微生物聚集体的相互作用及形成机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物处理是目前水污染控制的主要技术手段。在废水处理反应器中起重要作用的微生物通常以絮体污泥、生物膜和颗粒污泥三种聚集体的形式存在。这些微生物聚集体的形态、结构、功能、特性影响并决定着废水生物处理系统的运行稳定性、处理效率和出水水质。另一方面,微生物聚集体的形成过程却极为复杂,不仅形成过程时间长,而且影响因素众多。因此,对微生物聚集体的相互作用以及形成机制的研究是十分必要的。本论文基于大量的试验研究结果和DLVO理论的拓展应用,系统研究了废水处理反应器中微生物聚集体的表面特性、相互作用以及形成机制,深入探讨了微生物胞外多聚物EPS在微生物相互作用中的作用机制,并成功构建了微观尺度下微生物聚集体的三维模型。主要研究内容和研究成果如下:
     1.基于表面热力学分析所反映的微生物表面性质的差异,以一株产氢光合细菌(Rhodopseudomonas acidophila)为对象,建立了利用DLVO理论来解析与预测微生物之间的吸附与絮凝行为的理论方法,并探索了导致细菌絮凝性能变化的本质原因。在0.1 mol L~(-1)电解质浓度下以及pH约为7.0时候,体系具有最优的絮凝性能;Ca~(2+)的加入可以有效地提高体系菌液的絮凝性能;EPS对体系絮凝性能的变化影响很大;导致光合细菌絮凝性能较差的主要原因是光合细菌自身特殊的表面性质,即较小的Hamaker常数值(2.27×10~(-23)J)与正的界面吸附自由能(21.75 mJ m~(-2))。
     2.通过对真氧产碱杆菌(Ralstonia eutropha)生长周期的研究,成功地对微生物生长周期中表面特性以及絮凝性能的变化进行了定量表征。在生长周期中真氧产碱杆菌的水接触角与甲酰胺接触角在24 h内迅速下降,其疏水性在对数生长期内迅速降低;细菌表面张力中非极性作用项与极性作用项的比值(γ_B~(LW)/γ_B~(AB))在生长周期中先迅速下降,随之维持在一个较低的水平,这说明在生长周期中细菌表面由疏水性为主变为以亲水性为主,从而导致在培养过程中细菌的稳定性逐渐升高;Lewis酸-碱水合作用项在整个培养过程中对总位能贡献由最初的吸附转变为排斥是导致体系稳定性变化的主要因素。
     3.通过对真氧产碱杆菌不同生长条件的优化分析,提出了一种能够快速、有效地定性预测不同底物状态下细菌絮凝性能大小的新方法。在30 g/L葡萄糖为底物、初始pH约为8.0的较优生长条件下,R.eutropha的生长快速,絮凝性能良好,合成PHAs的量也较多;而在其他条件下,真氧产碱杆菌的生长反而出现抑制现象;同时,在不同底物类型下细菌具有不同的斥力势垒水准,其絮凝性能的大小可以通过预测其斥力势垒的高低来判断。
     4.利用快速、灵敏、选择性高的三维荧光光谱方法,表征了好氧活性污泥与厌氧产甲烷污泥EPS的特性。好氧污泥中存在两个荧光峰,位置分别在280-285/340-350 nm和340-350/430-450 nm处,分别对应于蛋白与NADH的特征吸收峰;而在厌氧产甲烷污泥中除去出现蛋白特征吸收峰外,还在Ex/Em=400-410/465-475 nm处出现辅酶F_(420)特征吸收峰,它是产甲烷菌所特有的物质;两种EPS的三维荧光光谱参数(如峰位置、峰强度、不同峰强度比)都有所不同,说明了两者在成分和结构上的差异性。
     5.通过好氧和厌氧污泥表面EPS的提取实验,观察到污泥絮凝性能的变化。研究结果表明:无论是松散结合EPS(Loosely bound EPS,LB-EPS)还是紧密结合EPS(Tightly bound EPS,TB-EPS)都对污泥絮凝性能有着有益的贡献,且随着EPS的不断剥离,污泥的絮凝性能逐渐变差。以DLVO理论为基础构建了定量表征EPS在微生物相互作用中作用机制的新方法,利用该方法对试验数据的解析结果表明,在活性污泥中TB-EPS对于微生物的絮凝性能变化的贡献较大。
     6.成功建立了微观尺度下微生物聚集体的三维全局优化模型,并利用建立的模型优化了微生物聚集体数目从3增加到100所有的稳定最优构型。该方法是基于分子力学手段,将DLVO理论作为优化体系的势能函数,从而利用全局优化算法建立三维构型的优化模型。通过对构型结果的分析,提出了微生物聚集体生长的模型,即微生物粒子以一种多层分布的结构聚集在一起,从外部来看,聚集体结构呈现一种近似球形的分布。
Biological treatment is one of the most widely used wastewater treatment processes.The microbial aggregates,including flocs,biofilm and granules,are the key element in the bioreactors.Their structure,shape,function and surface characteristics may significantly influent the stability,efficiency and effluent quality of bioreactors,and play a crucial role in wastewater biological treatments.However, the formation of microbial aggregates is a time-consuming process,and can be influenced by many factors.Therefore,study on the interactions among the microbial aggregates is essential to understand the microbial aggregation process.In this work, based on experimental results and innovational analytical methods,the original and extended DLVO theories are employed for characterizing the surface characteristics, the microbial adhesion and flocculation behavior of microbial aggregates in biological wastewater treatment.The roles of extracellular polymeric substances(EPS)in microbial aggregates are also explored and quantified.Main contents and results are as follows:
     1.Based on the microbial surface thermodynamic approach,which reflects the bacterial surface characteristics,a simple and effective method for the evaluation and determination of microbial adhesion and flocculation was developed.Taking as a photosynthetic bacterium Rhodopseudomonas acidophila as example,the relationship between its surface characteristics and flocculability was evaluated.The appropriate electrolyte concentration and pH for the strain were found to be 0.1 mol L~(-1)NaCl solution and pH 7.0,respectively.The addition of Ca~(2+)could improve its flocculability.In addition,the EPS produced by the cell were observed to have a significant effect on its flocculation.The effective Hamaker constant and the repulsive total interfacial free energy seemed to be responsible for the poor flocculability of the strain.
     2.The microbial surface and flocculability were quantitatively characterized through the combination of the surface thermodynamic and the extended DLVO approaches,with Ralstonia eutropha,a polyhydroxybutyrate-producing bacterium,as an example.The total interfacial free energy(△G_(adh))was changed from -80 mJ m~(-2)to 28.5 mJ m~(-2),and the ratio ofγ_B~(LW)/γ_B~(AB)decreased significantly in its entire growth process.This suggests that the bacterial surface changed from hydrophobic into hydrophilic.As a result,the stability ratio of suspensions increased with the increasing cultivation time.The Lewis acid-base interaction(W_(AB))in the extended-DLVO approach could provide an additional asset to the increase or decrease in the total energy barrier,and,therefore,seems play an important role on bacterial suspensions.
     3.The different cultivation conditions for R.eutropha could be optimized and evaluated based on the extended DLVO theory.It was found that glucose of 30 g/L and pH 8.0 was the proper cultivation condition.The strain also had a good flocculability under the conditions.The energy barrier levels with different substrates were highly related to the substrate type.This could provide a feasible and useful method to qualitatively describe the microbial flocculability based on its substrate type.
     4.As a rapid,sensitive and selective analytical method,3-dimensional excitation-emission matrix fluorescence spectroscopy was applied to characterize the EPS extracted from the aerobic and anaerobic sludge in wastewater treatment reactors. Two fluorescence peaks were identified at(excitation/emission)280-285/340-350 nm and 340-350/430-450 nm in the aerobic sludge EPS fluorescence spectra.The two peaks were attributed to the protein-like and NADH fluorophores,respectively.The anaerobic sludge EPS fluorescence spectra also had two fluorescence peaks.One peak was similar to that for the aerobic sludge EPS and attributed to the proteins.Another peak corresponded to the F_(420)fluorophore,which was the characteristic substance of the methanogens.The differences in the EPS fluorescence parameters,e.g.,peak locations,intensities and ratios of various peak intensities,indicate the difference in the chemical structures of the EPS from various origins.
     5.The change of sludge flocculability and the role of EPS were evaluated from the EPS extraction experimental results.Both.the loosely bound EPS EPS(LB-EPS) and tightly bound EPS(TB-EPS)could provide an effective contribution on the sludge flocculability.After the extraction of the LB-EPS and TB-EPS,the sludge flocculability decreased significantly.Thus,based on the DLVO theory,the quantification method on the role of EPS in the flocculation was proposed.The results shows the TB-EPS in the actived sludge played a more significant role in the microbial flocculation.
     6.A global optimization model,based on the molecular mechanics(MM)method, was developed and constructed to simulate the three-dimensional structural morphology of microbial aggregates at a microscopic scale.The DLVO theory, usually used to describe the interactions between particles in colloidal suspensions,is modified to explain the interactions among microbial particles.With the constructed model,some putative aggregate micro-motifs with the microbial particles from 3 up to 100 was acquired.Results suggest that the microbial clusters were built up with the same growth pattern,which were arranged with a multi-shell structural packing style. This model offers a rational platform to investigate the microbial aggregate formation process.
引文
[1]沈耀良,王宝贞.废水生物处理新技术--理论与应用.中国环境科学出版社.北京,1999.6.
    [2]高廷耀,顾国维.水污染控制工程(第二版).高等教育出版社.北京,1999.5.
    [3]Grady C.P.L.J.,Daigger G.T.,Lim H.C.著,张锡辉,刘勇弟译.废水生物处理:改编及扩充.化学工业出版社.北京,2002.
    [4]张本兰,何保福.活性污泥中的主要微生物类群及其基本生态规律初探.环境科学进展,1994,2:32-34.
    [5]Rittmann B.E.,McCarty P.L.Environmental biotechnology:Principles and applications.2001,McGraw-Hill Companies,Inc.
    [6]丘文芳.环境微生物学技术手册[M].学苑出版社,1990.
    [7]Hsieh K.M.,Murgel G.A.,Lion L.W.,Shuler M.L.Interactions of microbial biofilms with toxic trace metals:2.Prediction and verification of an integrated computer model of lead distribution in the presence of microbial activity.Biotechnol Bioeng.1994,44:232-239
    [8]Morgenroth E.,Sherden T..Aerobic granular sludge in a sequencing batch reactor.Wat.Res.,1997,31:191-194.
    [9]Liu Y.Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor.Wat.Res.,2003,37:661-673.
    [10]Hulshoff P.L.W.,Lopes S.I.D.,Lettinga G.,Lens P.N.L..Anaerobic sludge granulation.Water Res.,2004,38:1376-1389.
    [11]Zhu J.R.The bacterial numeration and an observation of a new syntrophic association for granular sludge.Water Sci.Technol.,1997,36:133-140.
    [12]Beun J.J.,Hendriks A.,van Loosdrecht M.C.M.,Morgenroth E.,Wilderer P.A.,Heijnen J.J.Aerobic granulation in a sequencing batch reactor.Water Res.,1999,33:2283-2290.
    [13]Liu L.L.,Wang Z.P.,Yao J.,Sun X.J.,Cai W.M.Investigation on the formation and kinetics of glucose-fed aerobic granular sludge.Enzyme Microb Technol.,2005,36:712-716.
    [14]Liu Y.,Yang S.F.,Tay J.H.Elemental compositions and characteristics of aerobic granules cultivated at different substrate N/C ratios.Appl.Microbiol.Biotechnol.,2003,61:556-561.
    [15]Pan S.,Tay J.H.,He Y.X.,Tay S.T.L..The effect of hydraulic retention time on the stability of aerobically grown microbial granules.L Appl Microbiol.,2004,38:158-163.
    [16]王建龙.生物固定化技术与水污染控制.北京:科学出版社,200-206,2002.
    [17]Liu Y.Q.,Liu Y.,Tay J.H.The effects of extracellular polymeric substances on the formation and stability of biogranules.Appl Microbiol Biotechnol.2004,65:143-148.
    [18]Li D.,ganczarczyk J.J.Structure of activated sludge flocs.Biotechnol Bioeng,1990,35:57-65.
    [19]Cao H.B.,Li X.G.,Jiang B.,Sun J.S.,Zhang Y.Evaluation of the influence of extracellular polymeric substances on the mass transport of substrate within multispecies biofilms.Chin J Chem Eng,2004,12:590-594
    [20]Mu Y.,Yu H.Q.Biological Hydrogen Production in a UASB Reactor with Granules.Ⅰ:Physicochemical Characteristics of Hydrogen-Producing Granules Biotechnol Bioeng.,2006,94:980-987.
    [21]Morgan J.W.,Forster C.E,Evison L.A comparative study of the nature of biopolymers extracted form anaerobic and activated sludges.Water Res,1990,24:743-753.
    [22]Jia X.S.,Fang H.H.P.,Furumai.Surface charge and extracellular polymer of sludge in the anaerobic degradation process.Water Sci Technol,1996,34:309-316.
    [23]Mikkelsen L.H.,Keiding K.Physico-chemical characteristics of full scale sewage sludges with implication to dewatering.Water Res,2002,36:2451-2462.
    [24]蔡春光,刘军深,蔡伟民.胞外多聚物在好氧颗粒化中的作用机理.中国环境科学.2004,24:623-626.
    [25]Sheng G.P.,Yu H.Q.Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila.Appl Microbiol Biotechnol.2006,72:126-131.
    [26]Lance J.C.,Gerba C.R Effect of ionic composition of suspending solution on virus adsorption by a soil column.Appl Environ Microb.1983,47:484-488.
    [27]Morgan J.W.,Forster C.E,Evison L.A comparative study of the nature of biopolymers extracted form anaerobic and activated sludges.Water Res.1990,24:743-753.
    [28]Busch P.L.,Stumm W.Chemical interactions in the aggregation of bacteria:bioflocculation in wastewater.Environ Sci Technol.1968,2:49-53.
    [29]Kato A.,Isaka K.,Takahashi H.Floc-forming bacteria isolated from activated sludge.J Gen Appl Microbiol.1971,17:439-457.
    [30]Nielsen P.H.,Frolund B.,Keiding K.Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage.Appl Microbiol Biotechnol.1996,44:823-830.
    [31]Forster C.F.,Dallas-Newton J.Activated sludge on settlement some suppositions and suggestion.Water Pollut control.1981,79:338-351.
    [32]Forster C.F.Factors involver in the settlement of activated sludge -I.nutrients and surface polymers.Water Res.1985,14:1257-1264.
    [33]周利,彭永臻,黄志等.丝状菌污泥膨胀的影响因素与控制.环境科学进展,1999.7:88-93.
    [34]Krishna C.,van Loosdrecht M.C.M.Effect of temperature on storage polymers and settleability of activated sludge.Wat Res,1999,33:2374-2382.
    [35]Urbain V.,Block J.C.,Manem J.Bioflocculation in activated sludge:analytical approach.Water Res.1993,27:829-838.
    [36]Liao B.Q.,Allen D.G.,Droppo I.G.,Leppard G.G.,Liss S.N.Surface properties of sludge and their role in bioflocculation and settleability.Water Res.2001,35:339-350.
    [37]Jin B.,Wilen B.M.,Lant P.A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge.Chem Eng J.2003,95:221-234.
    [38]Magara Y.Nambu S.Biochemical and physical properties of an activated sludge on settling characteristics.Water Res.1976,10:71 -77.
    [39]Chao A.C.,Keinath T.M.Influence of process loading intensity on sludge charification and thickening characteristics.Water Res.1979,13:1213-1223.
    [40]Barber J.B.,Veenstra J.N.Evaluation of biological sludge properties influencing volume reduction.J Water Pollut Control Fed.1986,58:149-156.
    [41]Parker D.S.,Kaufman W.J.,Jenkins D.Physical conditioning of activated sludge floc.J WPCF.1971,43:1817-1833.
    [42]Wahlberg E.J.,Keinath T.M.,Parker D.S.Influence of activated sludge flocculation time on secondary clarification.Water Environ Res.1994,66:779-786.
    [43]Mikkelsen L.H.,Keiding K.Equilibrium aspects of the effects of shear and solids content on aggregate deflocculation.Adv Colloid Interface Sci.1999,80:151-182.
    [44]Sheng G.P.,Yu H.Q.Chemical-equilibrium-based model for describing the strength of sludge:taking hydrogen-producing sludge as an example.Envrion.Sci.Technol.2006,40:1280-1285.
    [45] Sheng G.P., Yu H.Q., Li X.Y. Stability of sludge floes under shear conditions: Roles of extracellular polymeric substances. Biotechnol Bioeng. 2006, 93: 1095-1102.
    [46] Moy B.Y.P., Tay J.H., Toh S.K, Liu Y, Tay S.T.L. High organic loading influences the physical characteristics of aerobic sludge granules. Lett Appl Microbiol, 2002, 34:407-412.
    [47] Tay J.H., Pan H., He A. Effect of organic loading rate on aerobic granulation.I: reactor performance. J. of Environ. Eng., 2004, 130: 1094- 1101.
    [48] Shin H.S., Lim K.H., Park H.S. Effect of shear stress on granulation in oxygen aerobic upflow sludge reactors. Water Sci Technol., 2002,26: 601-605.
    [49] Liu Y, Tay J.H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res., 2002, 36: 1653-1665.
    [50] Tay J.H., Liu Q.S., Liu Y. The effect of shear force on the formation, structure and metabolism of aerobic granules. Appl Microbiol Biotechnol., 2001, 57: 227-233.
    [51] Dilaconi C., Ramadori R., Lopez A. Hydraulic shear stress calculation in a sequencing batch biofilm reactor with granular biomass. Environ. Sci. Technol, 2005,39: 889-894.
    [52] Tay J.H., Liu Q.S., Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J. Appl. Microbiol, 2001, 91: 168-175.
    [53] Pan S., Tay J.H., He Y.X., Tay, S.T.L. The effect of hydraulic retention time on the stability of aerobically grown microbial granules. L. Appl. Microbiol., 2004, 38: 158-163.
    [54] Liu Y, Tay J.H. State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv., 2004, 22: 533-563.
    [55] Derjaguin B.V., Landau L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chim. U.S.S.R., 1941, 14: 633;
    [56] Verwey E.J.W., Overbeek J.T.G.. Theory of the stability of lyophobic colloids. Elsevier, Amsterdam. 1948.
    [57] Shaw D.J. Introduction to colloid & surface chemistry - 4~(th) ed. Butterworth Heinemann. 1992.
    [58] Marshall K.C., Stout R., Mitchell R. Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 1971, 68: 337-348.
    [59] Van Oss C.J. Interfacial forces in aqueous media. Marcel Dekker. 1994, New York.
    [60] Van Loosdrecht M.C.M., Lyklema J., Norde W., Zehnder A.J.B. Bacterial adhesion: a physicochemical approach. Microb. Ecol. 1989, 17: 1-15.
    [61] Schafer A., Harms H., Zehnder A.J.B. Bacterial accumulation at the air-water interface. Environ Sci Technol. 1998, 32: 3704-3712.
    [62] Van Oss C.J. Hydrophobicity of biosurfaces - origin, quantitative determination and interaction energies. Colloid Surfaces B. 1995, 5: 91-110.
    [63] Strevett KA, Chen G. Microbial surface thermodynamics and applications. Res Microbiol., 2003, 154:329-335.
    [64] Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf. B: Biointerfaces. 1999, 14: 105-119.
    [65] Wu W.J., Nancollas G.H. Application of the extended DLVO theory-the stability of alatrofloxacin mesylate solutions. Colloid Surface B. 1999,14: 57-66.
    [66] Chang Y.I., Chang P.K. The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae-application of the extended DLVO theory. Colloid Surface A. 2002, 211: 67-77.
    [67] Israelachvili J.N. Intermolecular and surface forces. Academic Press, 1992, New York.
    [68] Israelachvili J.N., Adams G.E.. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm. J. Chem. Soc. Faraday Trans. 1978, 174: 975-1001.
    [69] Gregory J. Interaction of unequal double layers at constant charge. J. Colloid Interface Sci. 1975,51:44-51.
    [70]Elimelech M,Gregory J,Jia X,Williams R.A.Particle deposition and aggregation:measurement,modeling and simulation.1995,ButterworthHeinemann,Wobum,MA.
    [71]陈宗淇,王光信,徐桂英.胶体与界面化学,高等教育出版社.2001.
    [72]Weiss L.,Harlos J.P.Short-term interactions between cell surfaces.Progress Surface Sci.,1972,1:355-405.
    [73]Van Oss C.J.,Wu W.,Giese R.E,Horbett T.A.,Brash J.L.,Proteins at Interfaces Ⅱ,American Chem.Soc.,Washington,DC,USA,1995,p.80.
    [74]Feldner J.,Bredt W.,Kahane I.Influence of cell shape and surface charge on attachment of Mycoplasma pneumoniae to glass surfaces.J.Bacteriol.,1983,153:1-5.
    [75]Simoni S.F.,Harms H.,Bosma T.N.P.,Zehnder A.J.B.Population heterogeneity affects transport of bacteria through sand columns at low flow rates.Environ.Sci.Technol.1998,32:2100-2105.
    [76]Zita A.,Hermansson M.Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system.Appl Environ Microb.1994,60:3041-3048
    [77]Bunt C.R.,Jones D.S.,Tucker L.G.The effects of pH,ionic strength and organic phase on the bacterial adhesion to hydrocarbons(BATH)test.J.Pharm.1993,99:93-98.
    [78]Liu X.M.,Sheng G.P.,Yu H.Q.A DLVO approach to the flocculability of a photosynthetic H_2-producing bacterium,Rhodopseudomonas acidophila.Environ.Sci.Technol.2007,41:4620-4625.
    [79]Norde W.,Lyklema J.Protein adsorption and bacterial adhesion to solid surfaces:a colloid-chemical approach.Coll.Surfaces,1989,38:1-13.
    [80]Claesson P.in:M.Malmsten,Biopolymers at interfaces,Marcel Dekker,New York,1999,p.281.
    [81]Jucker B.A.,Harms H.,Zehnder A.J.B.Adhesion of the positively charged bacterium Stenotrophomonas(Xanthomonas)maltophilia 70401 to glass and teflon. J. Bacteriol., 1996, 178: 5472-5479.
    [82] Van Loosdrecht M.C.M, Lyklema J, Norde W, Schraa G., Zehnder A.J.B. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol., 1987,53:1893-1897.
    [83] Grasso D., Subramaniam K., Butkus M, Strevett K., Bergendahl J. A review of non-DLVO interactions in environmental colloidal systems. Reviews in environmental science & technology, Kluwer Academic Publishers. 2002, 1: 17-38.
    [84] Pauling L. The nature of the chemical bond, 3~(rd) ed. Cornell University Press, 1960, Ithaca, NY.
    [85] Jeffrey G.A. An introduction to hydrogen bonding. Oxford University Press, 1997, New York.
    [86] Ohtaki H., Radnai T. Structure and dynamics of hydrated ions. Chem. Rev., 1993,3:1157-1204.
    [87] Pashley R.M. Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid. Interface Sci., 1981a, 80: 153-162.
    [88] Pashley R.M. DLVO and hydration forces between mica surfaces in Li~+, Na~+, K~+, and Cs~+ electrolyte solutions: a correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid. Interface Sci., 1981b, 83: 531-546.
    [89] Molia-Bolivar J.A., Oretega-Vinuesa J.L. How proteins stabilize colloidal particles by means of hydration forces. Langmuir, 1999, 15: 2644-2653.
    [90] Zhou Z.K., Wu P.Q., Ma C.M. Hydrophobic interaction and stability of colloidal silica. Coll. Surfaces., 1990, 50: 177-188.
    [91] Redman J.A., Walker S.L., Elimelech M. Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 2004,38:1777-1785.
    [92] Wang S., Guillen G., V. Hoek EM. Direct observation of microbial adhesion to membranes. Environ. Sci. Technol. 2005, 39: 6461-6469.
    [93]Heller W.,Pugh T.L.Steric protection of hydrophobic colloidal particles by adsorption of flexible macromolecules.J.Chem.Phys.,1954,22:1778.
    [94]Hiemenz P.C.,Rajagopalan R.Principles of colloid and surface chemistry.3~(rd)ed.Marcel Dekker,1997,New York.
    [95]Fleer G.J.,Scheutjens J.M.H.M.,in:B.Dobias.Coagulation and Flocculation,Marcel Dekker,New York,1993,pp.209-263.
    [96]Rijnaarts H.H.M.,Norde W.,Bouwer E.J.,Lyklema J.,Zehnder A.J.B..Bacterial deposition in porous media:Effects of cell-coating,substratum hydrophobicity,and electrolyte concentration.Environ Sci Technol.,1996,30:2877-2883.
    [97]Jucker B.A.,Harms H.,Hug S.J.,Zehnder A.J.B.Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds.Colloids Surf.B.1997,9:331-343.
    [98]Walz J.Y.The effect of surface heterogeneities on colloidal forces.Adv.Colloid Interface Sci.,1998,74:119-168.
    [99]Maurice P.Application of atomic-force microscopy in environmental colloid and surface chemistry.Colloids Surf.A:Physicochem.Eng.Aspects,1996,107:57-75.
    [100]Hull M.,Kitchnener J.A.Interaction of spherical colloidal particles with planar surfaces.Trans Faraday Soc.,1969,65:3093-3104.
    [101]Elimelech M.,O'Melia C.R.Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers.Langmuir,1990,6:1153-1163.
    [102]Bhattacharjee S.,Ko C.H.,Elimelech M.DLVO interactions between rough surfaces.Langmuir,1998,14:3365-3375.
    [103]Mackor E.L.A theoretical approach of the colloid-chemical stability of dispersion in hydrocarbon.J.Colloid Interface Sci.1951,6:492.
    [104]Mackor E.L.,Van der Waals J.H.A statistics of the adsorption of rod-shaped molecules in connection with the stability of certain colloidal dispersions.J.Colloid Interface Sci.1952,7:535.
    [105] Hesselink F.Th. On the theory of the stabilization of dispersions by adsorbed macromolecules. I. Statistics of the change of some configurational properties of adsorbed macromolecules on the approach of an impenetrable surface. J. Phys. Chem. 1971,75:65-71.
    [106] Hesselink F.Th, Vrij A, Overbeek J.Th.G. On the theory of the stabilization of dispersions by adsorbed macromolecules. II. Interaction between two flat particles. J. Phys. Chem. 1971, 75: 2094-2103.
    [107] Klein J. Forces between mica surfaces bearing layers of adsorbed polystyrene in cyclohexane. Nature. 1980, 288: 248-250.
    [108] Klein J. Forces between mica surfaces bearing adsorbed macromolecules in liquid media. J. Chem. Soc. Faraday Trans. 1983, 79: 99-118.
    [109] Walker H.W. Grant S.B. Role of polymer flexibility in the stabilization of colloidal particles by model anionic polyelectrolytes. J. Colloid Interface Sci. 1996,179: 552-560
    [110] Jucker B.A., Zehnder A.J.B., Harms H. Quantification of polymer interactions in bacterial adhesion. Environ. Sci. Technol. 1998, 32: 2909-2915.
    [111] Biggs S. Steric and bridging Forces between surfaces bearing adsorbed polymer: an atomic force microscope study. Langmuir. 1995,11: 156-162.
    [112] Braithwaite C.J.C., Howe A., Luckham P.F. Interactions between poly (ethylene oxide) layers adsorbed to glass surfaces probed by using a modified atomic force microscope. Langmuir. 1996, 12: 4224-4237.
    [113] Tang G.Y., Yip H.K, Samaranayake L.P., Chan K.Y., Luo G., Fang H.H.P. Direct detection of cell surface interactive forces of sessile, fimbriated and non-fimbriated actinomyces spp. using atomic force microscopy. Arch. Oral. Biol. 2004,49: 727-738.
    [1]Chen K.L.,Mylon S.E.,Elimelech M.Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.Environ Sci Technol.2006,40:1516-1523.
    [2]Schafer A.,Harms H.,Zehnder A.J.B.Bacterial accumulation at the air-water interface.Environ Sci Technol.1998,32:3704-3712.
    [3]Redman J.A.,Walker S.L.,Elimelech M.Bacterial adhesion and transport in porous media:Role of the secondary energy minimum.Environ Sci Technol.2004,38:1777-1785.
    [4]Wu W.J.,Nancollas G.H.Application of the extended DLVO theory-the stability of alatrofloxacin mesylate solutions.Colloid Surface B.1999,14:57-66.
    [5]Van Oss C.J.Interfacial forces in aqueous media.Marcel Dekker.1994,New York.
    [6]朱核光,史家梁,2002.生物产氢技术研究进展.应用和环境生物学报.8:98-104.
    [7]Eroglu I.,Aslan K.,Gunduz U.,Yucel M.,Turker L.Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor.J Biotechnol,1999,70:103-113.
    [8]Barbosa M.J.,Rocha J.M.S.,Tramper J.,Wijffels R.H.Acetate as a carbon source for hydrogen production by photosynthetic bacteria.J Biotechnol,2001,85:25-33.
    [9]Watanabe M.,Sasaki K.,Nakashimada Y.,Kakizono T.,Noparatnaraporn N.,Nishio N.Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp.Appl Microbiol Biotechnol,1998,50:682-691.
    [10]Sheng G.P.,Yu H.Q.Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila.Appl Microbiol Biotechnol.2006,72:126-131.
    [11]Lance J.C.,Gerba C.P.Effect of ionic composition of suspending solution on virus adsorption by a soil column.Appl Environ Microb.1983,47:484-488.
    [12]Morgan J.W.,Forster C.F.,Evison L.A comparative study of the nature of biopolymers extracted form anaerobic and activated sludges.Water Res,1990,24:743-753.
    [13]Busch P.L.,Stumm W.Chemical interactions in the aggregation of bacteria:bioflocculation in wastewater.Environ Sci Technol,1968,2:49-53.
    [14]Van Oss C.J.Hydrophobicity of biosurfaces-origin,quantitative determination and interaction energies.Colloid Surfaces B.1995,5:91-110.
    [15]Van Oss C.J.,Chaudhury M.K.,Good R.J.Interfacial lifshitz-van del waals and polar interactions in macroscopic systems.Chem Rev.1988,88:927-941.
    [16]Brown D.G.,Jaffe P.R.Effects of nonionic surfactants on the cell surface hydrophobicity and apparent hamaker constant of a Sphingomonas sp.Environ Sci Technol.2006,40:195-201.
    [17]Miyake J.,Mao X.Y.,Kawamura S.Photoproduction of hydrogen from glucose by a co-culture of a photosynthetic bacterium and Clostridium.J Ferment Technol,1984,62:531-535.
    [18]Christensen B.E.,Kjosbakken J.,Smidsrod O.Partial chemical and physical characterization of two extracellualr polysaccharides produced by marine periphytic Pseudomonas sp.Strain NCMB 2021.Appl Environ Microbiol,1985,50:837-845.
    [19]康春莉,董德明,李忠华,李鱼,花修艺,郭平.EDTA萃取法分离自然水体中生物膜胞外聚合物.东北师大学报自然科学版,2003,35:120-122.
    [20]Gaudy A.F.Colorimetric determination of protein and carbohydrate.Indust Water Wastes 1962,7:17-22.
    [21]Raunkj(?)r K.,Hvitved-Jacobsen T.,Nielsen P.H.Measurement of pools of protein,carbohydrate and lipid in domestic wastewater.Water Res,1994,28:251-261.
    [22]刘志杰,谢华,俞毓馨,陆正禹.厌氧污泥胞外多聚物的提取、测定法选择.环境科学1993,15:23-26.
    [23]Sharma P.K.,Rao K.H.Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry.Adv Colloid Interface Sci,2002,98:341-463.
    [24]Wingender J.,Neu T.R.,Flemming H.C.Microbial extracellular polymeric substances:characterization,structures and function.Springer-Verlag,1999,Berlin Heidelberg
    [25]Hermansson M.The DLVO theory in microbial adhesion.Colloid Surfaces B.1999,14:105-119.
    [26]Mozes N.,Leonard A.J.,Rouxhet P.G.On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity.Biochim.Biophys.Acta-Biomembr.1988,945:324-334.
    [1]Roosjen A.,Busscher H.J.,Norde W.,van der Mei H.C.Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide)brash.Microbiology.2006,152:2673-2682.
    [2]Roosjen A.,Norde W.,van der Mei H.C.,Busscher H.J.The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation.Progr Colloid Polym Sci.2006,132:138-144.
    [3]van Loosdrecht M.C.M.,Lyklema J.,Norde W.,Schraa G.,Zehnder,A.J.B.The role of bacterial cell wall hydrophobicity in adhesion.Appl.Environ.Microbiol. 1987,53:1893-1897.
    [4] Kerchove A.J., Elimelech M. Relevance of electrokinetic theory for 'soft' particles to bacterial cells: implications for bacterial adhesion. Langmuir. 2005, 21:6462-6472.
    [5] Martienssen M., Reichel O., Kohlweyer U. Surface properties of bacteria from different wastewater treatment plants. Acta Biotechnol, 2001, 21: 207-225.
    [6] Wilen B.M., Jin B., Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res, 2003, 37: 2127-2139.
    [7] Strevett K.A., Chen G. Microbial surface thermodynamics and applications. Res Microbiol. 2003, 154:329-335.
    [8] Liao B.Q., Allen D.G., Droppo I.G., Leppard G.G., Liss S.N. Surface properties of sludge and their role in bioflocculation and settleability. Water Res, 2001, 35: 339-350.
    [9] Chang Y. I., Shih L.H., Chen S.W. Effects of glucose and mannose on the flocculation behavior of Saccharomyces cerevisiae at different life stages. Colloids and Surfaces B: Biointerfaces, 2005, 44: 6-14.
    [10] Chen G., Rockhold ML, Strevett K.A. Equilibrium and kinetic adsorption of bacteria on alluvial sand and surface thermodynamic interpretation. Res Microbiol. 2003, 154:175-181.
    [11] Rijnaarts H.H.M., Norde W, Lyklema J., Zehnder A.J.B. DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerfaces. 1999, 14: 179-195.
    [12] Schafer A., Harms H., Zehnder A.J.B. Bacterial accumulation at the air-water interface. Environ Sci Technol. 1998, 32: 3704-3712.
    [13] Jucker B.A., Zehnder A.J.B., Harms H. Quantification of polymer interactions in bacterial adhesion. Environ Sci Technol. 1998, 32: 2909-2915.
    [14] Grasso D., Subramaniam K., Butkus M., Strevett K., Bergendahl J. A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environ Sci Biotech.2002,1:17-38.
    [15]Chang Y.I.,Chang P.K.The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae-application of the extended DLVO theory.Colloid Surface A.2002,211:67-77.
    [16]van Oss C.J.Hydrophobicity of biosurfaces - origin,quantitative determination and interaction energies.Colloid Surfaces B.1995,5:91-110.
    [17]廖正品.中国塑料工业发展现状.塑料工业.2002.30:1-6.
    [18]Lee S.Y.Bacterial polyhydroxyalkanoates.Biotech.Bioeng.1996,49:1-14.
    [19]Anderson A.J.,Dawes E.A.Occurrence,metabolism,metabolic role,and industrial uses of bacterial polyhydroxyalkanoates.Microbiol.Rev.1990,54:450-472.
    [20]Kessler B.,Weusthuis R.,Witholt B.,Eggink G.Production of microbial polysters:fermentation and downstream processes.Adv Biochem Eng Biotechnol.2001,71:159-182.
    [21]Handrick R.,Reinhardt S.,Jendrossek D.Mobilization of PHB in Ralstonia eutropha.J Biotechnol.2000,182:5916-5918.
    [22]Muller S.,Bley T.,Babel W.Adaptive responses of Ralstonia eutropha to feast and famine conditions analysed by flow cytometry.J Biotechnol.1999,75:81-97.
    [23]Wang J.,Fang F.,Yu H.Q.Substrate consumption and biomass growth of Ralstonia eutropha at various S_0/X_0 levels in batch cultures.Bioresource Technol.2007,98:2599-2604.
    [24]Bormann E.J.,Leiβner M.,Roth M.,Beer B.,Metzner K.Production of polyhydroxybutyrate by Ralstonia eutropha from protein hydrolysates.Appl Microbiol Biotechnol.1998,50:604-607.
    [25]Shahhosseini S.Simulation and optimization of PHB production in fed-batch culture of RaIstonia eutropha.Process Biochem.2004,39:963-969.
    [26]van Loosdrecht M.C.M.,Lyklema J.,Norde W.,Zehnder A.J.B.Bacterial adhesion:a physicochemical approach.Microb.Ecol.1989,17:1-15.
    [27] Redman J.A., Walker S.L., Elimelech M. Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ Sci Technol. 2004,38:1777-1785.
    [28] Azeredo J.. Visser J., Oliveira R. Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids and Surfaces B: Biointerfaces. 1999,14: 141-148.
    [29] Du G.C., Yu J. Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environ Sci Technol. 2002, 36: 5511-5516.
    [30] Chang Y.I., Su C.Y. Flocculation behavior of sphingobium chlorophenolicum in degrading pentachlorophenol at different life stages. Biotechnol Bioeng. 2003, 82: 843-850.
    [31] Fujikawa H., Kai A., Morozumi S.A. New logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiol. 2004, 21: 501-509.
    [32] Wang J., Yu H.Q. Biosynthesis of polyhydroxybutyrate(PHB) and extracellular polymeric substances(EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol. 2007, 75: 871-878.
    [33] Sheng G.P., Yu H.Q. Relationship between the extracellular polymeric substances and surface characteristics of Rhodopseudomonas acidophila. Appl Microbiol Biotechnol. 2006, 72: 126-131.
    [34] Grasso D., Smets B.F., Strevett K.A., Machinist B.D., van Oss C.J., Giese R.F., Wu W. Impact of physiological state on surface thermodynamics and adhesion of Pseudomonas aeruginosa. Environ Sci Technol. 1996, 30: 3604-3608.
    [35] Chen G., Strevett K.A. Impact of surface thermodynamics on bacterial transport. Environ. Microbiol. 2001, 3: 237-245.
    [36] Wang J.P., Yu J. Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions. J. Ind. Microbiol. Biotechnol. 2001,26 (3) : 121-126.
    [1]Meinders J.M.,Van der Mei H.C.,Busscher H.J.Deposition efficiency and reversibility of bacterial adhesion under flow.J.Colloid Interface Sci.1995,176:329-341.
    [2]Busch P.L.,Stumm W.Chemical interactions in the aggregation of bacteria:bioflocculation in wastewater.Environ Sci Technol,1968,2:49-53.
    [3]Sobeck D.C.,Higgins M.J.Examination of three theories for mechanisms of cation-induced bioflocculation.Water Res,2002,36:527-538.
    [4]Mu Y.,Yu H.Q.Biological hydrogen production in a UASB reactor with granules.Ⅰ:physicochemical characteristics of hydrogen-producing granules.Biotechnol Bioeng.2006,94:980-987.
    [5]Mikkelsen L.H.,Keiding K.Physico-chemical characteristics of full scale sewage sludges with implication to dewatering.Water Res,2002,36:2451-2462.
    [6]Pavoni J.L.,Termey M.W.,Echelberger J.W.F.Bacterial extracellular polymers and biological flocculation.Water Pollut Control Fed,1972,44:414-431.
    [7]Jin B.,Wilen B.M.,Lant P.A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge.Chem Eng J,2003,95:221-234.
    [8]Houghton J.,Quarmby J.,Stephenson T.Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer.Water Sci Technol,2001,44:373-379.
    [9]Wingender J.,Neu T.R.,Flemming H.C.Microbial extracellular polymeric substances:characterization,structures and function.Springer-Verlag,1999,Berlin Heidelberg
    [10]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究.中国安全科学学报,1999,第13卷第9期.
    [11]Frolund B.,Palmgren R.,Keiding K.,Nielsen P.H.Extraction of extracellular polymers from activated sludge using a cation exchange resin.Water Res,1996, 30:1749-1758.
    [12]Gaudy A.F.Colorimetric determination of protein and carbohydrate.Indust Water Wastes,1962,7:17-22.
    [13]Raunkj(?)r K.,Hvitved-Jacobsen T.,Nielsen P.H.Measurement of pools of protein,carbohydrate and lipid in domestic wastewater.Water Res,1994,28:251-261.
    [14]Frolund B.,Griebe T.,Nielsen P.H.Enzymatic activity in the activated-sludge floc matrix.Appl Microbiol Biotechnol,1995,43:755-761.
    [15]APHA.Standard methods for the examination of water and wastewater,19~(th)ed.New York:American Public Health Association.1995.
    [16]Baker A.Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers.Environ Sci Technol,2001,35:948-953.
    [17]Chen W.,Westerhoff P.,Leenheer J.A.,Booksh K.Fluorescence excitation emission matrix regional integration to quantify spectra for dissolved organic matter.Environ Sci Technol,2003,37:5701-5710.
    [18]Yamashita Y.,Tanoue E.Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids.Mar Chem,2003,82:255-271.
    [19]Mobed J.J.,Hemmingsen S.L.,Autry J.L.,McGown L.B.Fluorescence characterization of IHSS humic substances:total luminescence spectra with absorbance correction.Environ Sci Technol.1996,30:3061-3065.
    [20]Ashby K.D.,Casey T.A.,Rasmussen M.A.,Petrich J.W.Steady-state and time-resolved spectroscopy of F_(420)extracted from methanogen cells and its utility as a marker for fecal contamination.J.Agr.Food.Chem.2001,49:1123-1127.
    [21]Wilen B.M.,Keiding K.,Nielsen P.H.Anaerobic deflocculation and aerobic reflocculation of activated sludge.Water Res 2000,34:3933-3942.
    [22]Sobeck D.C.,Higgins M.J.Examination of three theories for mechanisms of cation-induced bioflocculation.Water Res,2002,36:527-538.
    [23]Kato A.,Isaka K.,Takahashi H.Floc-forming bacteria isolated from activated sludge.J Gen Appl Microbiol,1971,17:439-457.
    [24]Wilen B.M.,Jin B.,Lant P.The influence of key chemical constituents in activated sludge on surface and flocculation properties.Water Res,2003,37:2127-2139.
    [25]陈宗淇,王光信.徐桂英.胶体与界面化学,高等教育出版社,2001.
    [26]Jucker B.A.,Harms H.,Zehnder A.J.B.Polymer interactions between five gram-negative bacteria and glass investigated using LPS micelles and vesicles as model systems.Colloids Surf.B.,1998,11:33-45.
    [27]Rijnaarts H.H.M.,Norde W.,Bouwer E.J.,Lyklema J.,Zehnder A.J.B.Bacterial deposition in porous media:Effects of cell-coating,substratum hydrophobicity,and electrolyte concentration.Environ Sci Technol.,1996,30:2877-2883.
    [28]Jucker B.A.,Harms H.,Hug S.J.,Zehnder A.J.B.Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds.Colloids Surf.B.1997,9:331-343.
    [1]Mikkelsen L.H.,Keiding K.The shear sensitivity of activated sludge:an evaluation of the possibility for a standardized floc strength test.Water Res,2002,36:2931-2940.
    [2]Wilen B.M.,Jin B.,Lant P.The influence of key chemical constituents in activated sludge on surface and flocculating properties.Water Res.2003,37:2127-2139.
    [3]Su K.Z.,Yu H.Q.Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater.Environ.Sci.Technol.2005,39:2818-2827.
    [4]Sheng G.P.,Yu H.Q.Chemical-equilibrium-based model for describing the strength of sludge:taking hydrogen-producing sludge as an example.Environ.Sci.Technol.2006,40:1280-1285.
    [5]Zhang J.J.,Li X.Y.Modeling particle-size distribution dynamics in a flocculation system.AIChE J.2003,49:1870-1882.
    [6]Stoll S.,Buffle J.Computer simulation of flocculation processes:the roles of chain conformation and chain/colloid concentration ratio in the aggregate structures.J.Colloid Interface Sci.1998,205:290-304.
    [7]Sandkuhler P.,Lattuada M.,Wu H.,Sefcik J.,Morbidelli M.Further insights into the universality of colloidal aggregation.Adv Colloid Interface Sci.2005,113:65-83
    [8]Orrite S.D.,Stoll S.,Schurtenberger P.Off-lattice monte carlo simulations of irreversible and reversible aggregation process.Soft Matter.2005,1:364-371.
    [9]Olivi-Tran N.,Lenormand P.,Lecomte A.Molecular dynamics approach of sol-gel transition:comparison with experiments.Physica A.2005,354:10-18.
    [10]Wales D.J.,Scheraga H.A.Global optimization of clusters,crystals,and biomolecules.Science.1999,285:1368-1372.
    [11]Cheng L.J.,Cai W.S.,Shao X.G.Geometry optimization and conformational analysis of(C_60)_N clusters using a dynamic lattice searching method.Chem.Phys.Chem.2005,6:261-266.
    [12]Shao X.G.,Cheng L.J.,Cai W.S.A dynamic lattice searching method for fast optimization of Lennard-Jones clusters.J.Comput.Chem.2004,25:1693-1698.
    [13]Shaw D.J.Introduction to colloid & surface chemistry - 4~(th)ed.Butterworth einemann.1992.
    [14]王广厚,团簇物理学,上海科学技术出版社,2003年11月第一版.
    [15]Yoo S.,Zeng X.C.,Zhu X.,Bai J.Possible lowest-energy geometry of silicon clusters Si_21 and Si_25,J.Am.Chem.Soc.,2003,125:13318-13319.
    [16]邢文训,谢金星,最优化基础--模型与方法(现代优化计算方法),清华大学出版社,1999年8月第1版.
    [17]Duncan-Hewitt W.C.,Polcova Z.,Cheng P.,Vargha-Butler E.I.,Neumann A.W.Semiautomatic measurement of contact angles on cell layers by a modified axis symmetric drop shape analysis.Colloids Surf.1989,42:391-402.
    [18]Shao X.G.,Liu X.M.,Cai W.S.Structural optimization of silver clusters up to 80atoms with Gupta and Sutton-Chen potentials.J.Chem Theory Comput.2005,1:762-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700