建筑结构扭转地震反应分析及抗扭设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑结构特别是平面不规则结构的扭转效应会加剧结构在地震中的震害,提出实用合理的设计措施以对其进行控制具有重要的意义。近年来,众多学者对其进行了研究,针对结构扭转设计提出了具体要求及控制措施,相关成果也已在各国抗震规范中体现。然而,以往研究多基于单层弹性简化分析模型或弹塑性层剪切梁模型,尚缺乏系统的多层弹塑性扭转反应规律的研究,宏观剪切梁模型无法揭示结构的真实反应特征;各国规范关于抗扭设计的规定尚有较大差别,一定程度上反映出对这问题的认识还有不小差异;我国现行规范采取的抗扭控制指标在实际工程设计中已经引发了不少困难和争议,这一事实表明尚需对规范指标的合理性和有效性进行校验;现行规范关于抗扭分析与设计的思路和做法仍以少数弹性指标控制为主,尚不够系统。为此,本文通过基于纤维模型的精细弹塑性结构反应分析,研究单层和多层框架和框剪结构的扭转反应规律,研究并校验现行弹性扭转控制指标的合理性和对弹性及弹塑性反应控制的有效性,并对结构抗扭分析与设计方法及措施提出建议。完成的主要工作和取得的主要结论有:
     ①对比并评述了各国抗震规范的结构抗扭控制及设计方法
     ②补充和完善了单层和多层弹性及弹塑性结构的扭转反应规律
     基于简化模型解析方法研究了单层结构弹性扭转反应规律,着重考察了单向及双向偏心结构受双向地震作用的影响,分析了各弹性扭转控制指标之间的关系;基于有限元数值分析方法研究了均匀、非均匀质量偏心和刚度偏心多层结构的弹性扭转反应规律。
     基于精细纤维模型分析了单、多层框架结构及高层框剪结构的弹塑性扭转反应规律。结果表明,偏心结构弹塑性扭转反应规律主要影响因素包括能力措施、结构偏心率、地震动强度及强度偏心;现行规范对框架结构的强柱弱梁能力措施、框剪结构的抗弯、抗剪能力措施在大震下并不总是能够达到预期的效果,柱铰为主的质量偏心结构和刚度偏心结构扭转反应规律有所不同;强度偏心会显著影响结构弹塑性扭转反应,给出了控制弹塑性扭转效应的最优强度偏心距。
     ③弹性扭转控制指标的有效性和合理性研究
     分别按现行规范设计不同周期比和位移比的框架结构,采用精细纤维模型弹塑性时程分析,识别了弹性扭转控制指标对结构弹塑性扭转反应的控制效果。结果表明,扭转周期比尽管在体现加强结构抗扭刚度的概念设计上发挥了不可磨灭的作用,但也不可避免地导致设计中一些不合理现象,且对弹塑性扭转反应未起到有效的控制作用,结合国外规范经验建议取消耦联周期比限值或适当放宽限值;扭转位移比是国际上通用的扭转控制指标,应予以控制;建议以结构平面中点位移计算位移比;由于扭转位移比是相对量,不能有效反映平动位移不同时结构的扭转角大小,当平动位移较小时可根据设防烈度和所采取的加强措施有条件地放宽规范限值要求。
     ④结构抗扭计算分析方法研究
     考察了偶然偏心、双向输入、填充墙等对结构扭转反应的影响,除规范规定必须考虑的结构外,计算能力和条件允许时也宜考虑其影响;分析了静力非线性分析方法、等效静力法、规范的边榀放大系数的适用性。
     ⑤抗扭加强措施研究
     考察了边榀加强、强度中心调整、轴压比限制、构件抗扭验算等措施的适用性,并给出相关建议。
Torsional response of aseismic structures, especially irregular layout structures, will aggravate structural damage during earthquakes. It is important to take some practical and reasonable design measures to control its effects. Recently, considerable research has been done in this topic, some specific requirements and control measures about torsional design of structures have been proposed, and some corresponding achievements have been presented in seismic codes in many countries which specify requirements and corresponding measures. However, these researches are majorly limited to one-storey simplified-elastic models or elastic-plastic story-shearing-beam models, and a systematic study on the laws of elastic-plastic torsional response of multistory structures is urgently required since the story-shearing-beam models can not reveal the true feature of structural response; a considerable difference exists in the seismic codes of various countries, which implies that we have not got a common review on this issue; the torsion control indices specified in Chinese seismic code has arisen some difficulties and arguments in engineering design, the reasonableness and effectiveness of these indices are to be investigated further; the ideas and practices about torsion analysis and design in present codes are mainly based on several elastic control indices and lack of systematicness. Aiming at the problems mentioned above, the paper firstly studies the laws of torsion response in single- and multi-story frame or frame-shear wall structures based on the fine elastic-plastic dynamic analysis using fiber model, then investigates the effectiveness of the torsion control indices and its effectiveness in controlling elastic-plastic torsional response. Finally, some recommendations for structural torsion analysis and design are suggested.
     The main research contents finished in this thesis and main conclusions are summarizes as follows:
     ①Methods for structural torsion control and design in seismic codes of various countries are compared and reviewed.
     ②Laws of elastic and elastic-plastic torsion response in single- and multi-story structures are complemented and improved.
     Elastic torsional response rules for one-storey or multi-storey structures are studied based on simplified dynamic analysis model, the effects of bi-directional seismic action on one-way or two-way eccentric structures are investigated and the relationship between torsional control indices are discussed; based on finite element analysis, the laws of elastic torsional response for multistory structures with uniform eccentricity, nonuniform mass eccentricity and nonuniform stiffness eccentricity are also studied.
     Based on fine fiber model, the rules of elastic-plastic torsion response for single- and multi-story frame structures and high-rise frame-shear wall structures are analyzed. It is concluded that the elastic-plastic torsion response of eccentric structures are mainly influenced by capacity design measures, eccentric ratio, intensity of ground motion, and strength eccentricity. Capacity design measures such as“strong-column-weak-beam”for frame structures and the bending and shear capability strengthening for frame-shear wall structures specified in current codes, are not always able to achieve the desired effects during strong earthquakes. When column hinges are predominant, rules of torsion response for mass- and stiffness-eccentricity structures are quite different. The optimal strength eccentricity is also purposely proposed to control the elastic-plastic torsion effect, since strength eccentricity has considerable influence on elastic-plastic torsion response.
     ③Reasonableness and effectiveness of elastic torsion control indices are studies. By using elastic-plastic time history analysis based on fine fiber model, effectiveness of elastic torsion control indices to control the elastic-plastic torsion response of frame structures, which are designed according to current seismic code with various torsional period ratios and displacement ratios, are surveyed. It is shown that torsional period ratio may arise some unreasonable phenomena in the structure design and it cannot control the elastic-plastic torsion response in an effective manner, though it is a key step in concept design in the sense of strengthening the torsional stiffness of structures. Also, considering the relative provisions specified in the seismic codes of other countries, it is suggested that the limitation value of coupled torsional period ratio is to be cancelled or relaxed. As for torsional displacement ratio, it is a universal control index which must be controlled in design. Torsional displacement ratio is suggested to be calculated according to the displacement at the midpoint of plane view of structure. When the translation of structure is relatively small, the limitation value of torsional displacement ratio can be properly relaxed according to the seismic fortification intensity and measures, since torsional displacement ratio is a relative quantity which cannot quantitively indicate the real value of torsional angle under various translation of structures.
     ④Various torsion analysis methods are surveyed.
     The effects of accidental eccentricity, bi-directional input, and infill wall on structural torsional response are investigated. Besides those required in current seismic code, above effects should be considered when it is computationally and conditionally allowed. Applicability of the static nonlinear analysis method, equivalent static method and amplifying factor of fringe frames is analyzed.
     ⑤Torsional strengthening measures are suggested.
     Applicability of measures such as the strengthening of fringe frames, adjustment of the strength centre, control of axial force ratio, and torsion capacity check of member is explored, and some recommendations are provided.
引文
[1] Rosenblueth E, Meli R. The 1985 earthquake:causes and effects in Mexico city[J]. Concrete International, 1986,(8):23-34.
    [2] Chandler, A. M. Building damage in Mexico City earthquake[J]. Nature, 1986, 320(6062): 497-501.
    [3] Uniform Building code (UBC), Structural Design Provisions[S], International Conference of Building officials (ICBD) (S). 1997.
    [4] FEMA(2003). NEHRP Recommended Provisions for Seismic Regulations for new Buildings and other Structures[S]. Building Seismic Safety Council (BSSC). FEMA 450.2003.
    [5] International Building Code 2006[S].International Code Council. Mar 2006.
    [6]程绍革等.Structural Euro codes (EC8) [S].北京:中国建筑科学研究院工程抗震研究所.1997.
    [7] New Zealand Standard NZS 4203:1992, Code of practice for general structural design and design loadings for buildings[S], Standards Association of New Zealand, Wellington, New Zealand, 1992.
    [8]建筑抗震设计规范(GB50011-2001) [S].中国建筑工业出版社.2001.10.
    [9]高层建筑混凝土结构技术规程(JGJ3—2002) [S].中国建筑工业出版社.2001.10.
    [10] Kan C L, Chopra A K. Effects of torsional coupling on earthquake forces in buildings. Journal of Structural Division[J], ASCE 1977;103: 805-819.
    [11] Chandler A M, Hutchinson G L. Evaluation of code torsional provisions by a time history approach [J]. Earthquake Engineering and Structural Dynamics,1987,15(4):491-516.
    [12] Chandler, A. M., Correnza, J. C, Hutchinson, G.L. Effect of transverse load-resisting elements on inelastic earthquake response of eccentric-plan buildings [J]. Earthquake Engineering and Structural Dynamics, 1994,23(1):75-89.
    [13] Tso,W. K., Dempsey, K. M. Seismic torsional provisions for dynamic eccentricity[J]. Earthquake Engineering and Structural Dynamics 1980; 8: 275-289.
    [14] Shakib, H., Tchidi, R. Z. Evaluation of accidental eccentricity in buildings due to rotational component of earthquake[J]. Journal of Earthquake Engineering 2002; 6(4): 431-445.
    [15] Erdickt, Mustapha O. Torsional effects in dynamically excited structures [A]. Rice Ph.D dissertation [C]. University, Houston, Texas, 1975.
    [16] Chandler, A. M.,Hutchinson,G. L. Evaluation of code torsional provisions by a time history approach [J]. Earthquake Engineering and Structural Dynamics,1987,15(4):491-516.
    [17] Dempsey, K. M.,Tso, W. K. Seismic torsional provisions for dynamic eccentricity [J]. Earthquake Engineering and Structural Dynamics,1980,8(2):275-289.
    [18] Chopra,Anil K.,Hejal,Reem. Lateral-torsional coupling in earthquake response of framebuildings[J1. Journal of Structural Engineering, 1989,115(4):852-867.
    [19] Sadek, A. W., Tso, W. K. Strength eccentricity concept for inelastic analysis of asymmetrical structures [J]. Engineering Structure.1990(11):189-194.
    [20] Stefano, M. D., Faella, G., Ramasco. R. Inelastic response and design criteria of plan-wise asymmetric systems [J]. Earthquake Engineering and Structural Dynamics, 1993, 22(2):245-259.
    [21] Tso, W. K., Hongshan Ying. Additional seismic inelastic deformation caused by structural asymmetry[J]. Earthquake Engineering and Structural Dynamics, 1990, 19(2):243-258.
    [22] Chandler, A. M., Duan, X. N. Performance of asymmetric code-designed buildings for serviceability and ultimate 1imit states[ J]. Earthquake Engineering and Structural Dynamics, 1997, 26(7):717-735.
    [23] Tso, W. K., Bozorgnia, Y. Effective eccentricity for inelastic seismic response of buildings[J]. Earthquake Engineering and Structural Dynamics, 1986, 14(3):413-427.
    [24] Goel, R. K., Chopra, A. K. Inelastic seismic response of one-story asymmetric-plan systems: effects of system parameters and yielding[J]. Earthquake Engineering and Structural Dynamics, 1991,20(2):201-222.
    [25] Goel, R. K., Chopra, A. K. Inelastic seismic response of one-story asymmetric-plan system: effects of stiffness and strength distribution[J]. Earthquake Engineering and Structural Dynamics, 1990, 19(9):949-970.
    [26] Duan, X. N., Chandler, A. M. An optimize d procedure for seismic design of torsionally unbalanced structures[J]. Earthquake Engineering and Structural Dynamics, 1997, 26(7):737-757.
    [27] Rosenblueth, Housner. Responses of linear systems to certain transient disturbances [A]. 4th World Conference on Earthquake Engineering[C]. Santiago, Chile,1969.
    [28] Newmark,N. M. Torsion in symmetrical Building[A]. 4th World Conference on Earthquake Engineering[C]. Santiago, Chile, 1969.
    [29] Bozorgnia,Y., Tso,W. K. Inelastic earthquake response of asymmetric structures[J]. Journal of the Structural Division, 1986,112 (2):383-400.
    [30] Sadek, A. W., Tso, W. K. Inelastic seismic response of simple eccentric structures[J]. Earthquake Engineering and Structural Dynamics,1985,13(2):255-269.
    [31] Chandler, A. M.,Duan, X. N. Evaluation of factors influencing the inelastic seismic performance of torsionally asymmetric buildings[J]. Earthquake Engineering and Structural Dynamics, 1991,200):87-95.
    [32]杨鉴,魏琏.高层建筑扭转耦联自由振动的计算[J].建筑结构学报,1985,6(2):67-74.
    [33]魏琏,杨鉴.高层建筑扭转耦联振动时的地震力以及振型组合[J].建筑结构,1986,7(1): 9-19.
    [34]魏琏.水平地震作用下不对称建筑的抗震计算[J].建筑科学,1990,6(1):45-51.
    [35]李宏男,尹之潜.偏心结构在对多维地震作用下扭转耦联反应分析[J].地震工程与工程振动. 1988, 8(4): 45-53.
    [36]李宏男.结构多维抗震理论与设计方法[M].北京.科学出版社. 1998.
    [37]乔天民,杨桂通.单层偏心结构的地震反应分析[J].太原工业大学学报,1984,4(4):59-73.
    [38]王耀伟.平面不规则结构非弹性地震反应规律研究[D].重庆大学. 2003.
    [39]蔡贤辉.多层偏心结构的地震反应研究[D].大连理工大学. 2001.
    [40]戴君武.钢筋混凝土偏心结构非线性地震反应研究[D].中国地震局工程力学研究所博士学位论文, 2002..
    [41]陈昌松.非规则框架结构双向水平地震作用效应初探[D].重庆建筑大学. 2000.
    [42]梁莉军.现行规范关于钢筋混凝土不规则空间框架抗扭设计安全性的初步评价[D].重庆大学. 2002.
    [43]肖峰.按新旧规范设计的非规则框架结构的抗震性能对比分析[D].重庆大学. 2003.
    [44]郑妮娜.考虑双向水平地震作用的结构范围的界定[D].重庆大学. 2003.
    [45]石诚.考虑双向水平地震作用的结构抗震分析与设计若干问题研究[D].重庆大学. 2003.
    [46]广东省实施《高层建筑混凝土结构技术规程》(JGJ8602)补充规定[S],中国建筑工业出版社.2005.
    [47]徐培福,黄吉锋,韦承基.高层建筑结构的扭转反应控制[J].土木工程学报. 2006,39(7): 1-8 .
    [48]徐培福,黄吉锋,韦承基.高层建筑结构在地震作用下的扭转震动效应[J].土木工程学报. 2000,161): 1-6.
    [49]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报. 2004,38(1): 1-10.
    [50]黄小坤. <高层建筑混凝土结构技术规程>(JGJ8602)若干问题解说[J].土木工程学报. 2004,37(3): 1-11.
    [51]魏琏,王森.水平地震作用下大地盘多塔结构抗扭设计方法[J].建筑结构. 2005,35(8): 3-7.
    [52]魏琏,王森.论水平地震作用下对称和规则结构的抗扭设计[J].建筑结构. 2005,35(5): 13-17.
    [53]魏琏,王森,韦承基.水平地震作用下不对称不规则结构的抗扭设计方法研究[J].建筑结构. 2005,35(8): 12-17.
    [54]魏琏,杨红卫.关于单层厂房扭转耦联地震反应分析方法的讨论[J].工程抗震. 1994,1: 4-8.
    [55]何浩祥,张玉怿,李宏男.建筑结构在双向地震作用下得的扭转震动效应[J].沈阳建筑工程学院学报. 2002,18(4): 241-243.
    [56]梁莉军,黄宗明,杨溥.各国规范关于结构地震下扭转设计方法的对比[J].重庆建筑大学学报. 2002,24(2): 52-56.
    [57]蔡贤辉,邬瑞锋,綦宝晖.偏心结构的弹塑性平扭耦合反应与地震动强度[J].应用数学和力学. 2000,21(5): 451-458.
    [58]蔡贤辉,邬瑞锋,许士斌.多层剪切型均匀偏心结构的弹塑性地震反应规律的研究[J].应用数学和力学. 2001,22(11): 1129-1134.
    [59]蔡贤辉,邬瑞锋,曲乃泗.一类多层偏心结构的地震反应研究[J].地震工程与工程振动. 1999,19(4): 55-60.
    [60]王耀伟,黄宗明.影响偏心结构非弹性地震反应的主要因素分析[J].重庆建筑大学学报. 2001,25(6): 114-120.
    [61]黄宗明,王耀伟.强度偏心对偏心结构非弹性反应的影响分析[J].建筑结构. 2005,35(3): 48-50.
    [62]王耀伟,黄宗明.影响单层偏心结构地震反应的参数分析[J].工程建设与设计. 2004,9: 7-10
    [63]王耀伟,黄宗明.影响偏心结构地震反应的因素综合[J].防灾减灾工程学报.2004,24(1): 112-116.
    [64]尉广辉.砌体结构考虑扭转效应的计算方法.建筑结构[J]. 1995,4: 37-40.
    [65]黄靓,施楚贤,吕伟荣.对框架填充墙结构抗震设计得思考[J].建筑结构. 2005,35(8): 27-29.
    [66]戴君武,张敏政,黄玉龙.偏心结构扭转振动研究中几个基本参量的讨论[J].地震工程与工程振动. 2002,22(6): 38-43.
    [67]戴君武,张敏政,黄玉龙.偏心结构非线性地震反应分析的一种简化方法[J].地震工程与工程振动. 2003,23(3): 60-67.
    [68]戴君武,张敏政,郭迅,黄玉龙.多层偏心结构非线性地震反应分析[J].地震工程与工程振动. 2003,23(5): 75-80.
    [69]王福智,王依群,邓孝祥.振型数的选取及扭转振型的确定[J].天津理工大学学报. 2005,21(3): 81-85.
    [70]侯化坤.高层建筑结构抗扭设计[J].有色金属设计. 2005,32(3): 45-48.
    [71]卢云飞.地震作用下高层建筑的抗扭设计[J]广东土木与建筑. 2004,3: 8-10.
    [72]赖海彪.高层建筑结构设计中扭转效应的控制措施[J].建筑科学. 135.
    [73]李刚,刘永.三维偏心结构的Pushover分析.计算力学学报[J]. 2005,22(5): 529-533.
    [74]刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析[J].建筑科学与工程学报(J). 2005,22(2): 47-50.
    [75]潘东辉,蔡健.建筑结构在不同方向水平地震作用下的扭转振动效应[J].工程抗震与加固改造. 2004,6: 9-14.
    [76]方鄂华,程懋堃.关于规程中对扭转不规则控制方法的探讨[J].建筑结构. 2005,36(11): 12-15.
    [77]邓孝祥,张元坤,唐可.平面不规则高层结构的扭转分析与抗扭设计[J].广东土木与建筑. 2006,1: 3-6.
    [78]裴星洙,张立,廖述清,张小玲.单层偏心结构平扭耦合地震反应分析[J].建筑结构. 2005,35(11): 33-35.
    [79]李英民,赖明,白绍良.基于三参数模型的双向水平地震动相关设计反应谱研究[J].世界地震工程. 2002,18(4): 5-10.
    [80]吕西林,李学平.超限高层建筑工程抗震设计中的若干问题[J].建筑结构学报. 2002,23(2): 13-18.
    [81]徐永基,吕旭东,廖文群,张又一,周鹏.超长大底盘不对称双塔高层建筑结构设计[J].建筑结构. 2005,35(8): 8-12.
    [82]沈蒲生,孟焕陵,刘杨.考虑构件抗扭刚度的高层建筑结构抗扭计算[J].铁道科学与工程学报. 2006,3(2): 21-25.
    [83]李英民,姬淑艳,石城,刘立平.非规则结构的偶然偏心研究[J].沈阳建筑大学学报. 2006,22(2): 262-267.
    [84]马升东,周德源,孙良宏.在水平荷载作用下不规则建筑结构的弹塑性反应综述[J].防灾减灾工程学报. 2004,24(3): 343-349.
    [85]郭仕群.控制高层建筑扭转效应的工程方法[J].工程建设与设计. 2004,6: 24-25.
    [86]吕西林,邹昀,卢文胜,赵斌.上海环球金融中心大厦结构模型振动台抗震试验[J].地震工程与工程振动. 2004,24(3): 57-63.
    [87]姜鋆,王翠坤,肖从真等.一幢特别不规则高层建筑结构模型的振动台试验研究[J].建筑科学. 2005,21(1): 19-25.
    [88]宝志雯,陈志鹏.从实测数据分析建筑物的扭转效应[J].土木工程学报. 1989,22(4): 18-26.
    [89]沙镇平,洪敦枢.混凝土结构扭转理论的进展[J]力学进展. 1992,22(2): 332-345.
    [90]戴嘉川,郭子雄.对高层建筑结构设计的几点体会[J].福州建筑. 1999,4: 20.
    [91]马升东,周德源,孙良宏.平面L形高层建筑的扭转效应分析及对策[J].结构工程师. 2005,21(1): 10-14.
    [92]甄星灿.关于“扭转不规则”判别的思考[J].深圳土木与建筑. 2005,2(1):20-22.
    [93]韩兵康. MTMD控制非对称结构扭转振动的最优位置[J].振动与冲击. 2005,24(3):27-31.
    [94]黄世敏,魏琏,程绍革等.不对称高层建筑平移-扭转耦联振动的多振型控制研究[J].工程抗震. 2004, 2(1):4-8.
    [95]黄世敏,魏琏,衣洪建等.地震作用下不对称高层建筑平移-扭转耦联振动的控制研究[J].工程抗震. 2003,12(4):1-6.
    [96]江宜城,唐家祥,李媛萍.多层框架隔震结构的地震扭转反应分析[J].工程抗震. 2000,6(2):12-15.
    [97]霍林生,李宏男,孙丽.多维地震作用下非对称结构利用TLCD减震控制研究[J].地震工程与工程振动. 2001,21(4):147-153.
    [98]李宏男,杨浩.多维地震作用下偏心结构的磁流变阻尼器半主动控制[J].地震工程与工程振动. 2004,24(3):167-174.
    [99] Juan C. de la Llera, Jose L.Almazan and Ignacio J.Vial. Torsional balance of plan-asymmetric structures with frictional dampers:analytical results[J]. Earthquake Engineering and Structural Dynamics, 2005,34;1089–1108.
    [100]吴晓云,陈森,魏琏.论地震作用下多层平扭耦连建筑的刚心[J].地震工程与工程振动. 1988,8(4):33-41.
    [101] R.Hejal and A.K.Chopra, Earthquake response of torsionally-coupled buildings[R], Report No.oCB/EERC-87/20,University of California,Berkeley,CA,1987.
    [102] J.L.Humar, Design for seismic torsional forces[J],Canadian J. Civil Engng. 12, 150-163 (1984).
    [103] W.H.Wittick, R.W.Horsington. On the coupled torsional and sway vibration of a class of shear buildings[J]. Earthquake Engineering and Structural Dynamics, 1979,7(3):447-490.
    [104] T.鲍雷, M.J.N普里斯特利.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社,2002.
    [105]扶长生.抗震设计中的平扭耦联问题[J].建筑结构学报. 2006,27(2):40-46.
    [106]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社,1993.
    [107]俞载道,曹国敖.随机振动理论及其应用[M].上海:同济大学出版社,1988.
    [108]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [109]李杰、李建华.多点激励下结构随机地震反应分析的反应谱方法[J].地震工程与工程振动. 2004,24(3):21-28.
    [110]林家浩、张文首.抗震结构随机响应与反应谱方法比较[J].振动工程学报. 1988,1(3):55-60.
    [111]东南大学编.建筑结构抗震设计[M].北京:中国建筑工业出版社,1999.
    [112] Loco J. E. Torsional response of structures for SH waves[J]. Earthquake Engineering and Structural Dynamics, 1976,4(2).
    [113] Gupta V K, Trifunac M D, A Note on Contributions of Ground Torsion to Seismic Response of Symmetric Multistoried[J].地震工程与工程振动,1990,10 (3):27-40.
    [114] Rutenberg A. et al. Rotational ground motion and seismic codes[J]. Canadian Journal of Civil Engineering, 1985,12(3).
    [115] Dela Llera J.C., Chopra A.K. Evaluation of code accidental-torsion provisions from building records[J]. Journal of Structural Engineering, 1994,120(2): 597-616..
    [116]刘畅,邹银生.偶然偏心引起的结构地震扭转效应研究[J].工程抗震与加固改造. 2006, 28(3):12-14.
    [117] NBCC.1995. National Building Code of Canada[S]. Institute for Research in Construction, Ottawa, Canada.
    [118] Dhiman Basu, Sudhir K.Jain. Alternative method to locate centre of rigidity in asymmetric buildings[J]. Earthquake Engineering and Structural Dynamics, 2007,36:965-973.
    [119] ELNASHAI A S. Do we really need inelastic dynamic analysis [J]. Journal of Earthquake Engineering, Special Issue, 2002,1:123-130.
    [120] Emrah Erduran. Assessment of current nonlinear static procedures on the estimation of torsional effects in low-rise frame buildings[J]. Engineering Structures, 2008,30:2548-2558.
    [121] Rakesh K.Goel, Anil K.Chopra. Modal Pushover Analysis for Unsymmetric Buildings[C]. ASCE 2005,1:9
    [122] A.M.Mwafy, A.S.Elnashai. Static pushover versus dynamic collapse analysis of RC buildings[J]. Engineering Structures 2001,23:407-424.
    [123]魏琏,王森,王志远等,静力弹塑性分析方法在不对称结构抗震设计中的应用[J].建筑结构2008,38(7):89-92.
    [124]刘畅,邹银生,陈敏.偏心结构考虑扭转的三维Pushover分析[J].建筑科学与工程学报. 2005,22(2):47-50.
    [125]刘畅.偏心结构在地震作用下的扭转反应研究[D].湖南大学.2007.
    [126]王丰.基于性能的结构多维抗震设计方法研究[D].大连理工大学. 2007.
    [127]钱稼茹等.静力弹塑性分析在工程中的应用研究[R].国家自然科学基金重大项目专题报告,1999.
    [128] P. Fajfar, H. Krawinkler. Expanded papers from an international workshop on performance-based design-concepts and implementation[J]. Earthquake Engineering and Structural Dynamics, 2006,35(1):1~2.
    [129] B. Gupta, S.K. Kunnath. Adaptive spectra-based pushover analysis procedure for seismic evaluation of structures[J]. Earthquake Spectra, 2000,16(2):367-391.
    [130] M. Requena. Evaluation of a simplified method for determination of the nonlinear seismic response of RC frames[C]. The 12th World Conference on Earthquake Engineering, Paper No. 2109,2000.
    [131] A.K. Chopra, R.K. Goel. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering and Structural Dynamics, 2002,31:561-582.
    [132] FEMA. NEHRP guidelines for the seismic rehabilitation of buildings, FEMA273[S]. Washington,D.C, Federal Emergency Management Agency,1997.
    [133] FEMA. NEHRP guidelines for the seismic rehabilitation of buildings, FEMA356[J]. Washington,D.C, Federal Emergency Management Agency,2000.
    [134] ATC. Seismic evaluation and retrofit of concrete buildings,ATC40[J]. Redwood city, Applied Technology Council, 1996.
    [135]熊振勇.改进的弹塑性需求谱确定方法及在结构抗震性能评价中的应用[D].重庆大学,2004.
    [136]魏琏,王森,王志远等,静力弹塑性分析方法的修正及其在抗震设计中的应用[J].建筑结构.2006,36(8):97-102.
    [137]孙丽,李宏男,梁德志.双向地震动作用下结构反应的组合方法[J].沈阳建筑工程学院学报(自然科学版). 2001,17(3):167-170.
    [138]刘季.结构多维地震反应的组合问题[J].哈尔滨建筑工程学报. 1987, 2: 1-9.
    [139]李杰,李国强.地震工程导论[M].北京.地震出版社. 1992.
    [140]李英民,韩军,田启祥等.填充墙对框架结构抗震性能的影响研究[J].地震工程与工程振动(2009年第3期录用待发).
    [141]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆:重庆大学:2003.
    [142]杨溥,李英民等.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
    [143]李英民.工程地震动的模型化研究[D].重庆:重庆大学:1999.
    [144] Chopra AK, Goel RK. A modal pushover analysis procedure to estimate seismic demands for buildings:theory and preliminary evaluation[R]. Berkeley,CA: Report No.PEER 2001/03, Pacific Earthquake Engineering Research Center, University of California, 2001.
    [145]白绍良译.钢筋混凝土建筑结构基于位移的抗震设计[R].国际结构混凝土联合会fib第25号公报.重庆大学:2004.
    [146]白绍良译.控制非弹性反应的钢筋混凝土结构抗震设计[R].欧洲-国际混凝土协会CEB.重庆大学:2004.
    [147] Fajfar P, Marusic D, Peruc I. Torsional effects in the pushover-based seismic analysis of buildings[J]. Journal of Earthquake Engineering. 2005, 9(6):831–54.
    [148]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报,1999,20(3):42-49.
    [149]杨红.基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律的研究[D].重庆建筑大学.博士学位论文.2000.
    [150]韦峰.钢筋混凝土框架和框架-剪力墙结构非线性地震反应性态的识别[D].重庆大学.博士学位论文.2005.
    [151]陈云涛,吕西林.剪力墙非线性分析中多垂直杆元模型的分析与改进[J].结构工程师, 2001,(4):21-24.
    [152] Bertero V. V., Aktan A. E., Charney F. A., and Sause R. U. S.-Japan Cooperative Earthquake Research Program: Earthquake Simulation Tests and Associated Studies of a 115th–Scale Model of a 7-Story Reinforced Concrete Test Structure[R]. Report No. UCBIEERC-84105, University of California, Berkeley, California June 1984.
    [153] Park, Y. J., Reinhorn, A. M., and Kunnath, S. K. IDARC: Inelastic Damage Analysis of ReinforcedConcrete Frame-Shear-Wall Structures[R]. Technical Report NCEER-87-0008 State University of New York at Buffalo, 1987.
    [154]李康宁,洪亮,叶献国.结构三维弹性分析方法及其在建筑物非弹性地震反应的应用[J].建筑结构, 2001, 31(3): 56-61.
    [155]杜宏彪,房营光,沈聚敏.空间钢筋混凝土框架结构的非弹性地震反应[J].地震工程与工程振动,1999,19(2):81-86.
    [156] Silvia.Mazzoni,F.McKenna,M.H.Scott and G.L.Fenves. Opensees Users Manual[R]. PEER, University of California at Berkeley,2006.
    [157] Otani S. Inelastic analysis of R/C frame structures [J]. Journal of the Structural Division, ASCE, 1974, 100(7): 1433-1449.
    [158] Zahn F., Park R., and Priestley M.J.N. Strength and ductility of square reinforced concrete column sections subjected to biaxial bending [J]. ACI Structural Journal, 1989, 86(2):123-131.
    [159]薛伟辰,周氏,吕志涛.混凝土杆系结构滞回全过程分析[J].工程力学,1996,13(3): 8-16.
    [160] Izzuddin B.A., Karayannis C.G., and Elnashai, A.S. Advanced nonlinear formulation for reinforced concrete beam-columns[J]. Journal of Structural Engineering, ASCE, 1994, 120(10): 2913-2934.
    [161] Karayannis C.G., Izzuddin B.A., and Elnashai A.S. Application of adaptive analysis to reinforced concrete frames [J]. Journal of Structural Engineering, ASCE, 1994, 120(10): 2935-2957.
    [162] Neuenhofer A., and Filippou F.C. Evaluation of nonlinear frame finite-element models[J]. Journal of Structural Engineering, ASCE, 1997, 123(7): 958-966.
    [163] Zeris C.A., and Mahin S.A. Analysis of reinforced concrete beam-columns under uniaxial excitation[J]. Journal of Structural Engineering, ASCE, 1988, 114(4):804- 820.
    [164]臧登科.纤维模型中考虑剪切效应的RC结构非线性特征研究[D].重庆大学硕士学位论文.2008.
    [165]陈亦,何勇毅,蒋欢军.剪力墙结构计算模型分析[J].四川建筑科学研究, 2001. 27(1): 1-4.
    [166] Kabeyasawa, Shioara T. H. , and O tani S. U. S. - Japan Cooperative Research on RC Fullscale Building Test- Part 5: discussion on dynam ic response system[C]. Procs. 8th WCEE, 1984,Vol.6, 627-634.
    [167] Volcano A. , Bertero V. V. , and Colotti V. Analytical Modeling of RC Structural Walls[C]. Procs. 9th WCEE, 1988, ? , 41246.
    [168] Milev J. I. Two Dimensional Analytical Model of Reinforced Concrete Shear Walls[C]. Procs. 11th WCEE, 1996, Elsevier Science Ltd., Paper No. 320.
    [169]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].地震工程与工程振动,2001,21(2): 78-83.
    [170]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊,2005,26(1): 72-80.
    [171]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构[J].地震工程与工程振动,1998. 18(3): 40-48.
    [172] Vulcano A., and Bertero V. V. and Colotti V.. Analytical Modeling RIC Structural walls[C]. Proc. 9th WCEE, Vol. VI, Tokio-Kyoto, Japan, pp. 41-46.
    [173] Matej Fischinger, Tatjana Isakovic. Benchmark Analysis of a Structural Wall[C].Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000, CD-ROM, 041611-8.
    [174] R.E.Valles, A.M.Reinhorn. IDARC-2D User’s manual[M]. NCEER. State University of New York at Buffalo. New York:USA.
    [175] Fabio F. Taucer, Enrico Spacone, Filip C. Filippou. A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures[R]. UCB/EERC-91/17. 1991.
    [176] B.D. Scott, R. Park and M.J.N. Priestley.Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates [J]. ACI Journal, 1982, 79: 13-27.
    [177] K.J. Elwood.Shake Table Tests and Analytical Studies on the Gravity Load Collapse of RC Frames [D]. Ph.D. Thesis. Department of Civil and Environmental Engineering, University of California, Berkeley. 2002.
    [178]中华人民共和国国家标准.混凝土结构设计规范GB50010-2002[M].北京:中国建筑工业出版社.2002.
    [179]白绍良,廉晓飞等.钢筋混凝土结构及砖石结构[M].北京:中央广播电视大学出版社,1992.
    [180]韩军.带深桩基础高层建筑结构地震动输入问题研究[D].重庆大学硕士学位论文. 2004.
    [181] Tso WK,Zhu TJ. Design of torsionally unbalanced structural systems based on code provisions I:ductility demand[J]. Earthquake Engineering and Structural Dynamics 1992, 21:609–627.
    [182] Zhu TJ, Tso W.K. Design of torsionally unbalanced structural systems based on code provisions II:strength distribution[J]. Earthquake Engineering and Structural Dynamics 1992;21:629–644.
    [183] K.G.Stathopoulos, S.A.Anagnostopoulos. Inelastic torsion of multistorey buildings under earthquake excitations[J]. Earthquake Engineering and Structural Dynamics, 2005, 34:1449–1465
    [184] Stathopoulos KG. Investigation of the inelastic response and earthquake resistant design of asymmetric buildings[D]. Ph.D. Dissertation, University of Patras,Greece,2001.
    [185] Stathopoulos KG, Anagnostopoulos SA. Inelastic earthquake induced torsion in buildings:results from realistic models[C]. Proceedings 12th European Conference on Earthquake Engineering, London,U.K.,2002,Paper No.453.
    [186] Stathopoulos KG, Anagnostopoulos SA. Inelastic earthquake response of single-storey asymmetricbuildings: an assessment of simplied shear-beam models[J]. Earthquake Engineering and Structural Dynamics 2003,32:1813–1831.
    [187] Stathopoulos KG, Anagnostopoulos SA. Earthquake induced inelastic torsion in asymmetric multistory buildings[J]. 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004, Paper No.558.
    [188]黄行松.钢筋混凝土框架柱在低周反复荷载下的受力性能研究[J].福建建筑. 2000年增刊. 70:2-5.
    [189]吕西林,卢文生. R.C.框架结构的振动台试验和面向设计的时程分析方法[J].地震工程与工程振动,1998,18(2): 48-58.
    [190]杨溥,李英民等.结构静力弹塑性分析(Push-over)方法的改进[J]..建筑结构学报,2000,21(1):44-50.
    [191] A.K. Chopra, R.K.Goel. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures:SDF systems[R]. University of California,Berkeley. California, US.PEER. Feb. 1999.
    [192]白绍良,李刚强,李英民,韦锋.从R -μ- T关系研究成果看我国钢筋混凝土结构的抗震措施[J].地震工程与工程振动,2006,26(5):144-151.
    [193] Priestley M.J.N, Kowalsky M.J.. Aspects of drift and ductility capacity of rectangular cantilever structure walls[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1998,31(2):73-85
    [194]王珍.钢筋混凝土结构抗震承载力级差设计措施的非线性动力分析[D].重庆大学硕士学位论文. 2000.
    [195]杨媛.对各国规范钢筋混凝土结构抗震设计条文的对比分析[D].重庆大学硕士学位论文. 2000.
    [196]程文壤,李爱群,张晓峰等.钢筋硷柱的轴压比限值[J].建筑结构学报,1994,15(6):25-30.
    [197]魏琏,王森.扭转不规则建筑竖向构件考虑扭矩影响的抗震验算方法[J].建筑结构,2006,36(7):8-10.
    [198]混凝土结构设计规范(GB50010—2002)[S].北京:中国建筑工业出版社, 2002.
    [199]殷芝霖.钢筋混凝土构件的扭转刚度[J].建筑结构. 1981(3),17-24
    [200]王仲秋.矩形截面钢筋混凝土构件的扭转刚度[J].哈尔滨建筑工程学院学报. 1983(3),1-11
    [201] Paul Lampert. Postcracking Stiffness of Reinforced Concrete Beams in Torsion and Bending Analysis of Structural Systems for Torsion[R]. American Concrete Institute. Detroit. 1973
    [202]黄音.大跨度预应力次梁楼盖边梁-楼面梁协调扭转试验及研究[D].重庆大学.博士学位论文. 2004
    [203]孙仁博,王天明.材料力学[M].中国建筑工业出版社, 1995.
    [204] R.帕克, T.波利著.秦文钺译.钢筋混凝土结构[M].重庆建筑大学, 1999.
    [205]徐增全著.白绍良等译.钢筋混凝土统一理论[M].重庆大学, 2003.
    [206]东南大学编.混凝土结构[M].北京:中国建筑工业出版社,2002.
    [207]魏琏,王森,袁成铭.水平地震作用下不对称结构抗扭设计方法的研究[J].深圳土木与建筑,2006,3 (1): 22-25.
    [208]李杰.偏心结构的弹塑性扭转反应机理――实验与分析[J].郑州工学院学报,1990,11(1): 23-28.
    [209]北村春幸著,裴星洙译.基于性能设计的建筑振动解析[M].西安,西安交通大学出版社,2004.
    [210]关国雄,夏敬谦.钢筋混凝土框架砖填充墙结构抗震性能的研究[J].地震工程与工程振动,1996, 16(1):87-99.
    [210]李英民,刘立平.汶川地震建筑震害与思考[M].重庆:重庆大学出版社, 2008.
    [211]韦锋,杨红,白绍良.对我国不同烈度区钢筋混凝上框架现行抗震规定的初步验证[J].重庆建筑大学学报, 2001, 23(6):1-9.
    [212]白绍良,杨媛,杨红等.从各国设计规范对比看我国钢筋混凝土建筑结构抗震能力设计措施的有效性[M].重庆大学, 2001.
    [213]曹万林,王光远,吴建有等.轻质填充墙异型柱框架结构层刚度及其衰减过程的研究[J].建筑结构学报, 1995,16(5):20-31.
    [214]北京市建筑标准化办公室.北京市建筑设计技术细则—结构专业[S].北京市建筑设计标准化办公室. 2004.
    [215]建设部.超限高层建筑工程抗震设防专项审查技术要点[S], 2003.3.
    [216] Architectural Institute of Japan. AIJ Standard for structural calculation of reinforced concrete structures[S]. 1983: 8.
    [217] M. De Stephano, G. Faella, R. Ramasco, Inelastic response and design criteria of plan-wise asymmetric buildings[J]. Earthquake Engineering and Structural Dynamics, 1993, 22: 245-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700