新型电感储能脉冲功率源及其驱动S波段锥形MILO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高功率微波的应用对脉冲功率技术和高功率微波源技术提出新的要求是向小型化和长脉冲方向发展。电感储能脉冲功率源和磁绝缘线振荡器(Magnetically insulated transmission line oscillator,简称MILO)作为各自领域内向该方向发展的重要候选者之一得到了广泛关注。本文在对新型电感储能脉冲功率源电路进行理论分析和数值计算研究的基础之上,研制了一台基于新方案的脉冲功率源,同时还研制了一个和该脉冲功率源相匹配的S波段15Ω锥形MILO负载,并进行了联调实验。
     本文的主要研究内容有以下几个方面:
     1)在研究传统电感储能脉冲功率源工作原理基础之上,开展了新型电感储能脉冲功率源工作原理的理论分析与数值计算研究。新方案的核心思想是利用传输线的延时隔离作用,将两个电感的放电时刻在时间上进行错开,从而起到改善输出波形质量的作用。采用等效电路的方法推导出了储能电感放电计算公式,表明新方案是将传统电感指数衰减放电波形转换成指数衰减放电波形和正弦阻尼振荡放电波形的叠加,从而达到改善波形质量的作用。同时,新方案还具有降低阻抗以及提高能量转换效率等优点。此外,还得到了当储能电感L2和传输线电容C2以及负载电阻RL所组成串联回路品质因数满足Q≈1时可获得最大能量转换效率的结论。PSpice电路仿真实验验证了理论分析结果。
     2)在理论分析和数值计算研究的基础之上,开展的原理性实验初步验证了理论设计的正确性。在此基础之上,再通过对关键部件的调研、选取、结构设计以及静电场分析等,研制了一台基于新方案的脉冲功率源。开展了该脉冲功率源电路参数测试工作并驱动水电阻假负载进行了实验研究,实验结果验证了电路仿真计算结果。
     3)在调研、比较和理论分析的基础之上,设计了S波段15Ω锥形MILO负载并开展了实验研究。从MILO的色散关系出发,设计了器件结构尺寸,并进行了模拟优化和实验研究。该器件在电压500kV,电流35kA的条件下获得了效率11%、功率2GW、频率2.65GHz的高功率微波输出。MILO在长脉冲情况下运行的研究结果表明,脉冲功率源输出电压波形质量差是造成微波波形质量较差的关键因素。对不同负载结构对微波输出性能影响的研究表明,采用石墨负载收集极是一个良好的选择。
     4)开展了新型电感储能脉冲功率源驱动二极管的实验研究。通过对所研制的脉冲功率源驱动虚阴极振荡器(Virtual cathode oscillator,简称VCO)、15ΩMILO、20ΩMILO等作为二极管负载的实验研究,明确了脉冲功率源的工作特性。对二极管电流和电爆炸丝根数与充电电压比值(n/Uc)的关系研究表明,存在最优的n/Uc,可使脉冲功率源获得最大的电流输出。调整陡化开关气压的研究表明,合理的开关气压是获得良好脉冲波形质量的保证。改变储能电感L2的研究表明,通过调整电感大小容易改变输出波形。对实验中出现的脉冲缩短问题进行了深入研究,明确了二极管击穿和电爆炸丝开关沿面爬电是发生脉冲缩短问题的主要原因。开展了驱动S波段15Ω锥形MILO的初步实验研究,在二极管电压300kV、电流22kA、脉冲宽度214ns的条件下,获得了功率200MW、脉冲宽度66ns的高功率微波输出。
     5)在理论分析和实验研究的基础之上,提出了紧凑化的设计思想,开展了紧凑化结构设计。详细介绍了紧凑化设计思路,对各关键部件进行了结构设计和静电场分析,得到了长不超过1m,直径不超过0.65m,技术指标为电压500kV、电流34kA、脉冲宽度160ns的紧凑化结构模型。另外还提出了全固态化设想并进行了电路仿真验证。
The applications of high power microwave require that the pulsed power technology and high power microwave source technology develop towards the direction of miniaturization and long pulse. As one of important candidates in their respective fields, an inductive energy storage pulsed power source and a magnetically insulated transmission line oscillator (MILO) have attracted the attention of many researchers. In this dissertation, based on the theoretical analysis and simulation calculation of the working mechanism and operation properties of the novel inductive energy storage pulsed power source, an experimental inductive energy storage pulsed power souce has been designed and fabricated, at the same time, a MILO which can be used as a matching load of the pulsed power source has also been studied. Experiments of using this pulsed power source to drive the MILO have also been carried out.
     This dissertation mainly consists of the following aspects.
     1) Based on the systematic study of the traditional inductive energy storage pulsed power source, the theoretical analysis and simulation study of the working mechanism and operation properties of the novel inductive energy storage pulsed power source have been carried out. The basic thought of the novel technology is that by the help of the delay time of the transmission line, the beginning times of the different inductors discharge can be isolated, so that the output waveform can be improved. Considering the transmission line as a capacitor, the novel principle circuit has been simplified and the discharging formula of the inductor has been derived. The formula shows that the novel technology changes the traditional pure exponentially decayed discharging waveform into a combination of an exponentially decayed discharging waveform and a sinusoidally damped oscillation discharging waveform, which is the very reason why the waveform is improved. Further numerical calculation indicates that the novel technology also has the advantages of decreasing the output impedance and increasing the energy transfer efficiency. Additionally, when the RLL2C2 circuit quality factor Q≈1 is satisfied, the maximum energy transfer efficiency can be obtained. Circuit simulation results are in agreement with the theoretical results.
     2) Based on the theoretical and simulation study, the theory of the new design has been proved by the principle experiments. Through the survey, choice, structure design and static electrical field ananlysis for the key parts, an experimental device has been designed and fabricated. Measurements of the circuit parameters and experiments of the water resistance dumy load by the pulsed power source have also been carried out. Experiments with the dumy load have validated the simulation results. 3) Based on the investigation, comparison and analysis, an S-band tapered MILO with an impedance of 15Ωhas been designed and studied experimentally. Through the dispersion curve of the MILO, preliminary structure parameters were designed. With the help of the PIC code and the electromagnetic analysis software, the optimized structure parameters have been obtained. Micorwave with an averaged power of 2GW, a frequency of 2.65GHz and an efficiency of 11% has been achieved under the diode voltage of 500kV and the current of 35kA in the improved structure.The study of the MILO under the long pulse operation shows that the poor diode voltage waveform results in the poor microwave waveform. The effect study of different load structures on the output feature indicates that the graphite load is a better choice for long pulse operation.
     4) The diode driven by the experimental device has been studied experimentally. Operation properties of this device have been obtained through the experimental study of its driving different diode loads such as the virtual cathode oscillator (VCO), the MILO with the impedance of 15Ωand another MILO with the impedance of 20Ω. The study of the relation between the diode current and the ratio of the electrically exploded wires number and the charging voltage shows that there exists the optimal value of n/Uc which can make the pulsed source get the maximum current output. The study of adjusting gas pressure in the chopping switch shows that reasonablely controlling the gas pressure is the promise for the better output waveform. The study of changing the energy storage inductive value (L2) shows that the output waveform is easy to be changed by adjusting the inductive value. The pulse shortening is caused by the diode breakdown and the surface flashover of the electrically exploded opening switch through the study of pulse shortening phenomena. In the experimental study of this device’s driving the S-band MILO with the impedance of 15Ωto generate high power microwave, an output with an averaged power of 200MW and the pulse width of 66ns has been obtained under the diode voltage of 300kV,the current of 22kA and the pulse width of 214ns.
     5) Based on the theoretical analysis and experimental study, a concept about the compact structure design has been presented and the preliminary integrated design has been carried out. Through the especial structure design and the static electric field analysis of the key parts, a structure model of the pulsed power source with the length of less than 1m and the width of less than 0.65m has been obtained, which can be worked safely under the diode voltage of 500kV and the current of 34kA. Additionally, a concept design of a full solid state source has also been presented and simulated.
引文
[1]韩文辉,郝世荣,戴英敏,王敏华,谢卫平,张南川.电感储能功率调节装置小型化设计,爆轰波与冲击波,2006,(2):84-87.
    [2]郝世荣,王敏华,韩文辉,高贵山,张南川,谢卫平,高顺受.电感储能功率调节系统驱动低电阻负载研究.爆轰波与冲击波,2001,(1):26-30.
    [3]王莹.电感储能和爆炸导体断路型强脉冲电源的负载特性分析.原子能科学技术, NO.4(25), 1991,25(4):55-60.
    [4]谢卫平,郝世荣,王敏华,韩文辉,张南川,应纯同.一种基于电感储能技术的紧凑型高功率脉冲源.高电压技术,2004,30(1):41-42.
    [5]高顺受,杨礼兵,陈英石,孙承纬.电感储能脉冲功率调节系统的研究.爆轰波与冲击波1997,17(1):50-56.
    [6]郝世荣,韩文辉,王敏华,张南川,谢卫平,戴英敏,刘伟. 20GW低阻负载电感储能功率调节装置研究.强激光与粒子束,2004,16(2):223-226.
    [7] Giesselmann M, Zhang J, Heeren T, Kristiansen, Dickens J, Castro D, Garcia D, Kristiansen M. Pulse Power Conditioning with a Transformer for an Inductive Energy Storage System. IEEE, 1999,1476-1479.
    [8] Eugeny V C, Fortov V E, Kirill V G, Eugeny V N, Vadim A S, Vladimir P S. Accelerator for High Power Microwave generation. Proceedings of the 11th International Conference on High Power Particle Beams, Prague, Czech Republic, 1996, (1):457-460.
    [9] Fortov V E, Kamensky V A, Mihailov V M, Nesterov E V, Petrov V Y, Plaksina S D, Roschupkin S A, Shumilin V P, Stroganov V A. Development of Accelerator For High-Power Microwave Applications Based on the Forming Line Supplied with Current. BEAMS '98.
    [10] Zherlitsyn A G, Kanaev G G, Tsvetkov V I. A High-Current Nanosecond Electron Accelerator with Inductive Energy Storage. Instruments and Experimental Techniques, 2005, 48(5):84-87.
    [11] Zherlitsyn A G, Kanaev G G, Tsvetkov V I. Intense microwave pulse production from vircators with inductive energy storage.
    [12] Shimomura, Hidenori A, Maeda S. Compact Pulsed Power Generator by an Inductive Energy Storage System With Two-Staged Opening Switches. IEEE Trans. Plasma Sci., 1991, 19(6):1220-1227.
    [13]《高功率微波源与技术》翻译组译.高功率微波源与技术.北京:清华大学出版社,2005.
    [14]吴诗信,莫伯锦,译.高功率微波.成都:电子科技大学出版社,1996.
    [15] Benford J, Swegle J A, Schamilglu E. High Power Microwave (secondedition).New York: Taylor & Francis, 2006.
    [16] R.W. Lemke, S.E.Calico, Clark M C. Investigation of a Load-limited Magnetically Insulated Transmission Line Oscillator (MILO). IEEE Trans. Plasma Sci., 1997, 25:364-374.
    [17] Haworth M D, Luginsland J W, and Lemke R W, Evidence of a new pulse-shortening mechanism in a load-limited MILO, IEEE Trans. Plasma Sci., 2000,28(3):511–516.
    [18] Haworth M, Allen K, Baca G, Benford J, Engelert T, Hackett K, Hendricks K, Henley D, Lemeke D, Price D, Ralpha D, Sena M, Shiffer D, Spencer T. Recent Progress in the Hard-Tube MILO Experiment. Proc of SPIE, 1997, 3158:28
    [19] Shiffler D, Baca G, Englert T, Haworth M D, Hendricks K J, Henley D, Sena M, and Spencer T A. Investigation of RF breakdowns on the MILO, IEEE Trans. Plasma Sci., 1998,26(3): 304-311.
    [20] Haworth M D, Luginsland J W, and Lemke R W, Improved cathode design for long-pulse milo operation. IEEE Trans. Plasma Sci., 2001, 29(2):388–391.
    [21] Haworth M D, Luginsland J W, and Lemke R W, Improved electrostatic design for milo cathodes, IEEE Trans. Plasma Sci., 2002,30(3):992–997.
    [22] Haworth M, Hendricks K, Voss D, Guarnieri R, Sena M, LaCour M, Ralph D, Cavazos T. Cathode development for the hard-tube MILO, IEEE International Conference on Plasma Science. 1999. 7P59.
    [23] Shiffler D A, LaCour M J, Sena M D, Mitchell M D, Haworth M D, Hendricks K J, and Spencer T. Comparison of carbon fiber and cesium iodide coated carbon fiber cathodes, IEEE Transactions on Plasma Science. 2000, 28(3):517-522.
    [24] Haworth M, Cartwright K, Golby K, LaCour M, Luginsland J, Ralph D, Sena M, Shimer D, and Umstattd R. Experimental test of focusing electrodes on repetitively pulsed MILO cathodes. Conference Record of the 29th IEEE International Plasma Science,Abstracts, p182.
    [25] Calico S E, Clark M C, Scott M C. Experimental results of a high power rep-rate velvet cathode. Proceedings of the tenth IEEE International Pulsed Power Conference, 1995. 677-681.
    [26] Eastwood J W, Hawkins K C, and Hook M P. The tapered MILO, IEEE Trans. Plasma Sci., 1998, 26(3):698-713.
    [27] Eastwood J W, Hook M P, and Hawkins K C, Development of the tapered MILO. Vacuum Electronics Conference, Abstracts. International. 2000, 19.1.
    [28]刘松,刘永贵,舒挺,钱宝良.渐变型C波段磁绝缘线振荡器,强激光与粒子束, 2001;13(1): 93.
    [29]张晓萍,钟辉煌,张建德,舒挺,刘永贵,李传胪.利用负载电流产生微波的新型MILO.强激光与粒子束, 2003,15(1):80-84.
    [30]张晓萍、钟辉煌、舒挺,袁成卫,王勇,赵延宋,罗玲. C波段磁绝缘线振荡器的理论设计与实验,强激光与粒子束,2005,17(8).
    [31]张晓萍.新型磁绝缘线振荡器的研究:博士论文.长沙:国防科技大学,2004.
    [32]靳振兴,张晓萍,钱宝良. P波段混合型MILO的粒子模拟,强激光与粒子束,2007,19 (6):923-926
    [33]樊玉伟,舒挺,李志强.紧凑型L波段磁绝缘线振荡器的粒子模拟.强激光与粒子束. 2003, 15(12).
    [34]孙会芳,董志伟,姜幼明.改进型磁绝缘线振荡器(MILO)的设计和数值模拟.强激光与粒子束,2003,15(12):1220-1224.
    [35]王冬,范植开,陈代兵,邓景康,郭焱华,何琥,龚海涛,安海狮.双阶梯阴极型磁绝缘线振荡器设计与模拟.强激光与粒子束,2007,19(4):647-650.
    [36]郭焱华,范植开,何琥,陈代兵,王冬. C波段磁绝缘线振荡器的数值模拟.强激光与粒子束,2007,19(2):284-287.
    [37]樊玉伟,舒挺,王勇,李志强,周津娟,赵延宋.紧凑型L波段磁绝缘线振荡器的实验设计.强激光与粒子束. 2004, 16(6):767-769.
    [38]樊玉伟,舒挺,王勇,李志强,周津娟,赵延宋.紧凑型L波段磁绝缘线振荡器的实验研究.强激光与粒子束. 2004, 16(11) :1453~1456.
    [39]陈代兵,范植开,周海京,高凤琴,何琥,郭焱华,王冬,王晓东,龚海涛,安海狮. L波段硬管磁绝缘线振荡器的研制.强激光与粒子束,2007,19 (8):1352-1356.
    [40]陈代兵,范植开,董志伟,许州,周海京,郭焱华,何琥,龚海涛,安海狮.阶梯阴极型L波段MILO的实验研究.强激光与粒子束,2007,19(5):820-824.
    [41] Lemke RW and Clark M C, Theory and simulation of high-power microwave generation in a magnetically insulated transmission line oscillator, J. App. Phys., 1987, 62(8): 3436- 3440.
    [42] Lemke R W, Demuth G E, and Biggs A W, Theoretical and experimental investigation of axial power extraction from a magnetically insulated transmission line oscillator, Proceedings of SPIE, Intense Microwave and Particle Beams. 1990, 1226:199~208.
    [43] Calico S E, Clark M C, Lemke R W, Scott M C. Experimental and theoretical investigations of a magnetically insulated line oscillator (MILO), Proceedings of SPIE, Intense Microwave PulsesⅢ, 1995, 2557:50-59.
    [44] Haworth M D, Baca G, Benford J N, Englert T, Hackett K, Hendricks K J, Henley D, Lacour M, Lemke R W, Price D, Ralph D, Sena M, Shiffler D, and Spencer T A. Significant pulse-lengthening in a multigigawatt magnetically insulated transmission line oscillator, IEEE Trans. Plasma Sci., 1998, 26(3):312-319.
    [45] Balakirev V A, Markov P I, Sotnikov G V, Tkach Y V. Generation of UHF oscillations in slowing down lines with magnetic insulation. Electronics and Radiophysics of Ultra-High Frequencies, International University Conference Proceedings, 1999, 170-173.
    [46] Kim D H, Jung H C, Min S H, Wang M C, Rhee M J, and Park G S. Experimental investigation of giga-watt magnetically insulated transmission line oscillator (MILO) by improved axial power extraction. Vacuum Electronics Conference, 2006 held Jointly with 2006 IEEE International Vacuum Electron Sources., IEEE International. 2006, 561-562.
    [47] Cousin R, Larour J, Gouard P, and Raymond P. Evidence of the 3π/4 interaction mode in a compact magnetically insulated line oscillator process. J. App. Phys., 2006, 100(8), 084512:1-5.
    [48] Fan Y W, Zhong H H, Li Z Q, Shu T,Zhang J D, Liu J L, Yang J H, Zhang J, Yuan C W, Luo L, Recent progress of the improved MILO. Review of Scientific Instruments, 2008,79(3)
    [49]沈龙根.脉冲功率技术基础.内部资料.
    [50]曾正中.实用脉冲功率技术引论.陕西科学技术出版社,2003.
    [51]刘锡三.高功率脉冲技术.国防工业出版社,2005.
    [52]李国政.译真空放电物理和高功率脉冲技术.北京:国防工业出版社.
    [53] Shimomura N, Nagata M, Akiyama H. Compact Pulsed Power Generator Using a Marx Circuit and an Optimized Exploding Wire. the 11th IEEE International Pulsed Power Conference, 1997.
    [54] Choi P. Inductive line energy storage generator. Pulsed Power '97.
    [55]李永平,董欣. PSpice电路设计实用教程.北京:国防工业出版社,2004.
    [56] Grygryev V P, Potashev A G. User’s Instruction for the Use of Electric Circuit Simulation With Using the Code REFORM. Ver. 2.0. 1997.
    [57]杨汉武.爆炸磁压缩发生器及其脉冲功率调制研究.博士学位论文.国防科技大学研究生院, 2002.
    [58] Reinovsky R E, Goforth J H. High Power Opening Switches for Flux Compres-sion Generator Applications– An Overview. Los Alamos National Laboratory. LA-UR -89-1984. 1989.
    [59]李志强,钟辉煌,樊玉伟,杨建华,舒挺,许流荣.新型电感储能型加速器电路设计和原理性实验.四川省电子学会高能电子学专业委员会第五届学术交流会论文集.宁夏银川,2007:116-120.
    [60]海特格西.电感计算(中译本).国防工业出版社,1954.
    [61]杨珍如译.脉冲功率公式汇编.中物院应用电子学研究所.
    [62] H.Bluhm.脉冲功率系统的原理与应用(江伟华,张弛译).北京:清华大学出版社,2008.
    [63]李漫华,邵可然.电感储能型高功率脉冲电源断路开关的最新发展.电机电器技术,2006,6:24-28.
    [64]周之奎.电感储能系统的等离子体断路开关.爆轰波与冲击波,2002,2:47-53.
    [65]陈林,孙承纬.等离子融蚀断路开关研究综述.爆轰波与冲击波,2004,3:122-128.
    [66]杨宇.金属丝电爆炸特性及应用研究.硕士学位论文.中国工程物理研究院,2005.
    [67]郝世荣.金属箔电爆炸性能的研究.硕士学位论文.中国工程物理研究院,2002.
    [68]李永忠,张建德,张学书,彭向阳,陈冬群.电爆炸切断开关的实验研究.国防科技大学学报,1998,20(6):74-77.
    [69] Giesselmann M, Heeren T, Neuber A, Walter J, Kristiansen M. High Speed Optical Diagnostics of an Exploding Wire Fuse for Power Conditioning of Explosive Flux Compression. PPPS-2001. Digest of Technical Papers.
    [70] Giesselmann M, Heeren T, Neuber A, Walter J, Kristiansen M. High-Speed Optical Diagnostic of an Exploding Wire Fuse. IEEE Trans. Plasma Sci., 2002,30(1):100-101.
    [71] Poulsen P, Cutting J L. Inductive Store Opening Switch and Tests for Energy Transfer to a Load. Lawrence Livermore National Laboratory. UCRL-100641. 1989.
    [72]“TomaChan”Vacuum Diode with Inductive Energy Storage. Technical Description and Operation Manual.
    [73] Park SS, Kim S H, Heo H, Kim S H, Park Y J, Nam S H. Developments of 500 kV Multi-Channel Multi-Gap Self Breakdown. 0-7803-91 89-6/05. IEEE. 2005.
    [74]梁曦东,关志成,陈昌渔.高电压工程.北京:清华大学出版社,2000.
    [75]张仁豫,陈昌渔,王昌长.高电压试验技术.北京:清华大学出版社,2003
    [76]刘金亮.一种脉冲高压用电阻分压器.高电压技术,1996,22(4):65-67.
    [77]张仁豫,陈昌渔,王昌长.高电压试验技术.北京:清华大学出版社,2003.
    [78]曾正中,邱爱慈.一种陡脉冲高电压电阻分压器的补偿方法.强激光与粒子束, 1993, 5(3):367~373.
    [79]刘振祥.水介质螺旋线型长脉冲加速器的研究.博士学位论文.国防科技大学研究生院,2007.
    [80]欧阳佳.折叠型平板Blumlein线及其应用研究.博士学位论文.国防科技大学研究生院,2007.
    [81]刘金亮.基于水介质螺旋Blumlein线的紧凑型长脉冲加速器研究博士学位论文.清华大学研究生院,2008.
    [82]周传明,刘国治,刘永贵,李家胤,丁武.高功率微波源.原子能出版社,2007.
    [83]樊玉伟.磁绝缘线振荡器及其相关技术研究.博士学位论文.国防科技大学研究生院,2008.
    [84]张克潜,李德杰著.微波与光电子学中的电磁场理论.北京:电子工业出版社,1994.
    [85]顾茂章,张克潜编著.微波技术.北京:清华大学出版社,1989.
    [86]沈致远.微波技术.北京:国防工业出版社,1982.
    [87]张晓萍,钟辉煌.磁绝缘线振荡器同轴慢波结构色散特性分析.强激光与粒子束, 2004,16(3) :363-366.
    [88]慢波结构色散分析程序,个人交流.
    [89] KARAT使用手册.
    [90]张晓萍、钟辉煌、袁成卫.微波源中同轴提取区支撑杆的理论分析与设计.《微波学报》,2004,20(2):46-50.
    [91] Superfish使用手册.
    [92] Halbach K, Holsinger R F. Superfish–a computer program for evaluation of RF cavities with cylindrical symmetry. Particle Accelerators 1976, 7: 213.
    [93]雷禄容,范植开,黄华,何琥.相对论速调管放大器双间隙输出腔的设计和实验.四川省电子学会高能电子学专业委员会第五届学术交流会论文集.宁夏银川,2007.
    [94] Nusinovich G S, Bliokh Yu P, Mode interaction in backward-wave oscillators with strong end Reflections. Phys. Plasmas, 2000, 7(4): 1294-1301.
    [95] Fan Y W, Yuan C W, Zhong H H, Shu T, Zhang J D, Yang J H, Yang H W, Wang Y, and Luo L. Experimental investigation of an improved MILO. IEEE Trans. Plasma Sci., 2007, 35(4): 1075–1080.
    [96]舒挺,王勇,李继健,习锋.高功率微波的远场测量.强激光与粒子束,2003,15(5):48.
    [97]刘克成,宋学诚.天线原理.长沙.国防科技大学出版社, 1989.
    [98]陈宇.远场法高功率微波功率测量中若干问题的研究.硕士学位论文.国防科技大学研究生院, 2005.
    [99] Zhou H, Fan Y W, Shu T,偶极天线用于高功率微波测量的研究. Chinese Physics C, 2008 ,32: 307.
    [100] Li Z Q, Zhong H H, Fan Y W, Shu T, Yang J H, Yuan C W, Xu L R, Zhao Y S. Simulation and Experimental Research of a Novel Vircator. Chinese physics letters. 2008.25(7):2566-2568.
    [101] Li Z Q, Fan Y W, Xu L R. Simulation Research of a Novel MILO. 17thInternational Conference on High-Power Particle Beams.Xi`an, 2008. Hosted by Institute of Fluid Physics, China Academy of Engineering Physics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700