板坯连铸凝固壳厚度的研究及应力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸是炼钢生产中的重要环节。连铸过程中,铸坯不同位置处凝固壳厚度的变化规律对生产工艺的改进有重要意义,同时,对坯壳应力应变状态的分析有助于深入的认识连铸工艺对铸坯质量的影响。
     本论文采用射钉法对新疆八一钢铁有限公司连铸钢种Q235和Q345B的凝固壳厚度进行了测试。测试的纵向位置选取连铸机水平段的四个位置,横向选取在铸坯断面的1/2、1/4和1/8处,获得了不同工艺条件下的凝固壳厚度。利用测试结果,计算凝固终点位置,并分析凝固壳厚度的变化规律。分析表明,该铸机的冷却强度较大,拉速为1.2m/min时,Q235钢的凝固终点位置在20m-21m之间;拉速为1.3m/min时,Q345B钢的凝固终点位置在23m-25m之间。测试研究为优化工艺参数、提高连铸机生产效率和有效实施动态轻压下奠定了基础。
     依据八钢连铸机的结构参数,采用MSC.Marc有限元分析软件,建立了从结晶器弯月面至水平段末端的纵向二维平面模型。利用凝固壳厚度测试结果对传热模型的边界条件进行修正,计算获得了Q235钢连铸板坯的纵向二维温度场。通过调用计算的温度场对连铸板坯纵向二维应力变化进行数值模拟,获得了铸坯不同位置处的应力应变分布。通过比较,模拟计算结果与现场实测的铸坯表面温度和坯壳厚度基本吻合。同时,将计算所得的连铸坯收缩值与铸机的辊缝收缩设定值进行了比较,得到模拟计算的收缩值与设定值之间的误差小于±0.2mm。因此,论文建立的计算模型对评价不同冷却制度下的辊缝收缩量有重要的价值。
     通过分析不同位置处的温度场和应力场,结果表明,铸坯表面等效热应力的最大值出现在结晶器出口附近,内部中心位置在凝固初期的等效热应力变化值较小,但在凝固末端由于温度的急剧降低,等效热应力值迅速增加。因此,保证铸坯的均匀冷却,减小温度波动所引起的等效热应力应变值,对改善铸坯质量有重要作用。
Continuous casting is key link in steel making. During the continuous casting process, change law of solidified shell thickness have had a significant impact to improve production process, meanwhile, analyzing state of stress and strain to help to in-depth know continuous casting process on the quality of impact.
     In this paper, solidified shell thickness of steel Q235 and Q345B had been tested for Xinjiang Bayi Iron and Steel Company by nail-shooting method. Four position of horizontal section are selected along the longitudinal direction, three position (1/2, 1/4and1/8) are selected along lateral position, obtained solidified shell thickness under different cooling process. By test results, end of solidification had been calculated, and analyzing change law of solidified shell thickness. Analysis shows that, cooling intensity of caster is greater, end point of solidification is approximately 20m-21m when casting speed is 1.2m/min for Q235, end point of solidification is approximately 23m-25m when casting speed is 1.3m/min for Q345B. Testing research may lay the foundation for optimizing parameters and improving efficiency and implementing dynamic soft reduction.
     In accordance with structural parameters of BA steel caster, adopted MSC.Marc Finite-Element software, established longitudinal two-dimensional plane model from meniscus to outlet of horizontal section. Boundary conditions of heat transfer model had been modified by test result of solidified shell thickness, obtained two-dimensional temperature field of steel Q235 slab continuous casting. Simulated longitudinal two-dimensional stress changes for slab continuous casting by using calculated temperature field, obtained different position stress-strain distribution. By comparing, the simulation results consistent with test results of slab surface temperature and solidified shell thickness. At the same time, calculated slab shrinkage comparison with the roll gap reduction settings of caster, obtained calculation and settings among the error is less than±0.2mm. Therefore, paper model has important value for evaluating of different cooling technology of roll gap shrinkage.
     By analyzing different position temperature field and stress field, the results show that maximum of surface equivalent thermal stress is the outlet of mold, equivalent thermal stress is less in early solidification for center position, because of temperature decreasing of end point, equivalent thermal stress increased rapidly. Therefore, ensure uniform cooling of continuous casting, reduce equivalent thermal stress and strain caused by changes of temperature, have had significant impacts to improve quality of continuous casting.
引文
[1]史宸兴.实用连铸冶金技术[M].北京:冶金工业出版社,2003.
    [2] J.K.Brimacombe. Empowerment with Knowledge-Toward the Intelligent Mould for the Continuous Casting of Steel Billets[C]. 1993. Steelmaking Conf.Proc.3-27. Also see Iron and Steelmaker.1993.20.(11).35-47
    [3]殷瑞钮.关于21世纪发展连续铸钢的若干认识[J].连铸,2001.(1):1-3.
    [4]张小平,梁爱生.近终形连铸技术[M].冶金工业出版社,2000.
    [5] Shangyi Li, Zubin Wang. Present and futnre status of the Chinese steel industry in 21st century [J]. Iron and Steel Engineer.1999.(8):56-59.
    [6]陈雷.连续铸钢[M].北京:冶金工业出版社,1994.
    [7]蔡开科.连铸技术发展[J].炼钢,2001.17(3):6-14.
    [8]裴静娟.我国钢铁冶金行业现状及发展趋势分析[J].中国高新技术企业,2008.07:22
    [9]蒲海清.依靠科技进步调整结构[J].炼钢,2000.16(3):1-4.
    [10]易本熙等.提高我国连铸水平大力发展高效连铸技术[J].钢铁,1999.34:481-485.
    [11]张兴中,倪满森.连铸技术的发展状况及高效连铸[J].中国冶金,2003,64(3):17~22
    [12]许中波.我国连铸技术的现状与展望[J].炼钢,2000,16(6):1~5
    [13] Krob, R., Suddoth, T, Van Gemert, P. The design and implementation of a PLC continuous casting control system [J]. Industry Applications Society Annual Meeting,1993, vol.3:2398– 2405
    [14] Yoshida, T, Sasaki, T., A.Takahashi, M. Matsui, H. Development of Intelligent RobotSystem for Continuous Casting Process in the Steel Making Industry Intelligent Motion Control [J]. 1990. Proceedings of the IEEE International Workshop on Volume 2,20-22 August 1990 Page(s):561– 565
    [15]蔡开科.连续铸钢500问[M].北京:冶金工业出版社,1994
    [16]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [17]陈登福.薄板连铸坯的温度与应力状态的研究[D].博士学位论文.重庆:重庆大学.1997.
    [18]曹广畴.现代板坯连铸[M].北京:冶金工业出版社,1994,45-52
    [19]刘青,田乃媛,王英群等.矩形坯连铸凝固传热的数学模型[J].钢铁,1997,32(2):28-32
    [20]刘和平.基于连续模型的连铸板坯凝固过程传输行为的仿真研究[D].博士学位论文.北京:钢铁研究总院,2002
    [21]陈登福等.冶金能源[J].1992,11(5),27-29
    [22] F. Kenneth Iverson et.al, MPT [J]. 1991, (1), 40-51
    [23] Brian Cooper, Steel Times International [J]. 1993, (1), 8-9
    [24]姜立东,李建军.包钢大方坯连铸机结晶器凝固传热的数值模拟[J].包头钢铁学院学报,2000,19(2):134-137
    [25]闫小林.连铸过程原理及数值模拟[J].石家庄:河北科学技术出版社,2001.
    [26] Christian F, Kurt D.Dynamic Cooling Models[C]. AISE Conference, Nashville TN/USA, 1999,25-29
    [27] Clyne T W.Numerical Modelling of Directional Solidification of Metallic Alloys[J].Metal Science, 1982,16:441-450
    [28]蒋冠路.连铸板坯传热的计算机模拟[J].武钢技术,1980,(4):6-18
    [29] Miyazawa K, Muichi I.Theroretical Analysis on the Solidification Profile os Slab in Straight Type Continuous Casting Machine [J]. Tetsu-to-Hagane,1974, 60(7):1000-1006
    [30] Sasaki K, Sugitani Y, Kawasaki M.Heat Transfer In Spary Cooling on Hot Surface[J].Tetsu-to-Hagane,1979,65(1):90-96
    [31] Winzell B.Finite Element Galerkin Method for Multiphase Stefan Problems [J]. AppI. Math-Modelling,1983,7:329-344
    [32]薛念福,王元宰,周筠清.连铸喷淋结晶器的传热数学模型[J].钢铁钒钛,1995,16(2):36-40
    [33]萨莫伊洛维奇,连续铸钢的热过程[M].北京:冶金工业出版社,1987
    [34]伍兵,陈永,赵克文等.攀钢弧形板坯连铸机铸坯凝固层厚度的研究[J].钢铁,2000,35(10):27~29
    [35] Brian G. Thomas, William R. Storkman, Avijit Moitra. Optimizing taper in continuous slab casting molds using mathematical models [J]. Proceedings of the Sixth International Iron and Steel Congress. Japan,1990
    [36]林建农,马富昌,张宪成等.舞钢连铸板坯液芯长度测定[J].宽厚板,2005,11(5):1~6
    [37]栗伟,朱国森,王万军等.连铸坯液相穴长度的测定研究[J].北京科技大学学报,2003,25(4):315~318
    [38]贾洪明,李惊鸿,李晓伟等.厚板坯连铸凝固过程数值模拟[J].炼钢,2007,23(2):27-30
    [39] E B Hawbolt, F Weinberg. Influence of Hot Working on Internal Cracks in Continuously Cast Steel Billets [J]. Metallurgical Transactions B, 1979,(10B):229-236
    [40] Laitinen Erkki, Rekkila Mikal, Tolvanen Mikko. Control of Steel Solidification in Continuous Casting [J]. Metallurgical Transactions B, 1993,24(9):680-685
    [41] B.G.Thomas. Continuous Casting [M]. The Encyclopedia of Materials: Science and Technology,2001,(2):1595-1599
    [42] B.G.Thomas. Modeling of the Continuous Casting of Steel past [J], Present and Future. ElectricFurnace Conf. Proc. Warrendale,PA,(Phoenix,AZ),2001,(59):3-30
    [43] S Kchoudhary, K Mazumdar. Mathematical modeling of transport phenomena in continuous casting of steel [J]. ISU International,1994,34(7):584-592
    [44] T kawawa, H Sato. Determination of Solidifying Shell Thickness of Continuous Cast Slab by rivet Pin Shooting [J]. Testsu-to-Hagane,1974,(60):2006-216
    [45]马勤学,盛喜松,王德城等.提高热送铸坯温度的试验研究[J].钢铁,2001,36(7):20~22
    [46]张旭升,关勇,贾洪明等.应用射钉法测量板坯凝固坯壳的厚度[J].鞍钢技术,2005,(6):36~39
    [47]曹运涛,李殿明,董光军.射钉法测量坯壳厚度在济钢大板坯连铸机上的应用[J].山东冶金,2006,28(5):36~37
    [48]王彪,谢植,汪灿荣等.基于射钉法的小方坯凝固过程数值模拟[J].铸造技术,2007,28(3):435-438
    [49]王俊杰,杨吉春,卢翔宇.连铸板坯热送过程传热模型研究[J].包头钢铁学院学报,1999, 18(2):134-138
    [50]胡燕.连铸板坯凝固传热数学模型的研究与应用[D].硕士学位论文.重庆:重庆大学.2005.
    [51] B.Mintz, J.J.Jonas. Influence of Strain Rate on Production of Deformation Induced Ferrite and Hot Ductility of Steels [J]. Materials Science and Technology.1994.10 (8):721-727.
    [52] Kunio Yasumoto, Yasuhiro Maehara, Tsuneaki Nagamichi. Efects of Thermo-Mechanical History on Surface Cracking of As-cast Low-carbon low-Alloy Steels Slabs [J]. ISIJ International. 1998. 29(11):933-939.
    [53] Spinelli.J.E, Tosetti.J.P, Santos.C.A. Microstructure and Solidfication Thermal Parameters in Thin Strip Continuous Casting of Stainess steel [J]. Journal of Materials Processing Technology. 2004. 150(8):255-262.
    [54]张国栋.材料研究与测试方法[M].北京:冶金工业出版社,2001.
    [55]张立,徐国栋,王新华等.集装箱用钢连铸坯表面纵裂纹的研究[J].钢铁,2002,37(1):19-21.
    [56]廖建云,陈登福,冯科.方坯连铸二冷热应力模拟[J].重型机械科技,2003 (3):13-16
    [57]韩志伟,冯科等.板坯连铸凝固传热过程的有限元模拟[J].计算机辅助工程,2006,9(15):435-436
    [58]王春会,周晓敏等.板坯连铸凝固过程的数值模拟[J].上海金属,2007,29(4):45-48
    [59]王哲,沈厚发,柳百成.连铸结晶器中坯壳生长有限元分析[J].清华大学学报,2004,44(11):1448-1451
    [60]王迎春,朱立光等.连铸凝固传热全过程数值模拟与控制[J].计算机应用技术,2005,25(9):531-533
    [61]李东辉,邱以清,刘相华.模拟连铸过程的数学模型[J].钢铁研究,2004,10(5):20-23
    [62]谢贻权等.弹性和塑性力学中的有限元法[M].机械工业出版社,1985
    [63]严宗达.热应力[M].高等教育出版社,1993
    [64]王洪刚.热弹性力学概论[M].清华大学出版社,1989
    [65] A. Grill et.al., Ironmaking and Steelmaking[M], 1976, 3(1),38-47
    [66] K. sorinach. Improvements in mathermatical modeling of stresses in continuous castings of steel [J]. Ironmaking & steelmaking,1997,(4):240
    [67]陈火红. Marc有限元实例分析教程[M].北京:机械工业出版社,2002
    [68]阚前华,常志宇. MSC.Marc工程应用实例分析与二次开发[M].北京:中国水利水电出版社, 2006
    [69]陈火红,于军泉,席源山. MSC.Marc/Mentat 2003基础与应用实例[M].科学出版社, 2004
    [70]宁振宇,吴迪平等.板坯连铸三维鼓肚变形仿真研究[J].冶金设备, 2007,162:5-8
    [71]陈登福,龙木军等. 60Si2Mn钢连铸坯的高温物理性能研究[J].中国稀土学报,2006,24:406-409
    [72]陈家祥等.炼钢常用数据图表手册[M].北京:冶金工业出版社,1984
    [73]焦晓凯,秦勤,吴迪平等.板坯连铸铸坯鼓肚变形的仿真研究[J].冶金设备,2007,161:9-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700