冲击和快速加载作用下钢筋混凝土梁柱构件性能试验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震和冲击荷载等强动力荷载作用造成钢筋混凝土结构破坏,从而导致大量的人员伤亡和巨大的财产损失。钢筋混凝土结构在地震和冲击荷载等强动力荷载作用下存在的应变率效应使其动力性能与静态性能存在较大差异。在冲击荷载下受复杂的应力波传播和惯性效应的影响,结构行为更加复杂。在地震作用的应变率范围内,钢筋混凝土柱的轴向受压动力行为及考虑箍筋约束效应和应变率效应的钢筋混凝土柱的动力行为的试验资料和数值分析研究十分缺乏。在混凝土结构抗冲击性能研究方面,少见无腹筋梁和深梁的抗冲击行为研究的文献,配箍筋钢筋混凝土梁的在冲击荷载下的剪切行为的试验研究数量仍十分有限,对冲击过程中梁的加速度响应及其分布变化未进行详细探讨,影响梁的冲击响应的相关因素(比如配箍率、剪跨比等)的探讨还不够全面。基于此,本文采用试验和数值分析研究相结合的方法,在地震作用的应变率范围内对钢筋混凝土柱的动力行为以及冲击荷载下钢筋混凝土梁和深梁的动力行为进行研究。本文的主要研究工作如下:
     (1)开展了两种不同长细比的钢筋混凝土长柱快速轴心受压加载试验和动力有限元模拟研究,分析了快速加载对不同长细比的柱动态承载力及其对应的变形的影响,阐述了不同长细比的轴心受压柱动态承载力提高的机制,即快速加载下应变率效应和惯性效应在不同长细比下的影响规律。
     (2)提出了同时考虑应变率效应和箍筋约束效应的混凝土塑性模型等效单轴受压本构模型,并基于此利用ABAQUS建立了分析约束钢筋混凝土轴压短柱在快速加载下动力行为的有限元模型。算例分析表明,模拟结果与试验结果吻合良好。通过有限元模型参数分析,得到了配置箍筋构形、箍筋间距和纵筋配筋率对约束钢筋混凝土短柱在地震作用应变率范围内的动态力学性能的影响规律。
     (3)开展了简支无腹筋钢筋混凝土梁的落锤冲击试验研究和有限元分析。通过试验研究重点关注冲击锤重、冲击速度和冲击能量对梁在冲击荷载下梁的破坏过程、典型破坏模式和剪切破坏面的影响,并研究了冲击力、钢筋与混凝土应变时程特点。基于应变数据,推断出梁在冲击过程中的弯矩分布及惯性力分布特点,并在此基础上对单自由度等效模型进行了讨论。采用LS-DYNA建立了分析无腹筋钢筋混凝土梁抗冲击行为的有限元模型,分析了剪跨比、梁顶是否配置纵筋对无腹筋梁的冲击响应的影响规律。
     (4)开展了简支配箍钢筋混凝土梁的落锤冲击试验和有限元模拟。试验研究了不同冲击速度、冲击能量及二次冲击效应对冲击荷载下的梁抗剪行为的影响,得到了不同参数影响下梁的破坏过程、破坏模式特点,详细分析了冲击响应(包括冲击力、支座反力和位移时程曲线以及冲击力-位移曲线和支座反力-位移曲线)的特征。基于实测加速度响应,分析了冲击过程中梁的惯性力分布特点,进而讨论了不同冲击荷载作用下梁斜裂缝开裂模式差异的机理和梁的抗冲击承载力评估方法。采用LS-DYNA建立了分析冲击荷载作用下配箍钢筋混凝土梁动力行为的有限元模型,并分析了配箍率对钢筋混凝土梁的冲击响应的影响规律。
     (5)首次开展了简支钢筋混凝土深梁的落锤冲击试验研究和有限元分析。通过试验研究了两种静载破坏特性的钢筋混凝土深梁在不同冲击速度及二次冲击效应下的动态行为,针对破坏过程和破坏形态、冲击力、跨中位移响应的特点进行了分析,并讨论了深梁的抗冲击承载力的评估方法。采用LS-DYNA建立了分析深梁抗冲击行为的有限元模型,并用试验数据进行了验证,进而研究了配箍率对钢筋混凝土深梁在冲击荷载下的动态响应的影响规律。
Strong dynamic loads such as earthquake action and impact loading destroy the reinforced concrete (RC) structures, and then lead to a great of casualties and economic loss. Under the strong dynamic loads, the behaviors of RC structures are very different from the behaviors under static load because the strain rate effect of materials is induced in RC structures. Under impact loadings, stress wave propagation and inertia effect exist in the structures and make the behavior more complicated. By now, the experimental and numerical studies on the dynamic behavior of RC columns subjected to rapid concentric compressive loadings and the dynamic behavior of RC columns considering the strain rate effect and the confined effect of stirrups together within the range of strain rate corresponding to earthquake action are very limited. For the studies on the behavior of RC structures subjected to impact loadings, little literature reports the studies on the impact-resistant behavior of RC beam without stirrups, deep RC beam and the RC beam with stirrups in shear failure. Little study investigates the response and distribution of acceleration of the RC beam in details and all-around discussion on the influence parameters such as shear span ratio and stirrup ratio is not conducted. So in this study, the dynamic behaviors of RC columns subjected to rapid loading with the strain rate corresponding to earthquake action and the impact-resistant behaviors of RC beams and deep RC beams are investigated experimentally and numerically. The main contents of this study are summarized as follows:
     (1) Experimental study and finite element analysis of slender RC columns with two slenderness ratios under concentric rapid loading are carried out. The effects of rapid loading on the axial compressive load-carrying capacity and the corresponding axial deformation of columns with different slenderness ratios are analyzed according to the experimental and numerical results. Finally, the mechanism for dynamic increase in the strength of the slender RC columns under axial rapid loading is investigated, namely the effect laws of strain rate and inertia effect on the behavior of columns with different ratios.
     (2) An equivalent stress-strain relationship of concrete considering both strain rate sensitivity of concrete materials and confinement effect of stirrups is proposed for the concrete plastic constitutive model in ABAQUS and a FEA model is established to analyze the dynamic behaviour of laterally confined short columns under rapid loadings. With the validation of relative examples, the calculated results using the FEA model are on the whole in good agreement with the experimental results. Based on the proposed analysis model, the influence laws of the following three parameters including the configuration, spacing of stirrups and the ratio of longitudinal reinforcement on the dynamic behaviour of laterally confined short columns considering different strain rate corresponding to earthquake action is studied.
     (3) Falling-weight impact tests and finite element analysis of RC beams without shear-resistant bars are carried out. In the tests, main attentions are paid to the effect of parameters including the weight of impact mass, impact velocity and impact energy on the failure procedure, crack patterns, the characteristics of shear failure surface, also the characteristics of the time histories of impact force and the time histories of strain of concrete and steel rebar. From the data of strains measured, the distribution characteristic of moments and inertia forces along the beams under impact loading are obtained and then discussion on the single degree of freedom system model for analyzing the behaviors of RC beams subjected to impact load is made. For further study, a FEA model for impact analysis of RC beam without shear rebar is established using LS-DYNA and is validated by the test results. Based on the validated FEA model, the effect of parameters referred to shear span ratio, symmetrical reinforcement and impact velocity is analyzed.
     (4) Falling-weight impact tests and finite element analysis on a group of RC beams with stirrups are carried out. In the experiment, the effects of impact velocity, impact energy and the impact times on the shear resistant behavior of RC beams under impact loading are investigated. The crack initiation, propagation and the failure patterns, the characteristics of time histories of impact force, reaction forces and displacement, impact force versus displacement curves, reaction force versus displacement curves are described and analyzed in details. Based on the measured response of acceleration at different positions along the length of the beams, the distribution and effect of the inertia force are analyzed, and further analysis is conducted on the mechanism of the diagonal crack forming under different impact level and discussion on evaluation methods of impact-resistant capacity of RC beams is made. Finally, A FEA model for impact analysis of RC beam is established using LS-DYNA and the effect of the stirrup ratio on the impact response of RC beam is investigated.
     (5) Falling-weight impact tests on simply supported deep RC beams are carried out for the first time and the effects of impact velocity and impact times on two groups of RC deep beams with different static behavior are investigated. The crack initiation, propagation and the failure process, the crack patterns, the characteristics of time histories of impact force and displacement and impact force versus displacement curves are analyzed in details. The evaluation methods of the impact-resistant capacity of RC deep beams under impact loadings are discussed. To investigate the effect of more parameters, a FEA model is established using LS-DYNA to predict the behavior of deep RC beam under impact loading and is validated by the test data. Then the effect laws of stirrup ratio on the impact response of deep RC beams are investigated.
引文
[1]Abrams D A.Effect of rate of application of load on the compressive strength of concrete.ASTM J,1917,17(2):364-377
    [2]Struck W,Voggenreiter W.Examples of impact and impulsive loading in the field of civil engineering.Materials and Structures,1975,8(2):81-87
    [3]Federation Internationale du Beton (FIB).Model Code 2010-First Complete Draft (Volumn 2).fib Bulletin,Lausanne,Switzerland,2010,763-77
    [4]Ngo T,Mendis P,Gupta A,et al.Blast loading and blast effects on structures-an overview.Electronic Journal of Structural Engineering,2007,7:76-91
    [5]Bischoff P H,Perry S H.Compressive behaviour of concrete at high strain rates.Materials and Structures,1991,24(6):425-450
    [6]Gioncu V.Influence of Strain-Rate on the Behavior of Steel Members.In: Proceedings of the Third International Conference STESSA. Canada,Montreal, 2000,19-26
    [7]董毓利,谢和平.不同应变率下混凝土受压全过程的实验研究及其本构模型.水利学报,1997,(7):72-77
    [8]肖诗云,林皋,逯静洲,等.应变率对混凝土抗压特性的影晌.哈尔滨建筑大学学报,2002,35(5):35-39
    [9]闫东明,林皋.混凝土单轴动力压缩特性试验研究.水科学与工程技术.2005,(6):8-10
    [10]肖诗云,张剑.不同应变率下混凝土受压损伤试验研究.土木工程学报,2010a,43(3):40-45
    [11]郑金城,徐超,彭刚,等.预静态加载后的混凝土动力受压特性试验.实验力学,2013,28(3):352-359
    [12]关萍,吴寅,陈雄.单轴反复荷载下混凝土动力抗压性能的研究.建筑结构学报,2008a,(增刊):172-175
    [13]肖诗云,张剑.荷载历史对混凝土动力受压损伤特性影响试验研究.水利学报,2010b,41(8):943-952
    [14]肖诗云,张剑.历经荷载历史混凝土动力受压试验研究.大连理工大学学报,2011,51(1):78-83
    [15]胡时胜,王道荣,刘剑飞.混凝土材料动力力学性能的实验研究.工程力学,2001,18(5):115-118
    [16]胡时胜,王道荣.冲击载荷下混凝土材料的动力本构关系.爆炸与冲击,2002,22(3):242-246
    [17]Comite Euro-International du Beton.CEB-FIP Model Code 1990.Trowbridge, Wiltshire:Redwood Books,1993
    [18]Federation Internationale du Beton (FIB).Model Code 2010-First Complete Draft (Volumn 1).Lausanne,Switzerland,fib Bulletin,2010,763-77
    [19]Soroushian P,Choi K B,Alhamad A.Dynamic constitutive behavior of concrete.ACI Journal Proceedings,1986,83(26):251-259
    [20]李敏.材料的率相关性对钢筋混凝土结构动力性能的影响:[大连理工大学博士学位论文].大连:大连理工大学,2011
    [21]阚永魁.混凝土在快速变形下的抗拉强度.北京:清华大学出版社,1986,84-89
    [22]陈肇元,阚永魁.钢筋高标号混凝土用于抗爆结构的若干问题.北京:清华大学出版社,1986,73-83
    [23]Malvar L J,Crawford J E.Dynamic increase factors for concrete.In:Twenty-Eighth DDESB Seminar.Orlando,1998
    [24]黄承奎,尚仁杰,赵国藩.混凝土动力拉伸试验方法的研究.大连理工大学学报,1997,37(增刊):S111-S115
    [25]John R,Antoun T,Rajendran A.Effect of strain rate and size on tensile strength of concrete.In:Proceedings,1991 APS topical conference on shock compression of condensed matter.London:Elsevier Science Publishers,1992,501-504
    [26]Mellinger F M,Birkimer D L.Measurements of stress and strain on cylindrical test specimens of rock and concrete under impact loading.Technical Report 4-46,U.S. Army corps of Engineers,Ohio River Division Laboratories, Cincinnati,Ohio,1966
    [27]Rossi P,Van Mier J,Boulay C,et al.The dynamic behaviour of concrete: Influence of free water.Materials and Structures,1992,25(9):509-514
    [28]Ross C,Tedesco J,Kuennen S.Effects of strain rate on concrete sstrength.ACI Materials Journal,1995,92(1):37-47
    [29]Ross C A,Jerome D M,Tedesco J W,et al.Moisture and strain rate effects on concrete strength.ACI Materials Journal,1996,93(3):293-300
    [30]Cadoni E.Mechanical characterisation of concrete in tension and compression at high strain rate using a modified hopkinson bar.Magazine of Concrete Research,2009,61(3):221-230
    [31]Weerheijm J,Vegt I,Van Breugel K.The rate dependency of concrete in tension-new data for wet,normal and dry conditions.In:DYMAT 2009:9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading.Brussels,2009,95-101
    [32]Asprone D,Cadoni E,Prota A.Experimental analysis on tensile dynamic behavior of existing concrete under high strain rates.ACI Structural Journal,2009,106(1):106-113
    [33]尚仁杰.混凝土动力本构行为研究:[大连理工大学博士学位论文].大连:大连理工大学,1994
    [34]肖诗云,林皋,王哲,等.应变率对混凝土抗拉特性影响.大连理工大学学报,2001,41(6):721-725
    [35]肖诗云,田子坤.混凝土单轴动力受拉损伤试验研究.土木工程学报,2008,41(7):14-20
    [36]肖诗云,田子坤.历经荷载历史混凝土动力受拉损伤试验研究.工程力学,2010,27(1):123-128
    [37]闰东明,林皋,王哲.变幅循环荷载作用下混凝土的单轴拉伸特性.水利学报,2005,36(5):593-597
    [38]吴胜兴,周继凯,沈德建,等.混凝土动力弯拉试验技术与数据处理方法.水利学报.2009,40(5):569-575.
    [39]Fu H C,Erki M A,Seckin M.Review of effects of loading rate on reinforced concrete.Journal of Structural Engineering,1991,117(12):3660-3679
    [40]Yon J H,Hawkins N M,Kobayashi A S.Strain-rate sensitivity of concrete mechanical properties.ACI Materials Journal,1992,89(2):146-153
    [41]马怀发,陈厚群,黎保琨.应变率效应对混凝土动弯拉强度的影响.水利学报,2005a,36(1):69-76.
    [42]马怀发,陈厚群,黎保琨.细观结构不均匀性对混凝土动弯拉强度的影响.水利学报,2005b,36(7):846-852.
    [43]侯顺载,李金玉,曹建国,等.高拱坝全级配混凝土动力试验研究.水力发电,2002,(1):51-53
    [44]周继凯,吴胜兴,沈德建,等.小湾拱坝三级配混凝土动力弯拉力学特性试验研究.水利学报,2009,40(9):1108-1115
    [45]杜修力,田瑞俊,彭一江.预静载对全级配混凝土梁动弯拉强度的影响.地震工程与工程振动,2009,29(2):98-102
    [46]周继凯,吴胜兴,苏盛,等.小湾拱坝湿筛混凝土动力弯拉力学特性试验研究.水利学报,2010,41(1):73-79
    [47]张艳红,胡晓.武都重力坝碾压混凝土动力弯拉性能的试验研究与数值分析.水利学报,2011,42(10):1218-1225
    [48]Malvar L J,Ross C A.Review of strain rate effects for concrete in tension.ACI Materials Journal,1998,95 (6):435-439
    [49]Dilger W H,Koch R,Kowalczyk R.Ductility of plain and confined concrete under different strain rates.ACI Journal Proceedings,1984,81(1):73-81
    [50]Ahmad S H,Shah S P.Behavior of hoop confined concrete under high strain rates.ACI Journal Proceedings,1985,82(5):634-647
    [51]Gran J K,Florence A L,Colton J D.Dynamic triaxial tests of high-strength concrete.Journal of Engineering Mechanics,1989,115(5):891-904
    [52]Gong J C,Malvern L E.Passively confined tests of axial dynamic compressive strength of concrete.Experimental Mechanics,1990,30(1):55-59
    [53]李祥龙,刘殿书,冯明德,等.钢质套筒被动围压下混凝土材料的冲击动力力学性能.爆炸与冲击,2009,29(5):463-467
    [54]Takeda J,Tachikawa H.Deformation and fracture of concrete subjected to dynamic load.In:Proceedings of International Conference on Mechanical Behavior of Materials.Kyoto,Japan,1971,267-277
    [55]Yamaguchi H,Fujimoto K,Nomura S.Strain rate effect on stress-strain relationships of concrete.In:Proceedings of 4th Symposium on the Interaction of Non-Nuclear Munitions with Structures.Florida,1989,290-295
    [56]鞠庆海,吴绵拔.岩石材料三轴压缩动力特性的试验研究.岩土工程学报,1993,15(5):73-80
    [57]Fujikake K,Mori K,Uebayashi K,et al.Dynamic properties of concrete materials with high rates of tri-axial compressive loads.In:International Conference on Structures under Shock & Impact vi.Cambridge,2000,511-522
    [58]吕培印,宋玉普,吴智敏.变速率加载下有侧压混凝土强度变形特性.大连理工大学学报,2001,11(6):716-720
    [59]吕培印.混凝土单轴、双轴动力强度和变形试验研究:[大连理工大学博士学位论文].大连:大连理工大学,2002a
    [60]吕培印,宋玉普,候景鹏.一向侧压混凝土在不同加载速率下的受压试验及其破坏准则.工程力学,2002b,19(6):67-71
    [61]宋玉普,吕培印,候景鹏.有侧压混凝土的变速率劈拉强度试验及其破坏准则研究.水利学报,2002,(3):1-5
    [62]闰东明,林皋.混凝土在动力双向压力作用下的强度和变形特性.岩土力学,2007,28(9):2003-2008
    [63]关萍,王清湘.双向等比例加载下的混凝土动力抗压性能.沈阳工业大学学报,2008b,30(6):700-704
    [64]薛志刚,胡时胜.水泥砂浆在围压下的动力力学性能.工程力学,2008,25(12):184-201
    [65]Yan D M,Lin G,Chen G.Dynamic properties of plain concrete in triaxial stress state.ACI Material Journal,2009,106(1):89-94
    [66]关萍.定侧压下混凝土双轴动力抗压性能的试验研究.土木工程学报,2009,42(4):33-37
    [67]李杰,任晓丹.混凝土静力与动力损伤本构模型研究进展述评.力学进展,2010,40(3):284-297
    [68]Cotsovos D,Pavlovic M.Numerical investigation of concrete subjected to compressive impact loading-Part 1:A fundamental explanation for the apparent strength gain at high loading rates.Computers & Structures,2008,86(1):145-163
    [69]Cotsovos D, Pavlovic M.Numerical investigation of concrete subjected to compressive impact loading-Part 2:Parametric investigation of factors affecting behaviour at high loading rates.Computers & Structures,2008,86(1):164-180
    [70]Cotsovos D,Pavlovic M.Numerical investigation of concrete subjected to high rates of uniaxial tensile loading.International Journal of Impact Engineering, 2008,35(5):319-335
    [71]杜成斌,苏擎柱.混凝土材料动力本构模型研究进展.世界地震工程,2002,18(2):94-98
    [72]孙建运,李国强.动力荷载作用下固体材料本构模型研究的进展.四川建筑科学研究,2006,32(5):144-149
    [73]Manjoine M J.Influence of rate of strain and temperature on yield stress of mild steel. Journal of Applied Mechanics,1944,11:211-218
    [74]Cowper G R,Symonds P S.Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams.Applied Mathematics Report,Brown University,1958
    [75]Jones N.Structural Impact.Cambridge:Cambridge University Press,1997
    [76]Mahin S A,Bertero V V.Rate of loading effects on uncracked and repaired reinforced concrete members.Rep.No.EERC 72-9,University of California,1972
    [77]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures.In:The Seventh International Symposium on Ballistics.Hague,1983
    [78]Soroushian P,Choi K-B.Steel mechanical properties at different strain rates.Journal of Structural Engineering,1987,113(4):663-672
    [79]EIBL J.Concrete Structures under Impact and Impulsive Loading.Bulletin D'information Report No.187,Comite Euro-International du Beton, Dubrovnik, 1988
    [80]Restrepo-Posada J,Dodd L,Park R,et al.Variables affecting cyclic behavior of reinforcing steel.Journal of Structural Engineering,1994,120(11),3178-3196
    [81]Malvar L J.Review of static and dynamic properties of steel reinforcing bars.ACI Materials Journal,1998,95(5),609-616.
    [82]Asprone D,Cadoni E,Prota A.Tensile High Strain-Rate Behavior of Reinforcing Steel from an Existing Bridge.ACI Structural Journal,2009,106(4):523-529
    [83]陈肇元,曹炽康,李庆标.建筑钢筋在快速变形下的力学性能.清华大学抗震抗爆工程研究室.抗爆结构研究报告第一集:结构材料的动力性能及其计算强度.北京:清华大学,1971:340-341
    [84]陈肇元.高强钢筋在快速变形下的性能及其在抗爆结构中的应用.清华大学抗震抗爆工程研究室.科学研究报告集(第4集):钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986:63-72
    [85]宋军.应变率敏感材料物理参量的研究及其工程应用:[清华大学博士学位论文].北京:清华大学,1990
    [86]林峰,顾祥林,匡昕昕,等.高应变率下建筑钢筋的本构模型.建筑材料学报,2008,(1):14-20
    [87]李敏,李宏男.建筑钢筋动力试验及本构模型.土木工程学报,2010,43(4):70-75
    [88]Vos E,Reinhardt H W.Influence of loading rate on bond behaviour of reinforcing steel and prestressing strands.Materials and Structures,1982,15(1): 3-10
    [89]Eligehausen R,Popov E,Bertero V.Local bond stress-slip relationships of deformed bars under generalized excitations.Report No.UCB/EERC-83/23. Earthquake Engineering Research Center,University of California, Berkeley, 1983
    [90]Chung L,Shah S.Effect of loading rate on anchorage bond and beam-column joints.ACI Structural Journal,1989,86(2):132-142
    [91]Gebbeken N,Greulich S.Bond modelling for reinforced concrete under hig-h dynamic loading effects.In:Bond in Concrete-from research to standards. Budapest,2002
    [92]Weathersby J H.Investigation of bond slip between concrete and steel rei-nforcement under dynamic loading conditions:[PhD Dissertation].Louisiana: Louisiana State University,2003
    [93]Solomos G,Berra M.Rebar pullout testing under dynamic hopkinson bar induced impulsive loading.Materials and Structures,2010,43(1):247-260
    [94]洪小健,赵鸣.加载速率对锈蚀钢筋与混凝土粘结性能的影响.同济大学学报,2002,30(7):792-796
    [95]郑晓燕.锈蚀钢筋与混凝土动力粘结性能研究:[河海大学博士学位论文].南京:河海大学,2004
    [96]Asprone D,Frascadore R,Ludovico M D,et al.Influence of strain rate on the seismic response of RC structures.Engineering Structures,2012,35:29-36
    [97]Ghannoum W,Saouma V,Haussmann G,et al.Experimental investigations of loading rate effects in reinforced Concrete Columns.Journal of Structural Engineering,2012,138(8):1032-1041
    [98]Penzien J,Hansen R.Static and dynamic elastic behavior of reinforced concrete beams.ACI Journal Proceedings,1954,50(3):545-567
    [99]Takeda J,Tachikawa H.Deformation and fracture of concrete subjected to dynamic load.In:Proceedings of International Conference on Mechanical Behavior of Materials.Kyoto,1971,267-277
    [100]Takeda J,Tachikawa H,Fujimoto K.Effects of straining rate on deformation and fracture of reinforced concrete members.In:Proceeding of Sixth World Conference on Earthquake Engineering.New Delhi,1977,32-56
    [101]Mutsuyoshi H,Machida A.Properties and failure of reinforced concrete members subjected to dynamic loading.Transactions of the Japan Concrete Institute,1984,6:521-528
    [102]Wakabayashi M,Nakamura T,Yoshida N,et al.Dynamic loading effects on the structural performance of concrete and steel materials and beams.In:Proceeding of Seventh World Conference on Earthquake Engineering. Istanbul,1980, 271-278
    [103]Price H H.Effects of rate of loading on reinforced concrete:[dissertation]. Kingston,Canada:the Royal Military College of Canada,1986
    [104]Kulkarni S M,Shah S P.Response of reinforced concrete beams at high strain rates.ACI Structural Journal,1998,95(6):705-715
    [105]Otani S,Kaneko T,Shiohara H.Strain rate effect on performance of reinforced concrete members.In:Proc of FIB Symposium on Concrete Structures in Seismic Regions.Athens,2003
    [106]Adhikary S D,Li B,Fujikake K.Dynamic behavior of reinforced concrete beams under varying rates of concentrated loading.International Journal of Impact Engineering,2012,47:24-38
    [107]Austin W J,Egger W,Untrauer R E,etal.An Investigation of the Behavior of Deep Members of Reinforced Concrete and Steel.Civil Engineering Studies SRS-187.Urbana:University of Illinois at Urbana-Champaign,1960
    [108]Untrauer R E.Behavior and Design of Deep Structural Members Part 4:Dynamic Tests of Reinforced Concrete Deep Beams.Civil Engineering Studies SRS-195.Urbana:University of Illinois at Urbana-Champaign,1960
    [109]Untrauer R E,Siess C P.Strength and Behavior in Flexure of Deep Reinforced Concrete Beams Under Static and Dynamic Loading.Urbana:University of Illinois at Urbana-Champaign,1961
    [110]dePaiva H A R,Siess C P.Strength and Behavior in Shear of Deep Reinforced Concrete Beams Under Static and Dynamic Loading Vol.2:Strength and Behavior in Shear.Civil Engineering Studies SRS-231.Urbana:University of Illinois at Urbana-Champaign,1961
    [111]Adhikary S D,Li B,Fujikake K.Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions.Nuclear Engineering and Design,2013,259:14-23
    [112]陈肇元,施岚青.钢筋混凝土梁在静载和快速变形下的弯曲性能.清华大学抗震抗爆工程研究室.科学研究报告集(第4集):钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986:1-32
    [113]王志洁,李志方.无粘结预应力简支染在快速加载下的抗弯性能.防护工程,1998,(1):10-16
    [114]李志方,王志浩,李蓬.快速荷载下无粘结预应力混凝土梁的延性.建筑结构,1999,(7):22-24
    [115]李振宝,宝小超.加载速率对钢筋混凝土梁动力性能的影响.防灾减灾工程学报,2011,31(6):627-631
    [116]邹笃建,刘铁军,滕军,等.混凝土梁式构件弹性模量的应变率效应研究.振动工程学报,2011,24(2):170-174
    [117]肖诗云,曹闻博,潘浩浩.不同加载速率下钢筋混凝土梁力学性能试验研究.建筑结构学报,2012,33(12):142-146
    [118]Orozco G L,Ashford S A.Effects of large velocity pulses on reinforced concrete bridge columns.PEER Report 2002/23.University of California,Berkeley,2002
    [119]Tagami J,Suzuki N,Kaneko T,et al.Dynamic loading test of reinforced concrete columns for identification of strain rate effect.In:Proceedings of the First NEES/E-Defense Workshop on Collapse Simulation of Reinforced Concrete Building Structures.Berkeley,2005,291-304
    [120]王德斌,李宏男.剪跨比和箍筋率对钢筋混凝土框架柱动力特性的影响效应.防灾减灾工程学报,2010,30(3):257-261
    [121]王德斌,李宏男.应变率对钢筋混凝土柱动力特性的影响.地震工程与工程振动,2011,31(6):67-72
    [122]Wang D,Li H N,Li G.Experimental tests on reinforced concrete columns under multi-dimensional dynamic loadings.Construction and Building Materials, 2013,47:1167-1181
    [123]龙业平.钢筋混凝土柱快速加载试验及动力滞回规律研究:[湖南大学硕士学位论文].长沙:湖南大学,2010
    [124]唐亮.考虑应变率效应的不同配筋率钢筋混凝土柱动力性能试验与模拟:[湖南大学硕士学位论文].长沙:湖南大学,2010
    [125]江州.钢筋混凝土柱动力性能试验及数值模拟研究:[湖南大学硕士学位论文].长沙:湖南大学,2012
    [126]许斌,龙业平.基于纤维模型的钢筋混凝土柱应变率效应研究.工程力学,2011,28(7):103-116
    [127]Reinschmidt K F,Hansen R J,Yang C Y.Dynamic tests of reinforced concrete columns.ACI Journal Proceedings,1964,61(3):317-334
    [128]Iwai S,Minami K,Wakabayashi M.Stability of slender reinforced concrete members subjected to static and dynamic loads.In:Proceedings of Ninth World Conference on Earthquake Engineering.Tokyo,1988,Vol.Ⅷ:901-906
    [129]陈肇元,罗家谦.钢筋混凝土轴压和偏压构件在快速变形下的性能.清华大学抗震抗爆工程研究室.科学研究报告集(第4集):钢筋混凝土结构构件在冲击荷载下的性能.北京:清华大学出版社,1986:33-44
    [130]肖诗云,许东.应变率效应对钢筋混凝土柱的影响.防灾减灾工程学报,2009,29(6):668-675
    [131]Scott B D,Park R,Priestley M J N.Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates.ACI Journal Proceedings, 1982,79(1):13-27
    [132]Soroushian P,Sim J.Axial behavior of reinforced concrete columns under dynamic loads.ACI Journal Proceedings,1986,83(6):1018-1025
    [133]Bing L,Park R,Tanaka H.Constitutive behavior of high-strength concrete under dynamic loads.ACI Structural Journal,2000,97(4):619-629
    [134]Kent D C,Park R.Flexural members with confined concrete.Journal of the Structural Division,1971,97(7):1969-1990
    [135]Shimazaki K,Wada A.Dynamic Analysis of a Reinforced Concrete Shear Wall with Strain Rate Effect.ACI Structural Journal,1998,95(5):488-497
    [136]Mizuno J,Matsuo I,Suzuki A,et al.Effects of loading rate on reinforced concrete shear walls-Part 3:High speed loading tests of reinforced concrete shear walls and FE simulation analyses. In:International Conference on Earthquake Resistant Engineering Structures,2001,63-72
    [137]许宁.快速加载下钢筋混凝土剪力墙性能试验及数值模拟研究:[湖南大学硕士学位论文].长沙:湖南大学,2012
    [138]张晓丽.加载速率对钢筋混凝土高剪力墙抗震性能的影响:[大连理工大学硕士学位论文].大连:大连理工大学,2012
    [139]张皓,李宏男.应变率对钢筋混凝土剪力墙动力性能的影响.防灾减灾工程学报,2010,30(3):303-308
    [140]宋玉普,张晓丽.应变率效应对钢筋混凝土剪力墙抗震效应的影响.工业建筑,2012,42(3):7-11
    [141]许斌,陈俊名,许宁.钢筋混凝土剪力墙应变率效应试验与基于动力塑性损伤模型的模拟.工程力学,2012,29(1):39-63
    [142]Shah S P,Wang M L,Chung L.Model concrete beam-column joints subjected to cyclic loading at two rates.Materials and Structures,1987,20(2):85-95
    [143]Gibson N,Filiatrault A,Ashford S.Performance of beam to column bridge joints subjected to a large velocity pulse.PEER Report 2002/24.University of California,Berkeley,2002
    [144]Ogawa T,Nakanishi M,Adachi H.Study on the mechanical properties of reinforced concrete exterior beam-column joints under dynamic loading.In:13th World Conference on Earthquake Engineering.Vancouver,2004
    [145]Dhakal R P,Pan T-C.Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates.Structural Engineering and Mechanics,2006,23(2):129-145
    [146]潘浩浩.应变率效应对钢筋混凝土材料和梁-柱节点动力性能的影响:[大连理工大学硕士学位论文].大连:大连理工大学,2012
    [147]秦全.考虑应变率效应的钢筋混凝土框架节点抗震性能研究:[大连理工大学硕士学位论文].大连:大连理工大学,2013
    [148]Mylrea T D.Effect of impact on reinforced concrete beams.ACI Journal Proceedings,1940,36(6),581-594
    [149]Hughes G,Speirs D M.An investigation of the beam impact problem.Technical Report 546.C & CA UK,1982
    [150]Bentur A,Mindess S,Banthia N P.The behaviour of concrete under impact loading:Experimental procedures and method of analysis.Materials and Structures,1986,19(5):371-378
    [151]Agardh L,Magnusson J,Hansson H.High Strength Concrete Beams Subjected to Impact Loading,an Experimental Study.FOA-99-01187-311-SE. Defence Research Establishment (FOA),Tumba,Sweden,1999
    [152]Kishi N,Ikeda K,Mikami H,et al.Dynamic behavior of RC beams under steel weight impact loading-Effects of nose-shape of steel weight.In:Proceeding of Third International Conference on Concrete Under Severe Conditions, Vancouver,2001 a,660-667
    [153]Kishi N,Nakano O,Matsuoka K G,et al.Experimental study on ultimate strength of flexural-failure-type RC beams under impact loading.In:Transactions of the 16th International Conference on Structural Mechanics in Reactor Technology (SMIRT).Washington DC,2001b
    [154]Kishi N,Mikami H,Matsuoka K G,et al.Impact behavior of shea & failure-type RC beams without shear rebar.International Journal of Impact Engineering, 2002a,27(9):955-968
    [155]Kishi N,Mikami H,Ando T.Impact-resistant behaviour of shear-failure-type RC beams under falling-weight impact loading.In:Proceedings of the 7th international conference on structures under shock and impact.Ashurst Lodge,2002b,499-508
    [156]Kishi N,Ono T,Mikami H,et al.Effects of boundary conditions on impact behaviors of reinforced concrete beams subjected to falling-weight impact loads.Proceedings-Japan Society of Civil Engineers,2003,(731):299-316
    [157]Sukontasukkul P,Mindess S.The shear fracture of concrete under impact loading using end confined beams.Materials and Structures,2003,36(6):372-378
    [158]Soleimani S,Banthia N,Mindess S.Behavior of RC beams under impact loading:some new findings.In:Proceedings of the Sixth International Conference on Fracture Mechanics of Concrete and Concrete Structures. Catania,2007,867-874
    [159]Chen Y,May I M.Reinforced concrete members under drop-weight impacts.In: Proceedings of The Institution of Civil Engineers-Structures and Buildings, 2009,162(SB1):45-56
    [160]Saatci S,Vecchio F.Effects of shear mechanisms on impact behavior of reinforced concrete beams.ACI Structural Journal,2009a,106(1):78-86
    [161]Rossi P.Dynamic behaviour of concretes:from the material to the structure. Materials and Structures,1994,27(6):319-323
    [162]Travas V,Ozbolt J,Kozar I.Failure of plain concrete beam at impact load:3D finite element analysis.International Journal of Fracture,2009,160:31-41
    [163]Ozbolt J,Sharma A.Numerical simulation of reinforced concrete beams with different shear reinforcements under dynamic impact loads.International Journal of Impact Engineering,2011,38:940-950
    [164]Cotsovos D M.A simplified approach for assessing the load-carrying capacity of reinforced concrete beams under concentrated load applied at high rates.International Journal of Impact Engineering,2010,37(8):907-917
    [165]Tachibana S,Masuya H,Nakamura S.Performance based design of reinforced concrete beams under impact.Natural Hazards and Earth System Sciences,2010, 10(6):1069-1078
    [166]Kishi N,Mikami H.Empirical Formulas for Designing Reinforced Concrete Beams under Impact Loading.ACI Structural Journal,2012,109(4):509-519
    [167]Masuya H,Kajikawa Y,Nakata Y.Application of the distinct element method to the analysis of the concrete members under impact.Nuclear Engineering and Design,1994,150(2-3):367-377
    [168]Krauthammer T,Shahriar S,Shanaa H M.Response of reinforced concrete elements to severe impulsive loads.Journal of structural engineering,1990, 116(4):1061-1079
    [169]Fujikake K,Senga T,et al.Study on impact response of reactive powder concrete beam and its analytical model.Journal of Advanced Concrete Technology, 2006,4(1):99-108
    [170]Fujikake K,Li B,Soeun S.Impact response of reinforced concrete beam and its analytical evaluation.Journal of structural engineering,2009,135(8):938-950
    [171]Unosson M.Modeling of concrete material behavior with application to reinforced concrete beams subjected to impact.FOI-R-0167-SE.Swedish defence research agency (FOI),2001
    [172]Bhatti A Q,Kishi N,Mikami H,et al.Elasto-plastic impact response analysis of shear-failure-type RC beams with shear rebars.Materials & Design,2009,30: 502-510
    [173]Kishi N,Khasraghy S G,Kon-No H.Numerical simulation of reinforced concrete beams under consecutive impact loading.ACI Structural Journal,2011,108(4): 444-452
    [174]Silva P F,Mesia W D,Marzougui D,et al.Performance Evaluation of Flexure Impact Resistance Capacity of Reinforced Concrete Members.ACI Structural Journal,2009,106(5):726-736
    [175]Saatci S,Vecchio F J.Nonlinear Finite Element Modeling of Reinforced Concrete Structures under Impact Loads.ACI Structural Journal,2009b,106(5): 717-725
    [176]Kishi N,Bhatti A.An equivalent fracture energy concept for nonlinear dynamic response analysis of prototype RC girders subjected to falling-weight impact loading.International Journal of Impact Engineering,2010,37:103-113
    [177]Cotsovos D M,Pavlovic M N.Modelling of RC beams under impact loading. Proceedings of the ICE-Structures and Buildings,2012,165(2):77-94
    [178]王明洋,王德荣,宋春明.钢筋混凝土梁在低速冲击下的计算方法.兵工学报,2006,27(3):399-405
    [179]周泽平,王明洋,冯淑芳,等.钢筋混凝土梁在低速冲击下的变形与破坏研究.振动与冲击,2007,26(5):99-103
    [180]冯淑芳,陈灿寿,王明洋.低速冲击作用下钢筋混凝土梁的多阶段离散模型研究.见:第一届全国工程安全与防护学术会议论文集.南京,2008:54-60
    [181]黄兴龙.自动元胞机在钢筋混凝土梁冲击仿真试验中的应用研究:[天津大学硕士学位论文].天津:天津大学,2010
    [182]姜华,贺拴海,王君杰.钢筋混凝土梁冲击试验数值模拟研究.振动与冲击,2012,31(15):140-145
    [183]何水涛,陆新征,卢啸,等.超高车辆撞击钢筋混凝土T梁桥主梁试验研究.兰州交通大学学报,2011,30(6):20-25
    [184]黄伟,周毅达.受撞击粘弹性基支弹性直梁的动力响应.力学与实践,1994,16(2):29-32
    [185]宋春明,赵跃堂,邓永红.钢筋混凝土梁在低速撞击下的动力响应.岩土力学,2005,(增刊):288-291
    [186]陈肇元,王志浩.核袭击下城市房屋倒塌对人防工程的作用(总结报告).北京:清华大学土木系,2000,118-120
    [187]李砚召,王肖均,郭晓辉,等.部分预应力混凝土梁抗冲击性能试验研究.爆炸与冲击,2006,26(3):256-261
    [188]王新武,李砚召.带覆土预应力混凝土梁抗冲击试验.华中科技大学学报:自然科学版,2008,36(9):113-116
    [189]孟一.冲击荷载作用下钢筋混凝土梁的试验及数值模拟研究:[湖南大学博士学位论文].长沙:湖南大学,2012
    [190]Remennikov A M,Kaewunruen S.Impact resistance of reinforced concrete columns:Experimental studies and design considerations.In:19th Australasian Conference on the Mechanics of Structures and Materials.Christchurch,2006, 817-824
    [191]Tsang H H,Lam N T.Collapse of reinforced concrete column by vehicle impact.Computer-Aided Civil and Infrastructure Engineering,2008,23(6):427-436
    [192]Buth C E.Guidelines for designing bridge piers and abutments for vehicle collisions-semi annual report.TX,USA:Texas Transportation Institute,College Station,2009
    [193]Buth C E,Williams W F,Brackin M S,et al.Analysis of large truck collisions with bridge piers:Phase 1.Report of guidelines for designing bridge piers and abutments for vehicle collisions.FHWA/TX-10/9-4973-1,2010
    [194]Buth C E,Brackin M S,Williams W F,et al.(2011).Collision Loads on Bridge Piers:Phase 2.Report of Guidelines for Designing Bridge Piers and Abutments for Vehicle Collisions.FHWA/TX-11/9-4973-2,2011
    [195]Huynh L C.Behaviour of high strength and reactive powder reinforced concrete columns subjected to impact:[dissertation].Sydney:The University of New South Wales,2011
    [196]Sharma H,Hurlebaus S,Gardoni P.Performance-based response evaluation of reinforced concrete columns subject to vehicle impact.International Journal of Impact Engineering,2012,43:52-62
    [197]孙建运.爆炸冲击荷载作用下钢骨混凝土柱性能研究:[同济大学博士学位论文].上海:同济大学,2006
    [198]王成,付晓磊,宁建国.柱形装药爆炸破坏混凝土的数值模拟分析.计算力学学报,2007,24(3):318-322
    [199]魏雪英,白国良.爆炸荷载下钢筋混凝土柱的动力响应及破坏形态分析.解放军理工大学学报自然科学版,2007,8(5):525-529
    [200]师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式.建筑结构学报2008,29(4):112-117
    [201]阎石,王丹,张亮.爆炸荷载作用下钢筋混凝土柱损伤FEM分析.工程力学,2008,25(S1):90-93.
    [202]梁斌,陈忠富,卢永刚.柱形装药在混凝土中爆炸波传播数值模拟.弹箭与制导学报2008,28(4):93-96
    [203]刘彦,谷鸿平,黄风雷.柱形装药在混凝土中爆炸破坏效应数值模拟研究.北京理工大学学报,2010,30(6):635-638
    [204]方秦,程国亮,陈力.爆炸作用下钢筋混凝土柱非线性动力响应及破坏模式分析方法.建筑结构学报,2012,33(12):85-91
    [205]方秦,程国亮,陈力.爆炸作用下钢筋混凝土柱非线性动力响应及破坏模式影响因素分析.建筑结构学报,2012,33(12):92-98
    [206]贾昊凯.爆炸荷载作用下钢筋混凝土柱和板动力响应及损伤评定的数值模拟:[太原理工大学硕士学位论文].太原:原理工大学,2012
    [207]田力,朱聪,王浩,等.碰撞冲击荷载作用下钢筋混凝土柱的动力响应及破坏模式.工程力学,2013,30(2):150-155
    [208]Soroushian P,Obaseki K.Strain rate-dependent interaction diagram for reinforced concrete section.ACI Journal Proceedings,1986,83(1):108-116
    [209]Al-Haddad M S.Curvature ductility of reinforced concrete beams under low and high strain rates.ACI Structural Journal,1995,92(5):526-534
    [210]林皋,闫东明,肖诗云,等.应变速率对混凝土特性及工程结构地震响应的影响.土木工程学报,2005,38(11):1-8
    [211]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用.北京:清华大学出版社,2009
    [212]Munoz-Garcia E,Davison B,Tyas A. Structural integrity of steel connections subjected to rapid rates of loading.In:Proceedings of the 2005 Structures Congress and the 2005 Forensic Engineering Symposium.New York,2005
    [213]江见鲸,陆新征.混凝土结构有限元分析(第2版).北京:清华大学出版社,2013
    [214]Birtel V,Mark P.Parameterised Finite Element Modelling of RC Beam Shear Failure. www.simulia-china.com/UpLoadFiles/File/2006_AUCCivil/Birtel-pape-r.pdf
    [215]ACI Committee 318.Building code requirements for structural concrete (ACI318-08) and commentary (ACI 318R-08).Farmington Hills (MI):American Concrete Institute,2008
    [216]Han L H,Yao G H,Tao Z.Performance of concrete-filled thin-walled steel tubes under pure torsion.Thin-Walled Structures,2007,45(1):24-36
    [217]Yu Q,Tao Z,Liu W,et al.Analysis and calculations of steel tube confined concrete (STCC) stub columns.Journal of Constructional Steel Research,2010, 66(1):53-64
    [218]Hou C C,Han L H,Tao Z. Simulation on Concrete-Filled Steel Tubular Members under Transverse Impact.In:The 2011 Word Congress on Advances in structural Engineering and Mechanics (ASEM'11+).Seoul,2011,4189-4196
    [219]Richart F E,Brandtzaeg A,Brown R L.A study of the failure of concrete under combined compressive stresses.Bulletin 185,Univ.of Illinois Engineering Experimental Station,Champaign,1928
    [220]Le'geron F,Paultre P.Uniaxial confinement model for normal-and high-stren-gth concrete columns.Journal of Structural Engineering,2003,129(2):241-252
    [221]Mander J B,Priestley M J N,Park R.Theoretical stress-strain model for confined concrete.Journal of Structural Engineering,1988,114(8):1804-1826
    [222]Sheikh S A,Uzumeri S M.Strength and ductility of tied concrete columns. Journal of the Structural Division,1980,106(ST5):1079-1102
    [223]Mander J,Priestley M,Park R.Observed stress-strain behavior of confined concrete.Journal of structural engineering,1988,114(8):1827-1849
    [224]Moehle J P,Cavanagh T.Confinement effectiveness of crossties in RC.Journal of Structural Engineering,1985,111(10):2105-2120
    [225]Cusson D,Paultre P.Stress-strain model for confined high-strength concrete.Jou-rnal of structural engineering,1995,121(3):468-477
    [226]Chung H S,Yang K H,Lee Y H,et al.Strength and ductility of laterally confined concrete columns.Canadian Journal of Civil Engineering,2002,29(6):820-830
    [227]Bousalem B,Chikh N.Development of a confined model for rectangular ordinary reinforced concrete columns.Materials and Structures,2007,40(6): 605-613
    [228]Paultre P,Legeron F.Confinement reinforcement design for reinforced concrete columns.Journal of structural engineering,2008,134(5):738-749
    [229]韩林海.钢管混凝土结构-理论与实践(第二版).北京:科学出版社,2007
    [230]Hognestad E,Hanson N W,McHenry D.Concrete stress distribution in ultimate strength design.ACI Journal Proceedings,1955,52(12):455-480
    [231]Kupfer H,Hilsdorf H K,Rusch H.Behavior of concrete under biaxial stresses. ACI Journal Proceedings,1969,66(8):656-666
    [232]Hu H T,Huang C S,Wu M H,et al.Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect.Journal of structural engineering,2003,129(10):1322-1329
    [233]GB 50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社,2002
    [234]Van Doormaal J,Weerheijm J,Sluys L J.Experimental and numerical determination of the dynamic fracture energy of concrete.Journal de Physique IV,1994,4(8):501-506
    [235]Rericha P A.Test for the rate effect on concrete fracture energy.Jones N,et al.Structures Under Shock and Impact V.Boston:Computational Mechanics Publications in Southampton,1998,461-470
    [236]Ruiz G,Zhang X X,Yu R C,et al.Effect of loading rate on fracture energy of high-strength concrete.Strain,2011,47(6):518-524
    [237]Kotsovos M D.Mechanisms of'shear' failure.Magazine of Concrete Research, 1983,35(123):99-106
    [238]Biggs J M.Introduction to structural dynamics.New York:McGraw-Hill,1964
    [239]Murray Y D.Users Manual for LS-DYNA Concrete Material Model 159.In:Re-port No.FHWA-HRT-05-062.Federal Highway Administration,2007
    [240]Murray Y D,Abu-Odeh A,Bligh R.Evaluation of LS-DYNA Concrete Material Model 159.In:Report No.FHWA-HRT-05-063.Federal Highway Administrat-ion,May 2007
    [241]李裕春,时党勇,赵远.ANSYS 11.0基础理论与工程实践.北京:中国水利水电出版社,2008
    [242]Bhatti A Q,Kishi N.Impact response of RC rock-shed girder with sand cushion under falling load.Nuclear Engineering and Design,2010,240(10):2626-2632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700