天牛肠道细菌来源植酸酶的基因克隆、表达及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植酸酶(Phytase,EC 3.1.3.8或EC 3.1.3.26)是一类能够降解植酸并释放无机磷和肌醇的磷酯酶。近些年,植酸酶作为一种新型的饲料添加剂和无机磷的替代物,在猪、鸡等单胃动物饲养业的应用价值已得到充分体现,而在水产养殖方面,具有应用价值的中性植酸酶亟需开发。昆虫肠道作为一个微生物数量众多且复杂多样的特殊环境,目前几乎没有相关植酸酶的报道。本论文的研究目的旨在从中性的昆虫肠道环境中获得具有新颖性和应用潜力的植酸酶。
     本研究从云斑天牛肠道环境来源细菌中挑选具有种属差异的20株细菌,利用简并PCR和TAIL-PCR技术,从其中3株细菌中克隆到4个植酸酶编码基因,分别为Pseudomonas sp. TN06来源的phyA06、Serratia sp. TN49来源的phyH49和phyB49、Janthinobacterium sp. TN115来源的phyA115。其中,phyH49为组氨酸酸性磷酸酶(HAP)基因,phyA06、phyB49和phyA115为β-折叠桶状植酸酶(BPP)基因。通过氨基酸序列比对分析,四个基因与已发表的植酸酶序列最高序列一致性为47–64%,三个BPP基因相互之间的一致性为39–51%,说明这四个昆虫肠道来源的植酸酶基因均具有较高的序列新颖性。通过同源建模分析,三个BPP植酸酶均具有双结构域,与大多数完成酶学性质分析的单结构域BPP植酸酶不同。Serratia sp. TN49是典型的肠杆菌科细菌,本研究首次从肠杆菌科中克隆得到BPP基因,并首次从单一菌株中克隆到多个植酸酶基因。进一步的系统进化树分析表明phyB49和与植物共生的Pseudomonas spp.来源的双结构域BPP植酸酶的亲缘关系最相近。四个植酸酶编码基因分别重组到pET-22b(+)载体,在大肠杆菌BL21(DE3)中表达。重组蛋白经Ni-NTA柱纯化达电泳纯后,进行了酶学性质分析。
     来源于Pseudomonas sp. TN06的PhyA06最适Ca~(2+)浓度是2 mM,最适pH值为7.0,最适温度是55°C,并在30°C保持50%左右的活性。PhyA06具有较好的热稳定性,在65°C处理1 h后,还保留70%以上的相对酶活。PhyA06对胰蛋白酶的降解有抗性,胰蛋白酶处理1 h,酶活保持不变。该酶的性质特点符合水产养殖业对植酸酶的需求,具有潜在的应用价值。来源于Serratia sp. TN49的重组植酸酶PhyH49和PhyB49最适pH值分别为5.0和7.5,最适温度分别为60°C和45°C,在30°C时相对酶活力为30%和60%左右。PhyB49最适Ca~(2+)浓度是1 mM。实验结果表明,同时具有两类植酸酶的Serratia sp. TN49在pH 2.0–9.0范围内都可以有效的利用植酸,增强了对不同生活环境的适应性。另外,从中性肠道微生物中分离得到中性植酸酶,也符合微生物对环境适应性和定向进化的趋势。
     来源于Janthinobacterium sp. TN115的PhyA115最适Ca~(2+)浓度是1 mM,最适pH值为8.5,最适温度是45°C。PhyA115活性与Ca~(2+)浓度、底物植酸浓度之间有密切的关系。在Ca~(2+)浓度和植酸浓度一致时,PhyA115具有最高的酶活。在植酸浓度极低(0.1 mM)且无Ca~(2+)时,PhyA115有较高酶活性,该现象至今尚未见报道。经结构和功能比较分析发现,不完整的N端结构域虽然没有降解植酸的能力,但可以改变PhyA115最适pH和pH作用范围。PhyA115是中性植酸酶基础理论研究及水产应用的良好材料。
     本研究首次对天牛肠道这个特殊生态环境中细菌来源的植酸酶进行了初步研究。结果表明该环境主要以双结构域BPP植酸酶为主。这些BPP植酸酶的序列和酶学性质具有较高的新颖性,为今后的基础研究和工业应用提供了良好的实验材料。
Phytase (EC 3.1.3.8 or EC 3.1.3.26) is a group of enzymes that initiate the stepwise hydrolysis of phytic acid to generate inorganic orthophosphate, lower myo-inositol phosphoric esters, and free myo-inositol. Recently, dietary phytase, as a novel animal feed additive and as a replacement for inorganic phosphorus, has been proved to be efficient in the improvement of phytate-phosphorus utilization and bioavailability of minerals to swine and poultry. In aquaculture, neutral phytases with appropriate properties are being developed. Insect digestive tract harbors abundant and diverse microorganisms. To our knowledge, no phytase has been identified in these symbiotes. This study aims to obtain novel phytases with application potentials from the microbes of neutral insect digestive tract.
     Twenty bacterial stains of various taxa isolated from the gut of Batocera horsfieldi were selected as microbial sources. By using degenerate PCR and TAIL-PCR techniques, four phytase-encoding genes were cloned from three strains, including phyA06 from Pseudomonas sp. TN06, phyH49 and phyB49 from Serratia sp. TN49 and phyA115 from Janthinobacterium sp. TN115. Of them, phyH49 encodes a histidine acid phosphatase (HAP), and phyA06, phyB49 and phyA115 encode threeβ-propeller phytases (BPPs). Sequence homology analysis revealed that the deduced amino acid sequences of these four phytases had highest identities of 47–64% with known proteins in the public databases and 39–51% identities among three BPPs, suggesting that these phytase genes from insect gut have high sequence novelty. Homology modeling indicated that all three BPPs have dual-domain structures and are distinct from most single-domain well-characterized BPPs. Serratia is a typical genus of Enterobacteriaceae. It is the first report of a BPP gene in Enterobacteriaceae and of more than one type of phytase in a single strain. Further phylogenetic analysis revealed that deduced PhyB49 is closely related with the dual-domain phytases of Pseudomonas spp. accreted with plant. Four phytase-encoding genes were recombined with pET-22b(+) and transformed into Escherichia coli BL21 (DE3) for expression, respectively. The recombinant proteins were purified to electrophoretic homogeneity by Ni2+-NTA metal chelating affinity chromatography and further characterized.
     PhyA06 from Pseudomonas sp. TN06 exhibited maximal activity at pH 7.0 and 55°C in the presence of 2 mM Ca~(2+) and retained > 50% activity at 30°C. PhyA06 was thermostable, and retained 70% of the initial activity after incubation at 65°C for 1 h. PhyA06 was highly resistant to trypsin, retaining almost all of the activity after 1-h treatment. These properties make PhyA06 favorable for potential application in aquaculture.
     PhyH49 from Serratia sp. TN49 had pH and temperature optima of 5.0 and 60oC, respectively. PhyB49 showed optimal activity at pH 7.5 and 45oC in the presence of 1 mM Ca~(2+). PhyH49 and PhyB49 retained about 30 and 60% of the maximal activity at 30°C, respectively. The presence of two types of phytases makes Serratia sp. TN49 more efficient in phytate-phosphorus utilization over a board pH range (2.0–9.0) and more adaptive to various environments. Furthermore, symbiotes harboring neutralβ-propeller phytase correspond to their adaptation to environment changes and evolution trend.
     The optimal activity of PhyA115 from Janthinobacterium sp. TN115 was found to occur at pH 8.5 and 45°C in the presence of 1 mM Ca~(2+). PhyA115 activity was found to be related with concentrations of Ca~(2+) and substrate phytate. When the concentrations of Ca~(2+) and phytate were similar, PhyA115 exhibited the maximal phytase activity. When the phytate concentration was low (0.1 mM) and Ca~(2+) was absent, PhyA115 had high phytase activity. Structure-function analysis revealed that the N-terminal incomplete domain has no phytase activity but can influence the pH optimum of PhyA115. This is the first time to report such a phenomenon. PhyA115 is not only an important material for basic research ofβ-propeller phytase but also a potential feed additive in aquaculture.
     It is the first study to explore the phytases from bacteria harbored in the gut of B. horsfieldi larvae. In this special environment, dual-domain BPP phytases are predominant phytate-degraders. These BPP phytases share low identities with known proteins and have some novel enzyme properties, and may represent good materials for basic research and industrial applications in future.
引文
1.毕士峰,张毅.一种新的食品添加剂-植酸酶.食品科学, 2000, 21: 9-10.
    2.曾虹,姚斌,任泽林.中性植酸酶NPHYA的酶学性质及其在鲤鱼饲料中的应用效果[J].水生生物学报, 2002, 26: 67-74.
    3.李钱峰,刘巧泉,张达江等.转基因水稻中重组植酸酶的表达.中国水稻科学, 2006, 20: 243-247.
    4.罗会颖,姚斌,袁铁铮等.来源于Escherichia coli的高比活植酸酶基因的高效表达.生物工程学报, 2004, 20: 78-84.
    5.史兆兴,王恒樑,苏国富等.简并PCR及其应用.生物技术通讯, 2004, 15: 172-175.
    6.姚斌,张春义.产植酸酶的黑曲霉菌株筛选及其植酸酶基因克隆.农业生物技术学报, 1998, 6: 1-6.
    7.余鳗游,李春梅,陈惠等.黑曲霉植酸酶phyAm基因结构延伸突变改善酶的热稳定性.生物技术通报, 2010, 10.
    8. Anno T, Nakanishi K, Matsuno R et al. Enzymatic elimination of phytate in soybean milk. J Japan Soci Food Sci Technol (Japan). 1985, 32: 174-180.
    9. Augspurger N, Webel D, Lei X et al. Efficacy of an E. coli phytase expressed in yeast for releasing phytate-bound phosphorus in young chicks and pigs. J Anim Sci. 2003, 81: 474-483.
    10. Barrientos L, Scott JJ, Murthy PPN. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol. 1994, 106: 1489-1495.
    11. Bilyeu KD, Zeng P, Coello P et al. Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol. 2008, 146: 468-477.
    12. Bindu S, Somashekar D, Joseph R. A comparative study on permeabilization treatments for in situ determination of phytase of Rhodotorula gracilis. Lett Appl Microbiol. 1998, 27: 336-340.
    13. Bitar K, Reinhold J. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man. Biochim Biophys Acta. 1972, 268: 442-452.
    14. Boyce R, Chilana P, Rose TM. iCODEHOP: a new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences. Nucleic Acids Res. 2009, 37: W222-W228.
    15. Cao L, Wang W, Yang C et al. Application of microbial phytase in fish feed. Enzyme Microb Technol. 2007, 40: 497-507.
    16. Carrington AL, Calcutt NA, Ettlinger CB et al. Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetes. Eur J Pharmacol. 1993, 237: 257-263.
    17. Chapman A. Numbers of living species in Australia and the world. 2006.
    18. Cheng C, Lim B. Beta-propeller phytases in the aquatic environment. Arch microbial. 2006, 185: 1-13.
    19. Cheng ZJ, Hardy RW. Apparent digestibility coefficients and nutritional value of cottonseed meal for rainbow trout (Oncorhynchus mykiss). Aquaculture, 2002, 212: 361-372.
    20. Cho JS, Lee CW, Kang SH et al. Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbial. 2003, 47: 290-294.
    21. Choi YM, Suh HJ, Kim JM. Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem. 2001, 20: 287-292.
    22. Chu HM, Guo RT, Lin TW et al. Structures of Selenomonas ruminantium phytase in complex with persulfated phytate:: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure. 2004, 12: 2015-2024.
    23. Claxson A, Morris C, Blake D et al. The anti-inflammatory effects of D-myo-inositol-1.2. 6-trisphosphate (PP56) on animal models of inflammation. Agents Actions. 1990, 29: 68-70.
    24. Cosgrove D. The chemistry and biochemistry of inositol polyphosphates. Rev. Pure Appl. Chem, 1966, 16: 209-224.
    25. Cowieson A, Ravindran V, Selle P. Influence of dietary phytic acid and source of microbial phytase on ileal endogenous amino acid flows in broiler chickens. Poult Sci. 2008, 87: 2287-2299.
    26. Dalal R. Soil organic phosphorus. Adv. Agron. 1977, 29: 83-117.
    27. Davies N, Nightingale R. The effects of phytate on intestinal absorption and secretion of zinc, and whole-body retention of Zn, copper, iron and manganese in rats. Br J Nutr. 1975, 34: 243-258.
    28. Dillon R, Dillon V. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004, 49: 71-92.
    29. Don R, Cox P, Wainwright B et al. 'Touchdown' PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 1991, 19: 4008.
    30. DvoákováJ, Kopecky J, Havlíek V et al. Formation of myo-inositol phosphates by Aspergillus niger 3-phytase. Folia Microbiol. 2000, 45: 128-132.
    31. Fang T, Ford C. Protein engineering of Aspergillus awamori glucoamylase to increase its pH optimum. Protein Eng Des Sel. 1998, 11: 383-388.
    32. Farhat A, Chouayekh H, Ben Farhat M et al. Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Mol biotechnol. 2008, 40: 127-135.
    33. Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 2001, 199: 197-227.
    34. Fu D, Huang H, Meng K et al. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnol Bioengin. 2009, 103: 857-864.
    35. Fu D, Li Z, Huang H et al. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site. Appl Microbiol Biotechnol. 2011: 1-8.
    36. Fu S, Sun J, Qian L. Effect of Ca2+ on Beta-Propeller Phytases. Protein Pept Lett. 2008, 15: 39-42.
    37. Garchow BG, Jog SP, Mehta BD et al. Alkaline phytase from Lilium longiflorum: Purification and structural characterization. Protein Expr Purif. 2006, 46: 221-232.
    38. Garrett JB, Kretz KA, O'Donoghue E et al. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl Environ Microbiol. 2004, 70: 3041-3046.
    39. Gibson DM. Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett. 1987, 9: 305-310.
    40. Gibson DM, Ullah AHJ. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys. 1988, 260: 503-513.
    41. Golovan SP, Meidinger RG, Ajakaiye A et al. Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol. 2001, 19: 741-745.
    42. Greiner R. Purification and characterization of three phytases from germinated lupine seeds (Lupinus albus var. Amiga). J Agric Food Chem. 2002, 50: 6858-6864.
    43. Greiner R, Konietzny U, Jany KD. Purification and characterization of two phytases from Escherichia coli. Arch Biochem Biophys. 1993, 303: 107-113.
    44. Greiner R, Rodehutscord M, (2006) Advances in phytase research. In.: Martin-Luther-Universit t Halle Wittenberg, pp. 11-18.
    45. Ha N, Oh B, Shin S et al. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nat Struct Mol Biol. 2000, 7: 147-153.
    46. Hamada JS. Isolation and identification of the multiple forms of soybean phytases. J Am Oil Chem Soc. 1996, 73: 1143-1151.
    47. Han Y, Lei XG. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch Biochem Biophys. 1999, 364: 83-90.
    48. Hayakawa T, Toma Y, Igaue I. Purification and characterization of acid phosphatases with or without phytase activity from rice bran (biological chemistry). Agric Biol Chem. 1989, 53: 1475-1483.
    49. Hayes JE, Simpson RJ, Richardson AE. The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose-1-phosphate or inorganic phosphate. Plant Soil. 2000, 220: 165-174.
    50. Hegeman CE, Grabau EA. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiol. 2001, 126: 1598-1608.
    51. Hu H, Wise A, Henderson C. Hydrolysis of phytate and inositol tri-, tetra-, and penta-phosphates by the intestinal mucosa of the pig. Nutr Res. 1996, 16: 781-787.
    52. Huang H, Luo H, Yang P et al. A novel phytase with preferable characteristics from Yersinia intermedia. Biochem Biophys Res commun. 2006, 350: 884-889.
    53. Huang H, Luo H, Wang Y et al. Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J Microbiol biotechnol. 2009a, 19: 1085-1091.
    54. Huang H, Shao N, Wang Y et al. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appl Microbiol Biotechnol. 2009b, 83: 249-259.
    55. Huang H, Shi P, Wang Y et al. Diversity of beta-propeller phytase genes in the intestinal contents of grass carp provides insight into the release of major phosphorus from phytate in nature. Appl Environ Microbiol. 2009c, 75: 1508-1516.
    56. Huang H, Zhang R, Fu D et al. Diversity, abundance and characterization of ruminal cysteine phytases suggest their important role in phytate degradation. Environ Microbiol. 2010, 13: 747-757.
    57. Hurrell RF, Reddy MB, Juillerat MA et al. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J clin Nutr. 2003, 77: 1213-1219.
    58. Iqbal T, Lewis K, Cooper B. Phytase activity in the human and rat small intestine. Gut, 1994, 35: 1233-1236.
    59. Irving G, Cosgrove D. Inositol phosphate phosphatases of microbiological origin. Some properties of a partially purified bacterial (Pseudomonas sp.) phytase. Aust J Biol Sci. 1971, 24: 547-558.
    60. Jorquera M, Martínez O, Maruyama F et al. Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes Environ. 2008, 23: 182-191.
    61. Kaur P, Singh B, Boer E et al. Pphy--A cell-bound phytase from the yeast Pichia anomala: Molecular cloning of the gene PPHY and characterization of the recombinant enzyme. J Biotechnol. 2010, 149: 8-15.
    62. Kerovuo J, Lauraeus M, Nurminen P et al. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol. 1998, 64: 2079-2085.
    63. Khare S, Jha K, Gupta M. Entrapment of wheat phytase in polyacrylamide gel and its application in soymilk phytate hydrolysis. Biotechnol Appl Biochem. 1994, 19: 193-198.
    64. Kim HW, Kim YO, Lee JH et al. Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett. 2003, 25: 1231-1234.
    65. Kim T, Mullaney EJ, Porres JM et al. Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Appl Environ Microbiol. 2006, 72: 4397-4403.
    66. Kim YO, Kim HK, Bae KS et al. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb Technol. 1998, 22: 2-7.
    67. Kim YO, Lee JK, Oh BC et al. High-level expression of a recombinant thermostable phytase in Bacillus subtilis. Biosci Biotechnol Biochem. 1999, 63: 2205-2207.
    68. Konietzny U, Greiner R. Molecular and catalytic properties of phytate‐degrading enzymes (phytases). Int J Food Sci Tech. 2002, 37: 791-812.
    69. Konietzny U, Greiner R. Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Braz J Microbiol. 2004, 35: 12-18.
    70. Kostrewa D, Grüninger-Leitch F, D'Arcy A et al. Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Nat Struct Biol. 1997, 4: 185-190.
    71. Lan G, Abdullah N, Jalaludin S et al. Culture conditions influencing phytase production of Mitsuokella jalaludinii, a new bacterial species from the rumen of cattle. J Appl Microbiol. 2002,93: 668-674.
    72. Lassen SF, Breinholt J, Ostergaard PR et al. Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Appl Environ Microbiol. 2001, 67: 4701-4707.
    73. Lim B, Yeung P, Cheng C et al. Distribution and diversity of phytate-mineralizing bacteria. ISME J. 2007, 1: 321-330.
    74. Lim D, Golovan S, Forsberg CW et al. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat Struct Mol Biol. 2000, 7: 108-113.
    75. Lindqvist Y, Schneider G, Vihko P. Crystal structures of rat acid phosphatase complexed with the transition‐state analogs vanadate and molybdate. Eur J Biochem. 1994, 221: 139-142.
    76. Liu Y, Mitsukawa N, Oosumi T et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995, 8: 457-463.
    77. Lonnerdal B, Bell J, Hendrickx A et al. Effect of phytate removal on zinc absorption from soy formula. Am J clin Nutr 1988, 48: 1301-1306.
    78. Maffucci T, Piccolo E, Cumashi A et al. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Res. 2005, 65: 8339-8349.
    79. Mantafounis D, Pitts J. Protein engineering of chymosin; modification of the optimum pH of enzyme catalysis. Protein Eng Des Sel. 1990, 3: 605-609.
    80. Maugenest S, Martinez I, Godin B et al. Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol. 1999, 39: 503-514.
    81. McCollum E, Hart E. On the occurrence of a phytin-splitting enzyme in animal tissues. J Biol Chem. 1908, 4: 497-500.
    82. Mellanby E. The rickets-producing and anti-calcifying action of phytate. J Physiol. 1949, 109: 488-533.
    83. Mullaney EJ, Ullah AHJ. Conservation of cysteine residues in fungal histidine acid phytases. Biochem Biophys Res Commun. 2005, 328: 404-408.
    84. Myers M, Healy M, Oakeshott J. Effects of the residue adjacent to the reactive serine on the substrate interactions of Drosophila esterase 6. Biochem genet. 1993, 31: 259-278.
    85. Nakano T, JoH T, Tokumoto E et al. Purification and characterization of phytase from bran of Triticum aestivum L. cv. Nourin. Food Sci Technol Res. 1999, 5: 18-23.
    86. Naylor RL, Goldburg RJ, Primavera JH et al. Effect of aquaculture on world fish supplies. Nature, 2000, 405: 1017-1024.
    87. O'dell B, Savage J. Effect of phytic acid on zinc availability. Proc Soc Exp Biol Med. 1960, 103: 304-306.
    88. Oh B, Chang B, Park K et al. Calcium-dependent catalytic activity of a novel phytase from Bacillus amyloliquefaciens DS11. Biochemistry, 2001, 40: 9669-9676.
    89. Olczak M, Morawiecka B, Watorek W. Plant purple acid phosphatases-genes, structures andbiological function. Acta Biochim Pol. 2003, 50: 1245-1256.
    90. Ostanin K, Van Etten R. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J Biol Chem. 1993, 268: 20778-20784.
    91. Papatryphon E, Howell RA, Soares Jr JH. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. J World Aquac soci. 1999, 30: 161-173.
    92. Peng RH, Yao QH, Xiong AS et al. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep. 2006, 25: 124-132.
    93. Powar VK, Jagannathan V. Purification and properties of phytate-specific phosphatase from Bacillus subtilis. J Bacteriol. 1982, 151: 1102-1108.
    94. Quan CS, Tian WJ, Fan SD et al. Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng. 2004, 97: 260-266.
    95. Ragon M, Hoh F, Aumelas A et al. Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009, 65: 321-326.
    96. Ravindran V, Bryden W, Kornegay E. Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult Avian Biol Rev (United Kingdom), 1995.
    97. Ravindran V, Cabahug S, Ravindran G et al. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult Sci. 1999, 78: 699-706.
    98. Richardson A, Hadobas P. Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Can J Microbiol. 1997, 43: 509-516.
    99. Richardson AE, Hadobas PA, Hayes JE. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. 2001, 25: 641-649.
    100. Rodriguez E, Wood ZA, Karplus PA et al. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys. 2000, 382: 105-112.
    101. Rumsey GL. Fish meal and alternate sources of protein in fish feeds update 1993. Fisheries, 1993, 18: 14-19.
    102. Sajidan A, Farouk A, Greiner R et al. Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol. 2004, 65: 110-118.
    103. Sano K, Fukuhara H, Nakamura Y. Phytase of the yeast Arxula adeninivorans. Biotechnol Lett. 1999, 21: 33-38.
    104. Schenk G, Guddat L, Ge Y et al. Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene, 2000, 250: 117-125.
    105. Scott JJ, Loewus FA. A calcium-activated phytase from pollen of Lilium longiflorum. Plant Physiol. 1986, 82: 333-335.
    106. Sebastian S, Touchburn S, Chavez E et al. The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fedcorn-soybean diets. Poult Sci. 1996, 75: 729-736.
    107. Selle PH, Ravindran V. Microbial phytase in poultry nutrition. Anim Feed Sci Technol. 2007, 135: 1-41.
    108. Shah V, Parekh L. Phytase from Klebsiella sp. No. PG-2: purification and properties. Indian J Biochem Biophys. 1990, 27: 98-102.
    109. Shears SB. The versatility of inositol phosphates as cellular signals. Biochim Biophys Acta. 1998, 1436: 49-67.
    110. Shin S, Ha N, Oh B et al. Enzyme mechanism and catalytic property ofβ-propeller phytase. Structure, 2001, 9: 851-858.
    111. Simell M, Turunen M, Piironen J et al. Feed and food applications of phytase. Lecture at 3rd Meet. Industial Applications of Enzymes, 1989.
    112. Stahl C, Roneker K, Thornton J et al. A new phytase expressed in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs. J Anim Sci. 2000, 78: 668-674.
    113. Suzuki U, Yoshimura K, Takaishi M. Ueber ein Enzym“Phytase”das“Anhydro-oxymethylen diphosphorsaure”Spaltet. Tokyo Imper Univ Coll Agric Bull. 1907, 7: 503–512.
    114. Türk M, Sandberg AS, Carlsson NG et al. Inositol hexaphosphate hydrolysis by baker's yeast. capacity, kinetics, and degradation products. J Agric Food chem. 2000, 48: 100-104.
    115. Tamura K, Dudley J, Nei M et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007, 24: 1596-1599.
    116. Telenius H, Carter NP, Bebb CE. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics, 1992, 13: 718-725.
    117. Timmis KN. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol. 2002, 4: 779-781.
    118. Tomschy A, Brugger R, Lehmann M et al. Engineering of phytase for improved activity at low pH. Appl Environ Microbiol. 2002, 68: 1907-1913.
    119. Tomschy A, Tessier M, Wyss M et al. Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three‐dimensional structure. Protein Sci. 2000a, 9: 1304-1311.
    120. Tomschy A, Wyss M, Kostrewa D et al. Active site residue 297 of Aspergillus niger phytase critically affects the catalytic properties. FEBS Lett. 2000b, 472: 169-172.
    121. Tye A, Siu F, Leung T et al. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol. 2002, 59: 190-197.
    122. Ullah AHJ, Gibson DM. Extracellular phytase (EC 3.1. 3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem Biotechnol. 1987, 17: 63-91.
    123. Verwoerd TC, van Paridon PA, van Ooyen AJJ et al. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 1995, 109: 1199-1205.
    124. Vincent JB, Crowder MW, Averill B. Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci. 1992, 17: 105-110.
    125. Vohra A, Satyanarayana T. Phytase production by the yeast, Pichia anomala. Biotechnol Lett. 2001,23: 551-554.
    126. Walz OP, Pallauf J. Microbial phytase combined with amino acid supplementation reduces P and N excretion of growing and finishing pigs without loss of performance. Int J Food Sci Technol. 2002, 37: 835-848.
    127. Watanabe K, Sato M. Plasmid-mediated gene transfer between insect-resident bacteria, Enterobacter cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae. Curr Microbio. 1998, 37: 352-355.
    128. Wodzinski R, Ullah A. Phytase. Adv Appl Microbiol. 1996, 42: 263-302.
    129. Wyss M, Brugger R, Kronenberger A et al. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol. 1999a, 65: 367-373.
    130. Wyss M, Pasamontes L, Friedlein A et al. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol. 1999b, 65: 359-366.
    131. Xiang T, Liu Q, Deacon AM et al. Crystal structure of a heat-resilient phytase from Aspergillus fumigatus, carrying a phosphorylated histidine. J Mol Biol. 2004, 339: 437-445.
    132. Yanke L, Bae H, Selinger L et al. Phytase activity of anaerobic ruminal bacteria. Microbiology. 1998, 144: 1565-1573.
    133. Yanke L, Selinger L, Cheng KJ. Phytase activity of Selenomonas ruminantium: a preliminary characterization. Lett Appl Microbiol, 1999, 29: 20-25.
    134. Yoon SJ, Choi YJ, Min HK et al. Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme Microb Technol. 1996, 18: 449-454.
    135. Zinin NV, Serkina AV, Gelfand MS et al. Gene cloning, expression and characterization of novel phytase from Obesumbacterium proteus. FEMS Microbiol Lett. 2004, 236: 283-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700