmed milk, Desalination, 2006, 19(1-3):40~53
    [139] Pablo Ca?izares,ángel Pérez, Rafael Camarillo, María Teresa Villajos, Improvement and modelling of a batch polyelectrolyte enhanced ultrafiltration process for the recovery of copper, Desalination, 2005, 184(1-3):357~366
    [140] S. T. D. de Barros, C. M. G. Andrade, E. S. Mendes and L. Peres, Study of fouling mechanism in pineapple juice clarification by ultrafiltration, Journal of Membrane Science, 2003, 215(1-2):213~224
    [141] Bart Van der Bruggen , Jeong Hwan Kim , Francis A. DiGiano , Jeroen Geens and Carlo Vandecasteele, Influence of MF pretreatment on NF performance for aqueous solutions containing particles and an organic foulant Sep. Purif. Technol. 2004, 36:203~213
    [142] Jean-Fran?ois Lapointe, Sylvie F. Gauthier, Yves Pouliot and Christian Bouchard, Characterization of interactions betweenβ-lactoglobulin tryptic peptides and a nanofiltration membrane: Impact on the surface membrane properties as determined by contact angle measurements, Journal of Membrane Science, 2005, 261(1-2):36~48
    [143] Andreas Weis, Michael R. Bird, Marianne Nystr?m and Christopher Wright, The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor, Desalination, 2005, 175(1):73~85
    [144]顾惕人,李外郎,马季铭,戴乐蓉,程虎民,表面化学,科学出版社, 1994: 191-193
    [145]高鸿宾,有机化学(第三版),北京:高等教育出版社, 1999, 368
    [146] Yajie Xie, Haiyin Yu, Zhikang Xu, Surface modification of polypropylene microporous membranes by the adsorption of non-ionic surfactants, Chinese Journal of Polymer Science, 2006, 24(4):421~429
    [147] Qingwen Dai, Zhikang Xu, Hongtao Dang, Zhenmei Liu, Jian Wu, Patrick Seta, Surface modification of microporous polypropylene membranes by graft polymerization of N,N-Dimethylaminoethyl Methacrylate, Chinese Journal of Polymer Science, 2004, 22(4):369~377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700