助熔剂在煤气化过程中的作用及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内一次能源供应的日益紧张,高灰熔融性温度(灰熔点)大于1500℃的劣质煤高效利用备受关注。目前,煤气化技术向着高温高压发展,液态排渣气化技术逐渐占据主导地位。气流床气化技术对煤种适应性强,拓宽了煤种的利用范围,特别是可以气化含灰量较高的煤种。但是为满足液态排渣气化技术对灰熔点的要求,一些具有高灰熔点温度的煤,必须先有效地降低其灰熔点。我国高灰点煤炭资源储量较大,其中灰熔点大于1500℃的煤占煤炭总资源的50%,若该资源能合理高效利用不仅能提高煤炭利用率,还能缓解我国能源紧张的局面。
     为解决上述需求,本研究以煤灰中主要氧化物为研究对象,通过CaO-Al2O3-SiO2三相图分析,模拟煤灰(不同硅铝比值混合物)实验等化学方法,得出助熔剂降低煤灰熔点的作用机理,联合XRD和TG-DSC表征手段得到和化学方法一致的规律。依据这一机理,添加相同助熔剂降低实际煤灰熔点和模拟煤灰熔点获得相同的规律,即降低煤灰熔融性温度的一般规律是通过调节煤灰中主要氧化物含量变化,促使体系形成三元或多元的低共熔点矿物。在降低煤灰熔点实验中,.也获得了两种使煤的灰熔点达到理想温度的高效助熔剂。为了考察加入助熔剂后煤的气化反应特性,利用耐弛同步热分析仪研究了两种高效助熔剂对煤焦气化反应性及煤气组成的影响规律。得到以下主要结论:
     1)XRD和TG-DSC联合表征探明,煤灰受热温度高于1.000℃时,偏高岭石等矿物质分解转化成石英和莫来石等高熔点矿物质是造成原煤灰熔点过高的主要原因。通过添加助熔剂与煤灰中矿物质反应生成三元或四元的低共熔体能有效降低煤的灰熔点。
     2)灰中硅铝比值在2.33时,通过添加助熔剂调节酸碱比值到0.82-1.50之间或添加生物质调节煤灰中的硅铝比值到2.15-2.60之间,煤灰熔融性温度均可降低至1350℃以下,完全达到液态排渣气化技术对灰熔点的要求。
     3)在煤灰和模拟煤灰中添加不同助熔剂降低煤灰熔点的规律一致,即在灰中添加碱性氧化物Na2O、CaO和Fe2O3任一单一助熔剂均能降低煤灰熔点,且助熔效果为Na2O>CaO>Fe2O3.另外不同比例的CaO和Fe2O3复合助熔剂也可以有效降低煤灰熔融性温度,CaO和Fe2O3之间存在协同效应,且最佳的复合比为3:1(质量比)。
     4)在相同气化温度下,具有较高变质程度的东山煤的气化反应活性显著高于中等变质程度的西山煤,钠基和复合助熔剂都对二者的煤气化反应起到催化作用,但钠基助熔剂的催化能力强于复合助熔剂。添加助熔剂后两个煤的气化反应活性大小与原煤的顺序一致,但是由于助熔剂的作用缩小了二种煤气化反应活性间的差异。
     5)东山和西山原煤及添加助熔剂后煤样的水蒸气气化研究发现,不同样品煤气中H2/CO比均随气化温度的升高呈现下降的趋势。适合高温气化的复合助熔剂和低温气化的钠基助熔剂,均在不同程度上提高了煤气中H2/CO的比值,特别是钠基助熔剂的引入使煤气中H2/CO的比值随温度变化更明显,可以满足不同化学品生成目的对合成气的需求。
Great attentions have been focused on the high efficiency utilization of poor quality coal with high ash fusion temperature since the primary energy is now in a state of short supply. Recently coal gasification technology is developing towards thigh temperature and pressure, slag-tap gasification, which bring opportunities for the utilization of poor quality coal. The ash fusion temperature (AFT) of coal should be lower about 100℃than the operation temperature of the slag-tap gasification technology in order to make sure normal runing of the slagging system. The poor quality coal reserves which AFT is higher than 1500℃account for about 50% of the coal gross reserves and those coals are not suitable for slag-tap gasification. So it is important work to decrease the AFT of those coals to meet the demand of the slag-tap gasification technology. If this goal can be realized, lots poor quality of coal can feed in gasifier, not only increase the coal utilization efficiency but also alleviate the energy crisis in some extent.
     For the above purpose, the major oxides that exist in the coal ash were regarded as the research objects for the present study. The mechanism that the fluxing agents could decrease the AFT were obtained through the analysis of the ternary phase diagram of SiO2-Al2O3-CaO and the simulation ash experiment. Combined TG-DSC and XRD, the consistent mechanism of decreasing the AFT could be further explained. Based on the mentioned mechanism, the following conclusion, which was applicable in both simulation and real ash, could be drawn as a general rule to explain why the AFT was decreased when fluxing agents were added, the contents of the major oxides were adjusted and the ternary or quaternary mixture system which have low melting point were formed. In the simulation ash and real coal ash experimental process, two most effective fluxing agents which could guarantee the AFT in an idea temperature interval were got. In order to investigate the impacts that fluxing agents imposed on the coal char reactivity and the producer gas formation rule, the STA449 F3 simultaneous thermal analyzer was used in this experiment. Some significant results were obtained.
     1) Combinating XRD and TG-DSC analysis, it was found some high melting minerals such as quartz and mullite can be formed when the temperature was higher than 1000℃and lead to a high ash fusion temperature, And the low eutectic minerals are formed by adding fluxing agents during the coal ash heating process which was the reason the AFT of coal can be decreased remarkably.
     2) Adjusting acid-base ratio of coal ash to 0.82-1.50 by adding fluxing agent or silica-alumina ratio to 2.15-2.60 by blending biomass the AFT of coal can come down the required temperature of slag-tap gasification which was under 1350℃.
     3) The ash melting point of coal which is higher than 1500℃was decreased evidently by adding any one of the fluxing agents of Na2O, CaO or Fe2O3, and the fluxing effect was in the order of Na2O> CaO> Fe2O3. In addition, the AFT of coal was also decreased remarkably when both CaO and Fe2O3 added in the coal ash due to some synergy effects between each other and the optimum mass ratio of CaO and Fe2O3 is 3:1.
     4) It was found that coal char reactivity was enhanced after fluxing agent used to reduce the AFT of coal, and the catalytic effect of Na-based fluxing agent was superior to multi-fluxing agent containg CaO and Fe2O3 with a mass ratio of 3:1. In addition, the coal char reactivity of two coals order was not changed when multi-fluxing agent was added and Na-based fluxing agent had limited function in changing the reactivity of different rank coal.
     5) It was found that the H2/CO molar ratio of gas all demonstrated downward trends with the gasification temperature increased for Dongshan and Xishan raw Coal as well as the two coals with fluxing agents. The composite fluxing agent was fit for high temperature gasification and Na-based fluxing agent did for low temperature gasification. And the two kinds fluxing agents all made the gas molar ratio of H2/CO change obviously with operation temperature up and the function of the latter one was more evident which could satisfy the synthetic requirements for different chemical products.
引文
[1]BP Statistical Review of World Energy June 2010 http://www . bp.com/ statisticalreview.
    [2]肖云汉.以煤气化为基础的多联产技术创新[J].中国煤炭,2008,34(11):12-15.
    [3]BP Statistical Review of World Energy June 2009. http://www. bp. com/ statisticalreview.
    [4]房倚天,王洋,马小云等.灰熔聚流化床粉煤气化技术加压大型化研发新进展[J].煤化工,2007,128(1):11-15.
    [5]Liu K., Song C.S. and Velu S.. Hydrogen and syngas production and purification technologies.2010, John Wiley & Sons, Inc., New Jersey.
    [6]王锦,贺根良,朱春鹏等.煤气化技术选择依据[J].广州化工,2009,37(5):26-28.
    [7]刘成周.煤气化技术新进展[J].科技情报开发与经济,2008,18(35):98-100.
    [8]郭树才,煤化工工艺学.北京:化学工业出版社,2006.
    [9]沙兴中,杨南星.煤的气化与应用[M].上海:华东理工大学出版社,1995:3-4.
    [10]许志琴,于戈文,邓蜀平.助熔剂对高灰点煤影响的实验研究[J].煤炭转化,2005,7(3):22-25.
    [11]Stanislav V. Vassilev, Kunihiro Kitano, Shohei Takeda. Takashi Tsurue. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology,1995, (45):27-51.
    [12]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006.31-32.
    [13]王辅臣,于广锁,龚欣等.大型煤气化技术的研究与发展[J].化工进展,2009.28(2):173-180.
    [14]Fucheng Wang. Coal gasification technology application and development in China[C], ISGA2008, Shanghai,2008,12.
    [15]Xiaolei Guo, Zhenghua Dai, XinGong, et. al. Performance of an entrained-flow gasification technology of pulverized coal in pilot-scale plant[J], Fuel Processing Technology,2007,88:451-459.
    [16]Y. Ninomiya, A. Sato. Ash Melting Behavior Under Coal Gasification Condition[J]. Energy Convers,1997,38:1405-1412.
    [17]郝丽芬,李东雄,靳智平.灰成分与灰熔融性关系的研究[J].电力学报2006,21(3):293-295.
    [18]J. C. VanDyk, S. A. Benson, M. L. Laumb, B. Waanders. Coal and Coal Ash Characteristics to Understand Mineral Transformations and Slag Formation[J]. Fuel, 2009,88:1057-1063.
    [19]张堃,黄镇宇,修洪雨等.煤灰中化学成分对熔融和结渣特性影响的探讨[J].热力发电,2005,12:27-30.
    [20]戴爱军.煤灰成分对灰熔融性影响研究[J].洁净煤技术,2007,5:23-26.
    [21]Giilhan O zbayoglu, M. Evren O zbayoglu. A new approach for the perdiction of ash fusion temperature:A case study using Turkish lignites [J]. Fuel,2006,85:545-552.
    [22]Li Hanxu, Yoshihiko Ninomiya, Dong Zhongbing, et al. Application of the FactSage to predict the ash melting behavior in reducing conditions[J]. Chinese J. Chem. Eng., 2006,14(6):784-789.
    [23]马艳芳,李侃社,李积珍.几种主要氧化物对神华煤灰灰熔点的影响[J].青海大学学报,2007,25(6):4-8.
    [24]J.C. van Dyk, L.L.Baxter, J.H.P. van Heerden, et. al. Chemical Fractionation Tests on South African Coal Sources to Obtain Species-specific Information on Ash Fusion Temperatures (AFT) [J]. Fuel,2005(84):1768-1777.
    [25]李继炳,沈本贤,李寒旭等.铁基助熔剂对皖北刘桥二矿煤的灰熔融特性影响研究[J].燃料化学学报,2009,37(3):262-265.
    [26]Li Jie, Du Mei-fang, Yan Bo, et. al. Quantum and Experimental Study on Coal Ash Fusion with Borax Fluxing Agent[J].2008,36(5):519-523.
    [27]Li Jibing, Shen Benxian, Li Hanxu, et al. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No.2 Coal Mine in Wan-bei[J]. Journal of Fuel Chemistry and Technology,2009,37(3):262-265.
    [28]Li Jibing, Shen Benxian, Zhao Jigang, et al. Effect of flux on the melting characteristics of coal ash for the Liuqiao No.2 Coal Mine [J]. Journal of China Coal Society,2010,35(1):140-144.
    [29]Qiu J.-R., F. Li, Zheng Y., Zheng C.-G., et. al. The Influences of Mineral Behaviour on Blended Coal Ash Fusion Characteristics[J]. Fuel,1999,78:963-969.
    [30]Chen Yushuang, Zheng Zhongxiao, Wu Xiaojiang, et al. Quantum Chemistry Calculation and Experimental Study on Coal Ash Fusion Characteristics of Blend Coal [J]. Journal of China Coal Society,2009,37(5):521-526.
    [31]Wu Xiaojiang, Zhang Zhongxiao, et al. Main Mineral Melting Behavior and Mineral Reaction Mechanism at Molecular Level of Blended Coal Ash under Gasification Condition[J]. Fuel Processing Technology,2010,1-10.
    [32]李继炳,沈本贤,李寒旭等.配煤对煤灰熔点的影响及灰熔点预测模型研究[J].洁净煤技术.2009,15(5):66-70.
    [33]Xiaojiang Wu, Zhongxiao Zhang, Yushuang Chen et al. Main Mineral Melting Behavior and Mineral Reaction Mechanism at Molecular Level of Blended Coal Ash under Gasification Condition[J]. Fuel Processing Technology,2010,1-10.
    [34]杨建国,刘志,赵虹等.配煤煤灰内矿物质转变过程与熔融特性规律[J].中国电机工程学报,2008,28(14):61-67.
    [35]J.-R. Qiu, F. Li, Y. Zheng, et. al. The Influences of Mineral Behaviour on Blended Coal Ash Fusion Characteristics[J]. Fuel,1999,78:963-969.
    [36]李明,李伟东,李伟锋等.污泥对神府煤灰熔点的影响[J].燃料化学学报,2009,37(4):416-420.
    [37]陈龙,张忠孝,乌晓江等.用三元相图对煤灰熔点预报研究[J].电站系统工程,2007,23(1):22-24.
    [38]邓芙蓉,杨建国,赵虹.利用TG-DSC方法研究煤灰熔融特性.煤炭科学技术,2005.33(2):46-49.
    [39]冯洁,傅培舫,周怀春.煤灰相变及其机理的研究[J].中国工程热物理年会学术会议论文.
    [40]刘志,杨建国,赵虹.配煤煤灰熔融特性的热分析研究,电站系统工程,2006,22(3):4-6.
    [41]李平,梁钦锋,刘霞等.助熔剂对高灰熔点煤灰流动温度的影响,华东理工大学学报(自然科学版)[J].2010,36(4):475-481.
    [42]王勤辉,揭涛,李小敏等.反应气氛对不同煤灰烧结温度影响的研究[J].燃料化 学学报,2010,38,(1):17-22.
    [43]于戈文,王延铭,徐元源.弱还原性气氛条件下CaO对高灰熔点煤灰熔融性影响的研究[J].内蒙古科技大学学报,2007,26(1):59-62.
    [44]魏雅娟,李寒旭.高温弱还原性气氛下MgO的助熔机理[J].安徽理工大学学报,2008,28(4):74-77.
    [45]龚德生.煤灰的高温粘度模型[J].热力发电,1989,(1):32-37.
    [46]张德祥,邵群,王朝臣.不同气氛下的煤灰熔融性研究[J].煤炭科学技术,1996,24(9):18-20.
    [47]Nigel V.R., Fraser V.and Jim W. The roles of lime and iron oxide on the formation of ash and deposits in PF combustion[J]. Fuel,2002,81:673-681.
    [48]景妮洁,王勤辉,骆仲泱等.气化条件下压力影响灰熔融特性的实验研究[J].热科学与技术,2010,9(1):75-78.
    [49]谷小虎,曹敏,王兰甫等.煤灰对气化反应性的影响[J].煤化工,2009,2:19-21.
    [50]唐黎华,张娜,王福明等.助熔剂对煤焦高温气化反应性的影响[J].燃料化学学报,2003,31(3):209-14.
    [51]沙兴中,杨南星.煤的气化与应用[M].上海:华东理工大学出版社,1995:53-56.
    [52]Yasuo Ohtsuka, Kenji Asami. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catalysis Today,1997,39:111-125.
    [53]Dimple Mody Quyn, Hongwei Wu, Jun-ichiro Hayashi, et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel,2003,82:587-593.
    [54]Yoshiyuki Nishiyama, Catalytic gasification of coals — Features and possibilities[J]. Fuel Processing Technology,1991, (29):31-42.
    [55]赵新法,杨黎燕,石振海.煤中矿物质在气化反应中的催化作用分析[J].煤炭技术,2005,24(1):103-105.
    [56]张泽凯.煤炭的催化气化及其反应动力学研究[D].西安:西安交通大学,2003.
    [57]孟磊,周敏,王芬.煤催化气化催化剂研究进展[J].煤气与热力,2010,30(4):18-22.
    [58]肖睿,金保升,欧阳嘉等.空气鼓风流化床煤部分气化炉煤气成分与热值试验 [J].动力工程,2004,24(3):416-420.
    [59]王俊琪,方梦祥,骆仲泱等.煤的空气、水蒸气部分气化特性研究[J].热力发电,2008,37(1):21-25.
    [60]向文国,赵长遂,庞克亮.催化剂对天然焦-蒸汽气化特性的影响[J].中国电机工程学报,2009,29(8):45-49.
    [61]朱廷钰,王洋.氧化铁与碳酸钾对煤温和气化的影响[J].化学反应工程与工艺.2000,1(2):203-208.
    [62]林歆.煤灰熔融性测定需注意的几个问题[J].煤质技术,2004,46-48.
    [63]http://emuch.net/html/201006/2126426.html:2010-8-31.
    [64]Wei Cundi, Ma Hongwen, YangDianfan, et al. Phase Transformation for Calcined Coalmeasures Kaolinite[J]. Journal of the Chinese Ce-ramic Society,2005,33(1): 77-81.
    [65]Wang Quanqing, Zeng Pujun. Present situation of the study of coal ash-fusibility and its main points[J]. Coal Conversion,1997,20(2):32-37.
    [66]Yang Jianguo, Liu Zhi, Zhao Hong, Cen Kefa. Minerals Transition Process and Melting Characteristics of Blended Coal-ashes[J]. Proceedings of the CSEE,2008, 28 (14):61-66.
    [67]Chen Long, Zhang Zhongxiao, Wu Xiaojiang, et al. An Experiment Study on Ash Fusibility under Weak Deoxidation Atmosphere and Oxidation Atmosphere[J]. Power System Engineering,2007,23(1):22-24.
    [68]Vassilev S.V., Kitano K., Takeda S. and Tsurue T.. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology,1995, 45, (1):27-41.
    [69]高福烨,李帆.煤的高温灰在加热过程中的行为研究[J].燃料化学学报,1989,17(2):175-182.
    [70]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006.172-173.
    [71]向银花,王洋,张建民等.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J].燃料化学学报,2002,30(2):108-112.
    [72]周军,张海,吕俊复等.高温下热解温度对煤焦孔隙结构的影响[J].燃料化学学 报,2007,35(2):155-159.
    [73]王鹏,文芳,步学朋等.煤焦与CO2及水蒸气气化反应的研究[J].煤气与热力,2005,25(3):1-6.
    [74]肖新颜,李淑芬,柳作良.煤焦与水蒸气加压气化反应活性的研究[J].煤化工1998,4:53-56.
    [75]耿家锐,沈强华,刘俊场.焦炭反应性影响因素研究现状及展望[J].云南冶金,2009,38(2):59-62.
    [76]文芳.热重法研究煤焦H20气化反应动力学[J].煤炭学报,2004,29(3):350-353.
    [77]曹敏,王敏,谷小虎等.煤焦加压气化反应性研究[J].化学工程,2010,38(12):85-88.
    [78]唐黎华,吴勇强,朱学栋等.高温下制焦温度对煤焦气化活性的影响[J].燃料化学学报,2002,30(2):16-20.
    [79]邓一英.煤焦在加压条件下的气化反应性研究[J].煤炭科学技术,2008,33(8):106-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700