PAR-1,HIF-1a,MMP-9及TIMP-1在人脑出血灶周表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:近年来,大量动物实验或人外周血中研究表明凝血酶作为神经毒性物质,在高血压脑出血后脑水肿的形成机制中起着重要作用。同时凝血酶通过P38MAPK途径活化血管平滑肌细胞的HIF-1,P38通过使HIF-1磷酸化来调节HIF-1的过量表达,且凝血酶及HIF-1a的激活又启动了另一种脑水肿致病因子MMP-9的表达,共同参与脑水肿的形成。但是,据文献所查,目前少见人类脑组织的PAR-1、HIF-1a、MMP-9、TIMP-1相关临床研究的报道。凝血酶的血管外作用是通过凝血酶受体PAR-1实现的。因此,本组研究了人类高血压脑出血后脑组织PAR-1、HIF-1a和MMP-9、TIMP-1的动态表达,相关性及其与脑水肿的关系。验证PAR-1、HIF-1a、MMP-9、TIMP-1在脑出血后脑水肿形成中的作用,明确人脑出血后凝血酶介导的水肿的具体径路和作用环节。
     方法:对2009年1月-2010年7月因高血压脑出血在吉林大学第一医院神经外科,行开颅血肿清除术治疗病人24例,将入路通道范围内紧邻血肿的脑组织做为病例组标本,部分患者皮层“造瘘”起始处即远隔血肿部位脑组织,做为对照组标本,共6例。病例组按发病时间分为<6h、6-24h、24h-3d、>3d组,采用免疫组化法检测24例脑出血灶周组织及6例正常脑组织各时间点PAR-1、HIF-1a和MMP-9、TIMP-1表达情况,RT-PCR法检测HIF-1a和MMP-9,TIMP-1表达情况,Westernblot检测TIMP-1蛋白表达,并通过干湿称重法结合脑水肿进行分析,透视电镜观察血脑屏障动态改变,探讨PAR-1、HIF-1a和MMP-9、TIMP-1在脑水肿发生、发展过程中的可能作用,相关性及临床意义。
     结果:
     1.脑组织水含量的变化,脑出血后脑水肿程度随出血时间的延长逐渐加重,在出血6h内含水量即开始增高,24h后较明显增高,3d左右达到峰值,之后减轻(P<0.05)。
     2.电镜下ICH后6h内,细胞质较少,细胞质内核糖体较多,其它细胞器较少,水肿区神经细胞及星形胶质细胞的胞质和细胞核开始肿胀。6-24h损伤加重,水肿区神经细胞及星形胶质细胞的胞质和核轻度肿胀,神经元有较少量呈暗细胞样改变,还不明显,线粒体轻度肿胀,嵴变短或消失,次级溶酶体增加,核糖体减少,毛细血管周围的星形胶质细胞的足突肿胀,仍然与毛细血管基底膜相连,血管内皮细胞轻度肿胀。24h-3d,脑组织肿胀明显加重,神经元和胶质细胞溶解、线粒体肿胀、变形、固缩,嵴变短或消失,核糖体减少,胞浆空泡化,核染色质边集,细胞器结构紊乱不清、深染,BBB明显破坏,毛细血管无明显的变化。3d后,胞浆内线粒体轻度肿胀,粗面内质网及核糖体等细胞器基本正常,脑组织肿胀稍有好转,胶质细胞开始回缩。
     3.在人脑出血血肿灶周中PAR-1、HIF-1a、MMP-9、TIMP-1圴有表达,对照组与出血组相比均有显著性意义(P<0.05),且出血组各组之间比较均有差异(P<0.05)。出血6h后免疫阳性细胞数开始增加,24h-3d组阳性细胞数最多,之后逐渐下降。PAR-1、HIF-1a、MMP-9、TIMP-1与脑水肿成正相关。
     4.PAR-1与HIF-1a蛋白表达正相关(r=0.8809,P<0.05),PAR-1与MMP-9蛋白表达正相关(r=0.9080,P<0.05),HIF-1a与MMP-9蛋白表达正相关(r=0.8632,P<0.05)。
     结论:
     1、人脑出血灶周PAR-1、HIF-1a与MMP-9,TIMP-1的表达明显升高,与脑水肿密切相关。
     2、PAR-1、HIF-1a与MMP-9、TIMP-1的异常表达在高血压脑出血后脑水肿中起重要作用。
     3、PAR-1、HIF-1a与MMP-9显著相关,以协同或互补的方式共同参与、促进脑水肿的发生。
Experimental study of PAR-1, HIF-1a, MMP-9and TIMP-1in intracerebral hemorrhage in human
     Objective:In recent years, a large number of animal experiments or human peripheral blood studies showed that thrombin as neurotoxic substances plays an important role in the formation mechanism of the brain edema of hypertensive cerebral hemorrhage. Thrombin by P38MAPK pathway activated vascular smooth muscle cells of HIF-1, P38to regulate HIF-1over expression, and thrombin, and HIF-la activation by HIF-1phosphorylation and start another brain edema caused cause of the child of MMP-9expression, to participate in the formation of cerebral edema. According to the investigation, the rare human brain tissue PAR-1, HIF-la and MMP-9, TIMP-1in clinical research reports. Extravascular role of thrombin is achieved through the thrombin receptor PAR-1. Therefore, the study of human hypertensive cerebral hemorrhage at different time points after hemorrhage and brain tissue of PAR-1, HIF-la and MMP-9, TIMP-1. Clear specific pathways of the thrombin-mediated edema after intracerebral hemorrhage and the role of link. Validation PAR-1, HIF-la, MMP-9, TIMP-1in the back of the role of intracerebral hemorrhage edema, clearly people after intracerebral hemorrhage of thrombin mediated the specific route and edema action segment.
     Methods:From January2009to July2010in JiLin university for high blood pressure cerebral hemorrhage, the first hospital neurosurgery, could work clear hematoma surgical treatment patients24cases, the road will be within the scope of the hematoma channel next to the brain as the case group specimens, some patients cortex "colostomy " starting place namely hematoma parts over brain tissue, as the control group specimens, a total of6cases. According to the time of the case group is divided into<6h,6to24h,24h-3d,>3d group, using immunohistochemical method to detect24cases focal cerebral hemorrhage week6cases organization and normal brain tissue each time point PAR-1, HIF-la and MMP-9, TIMP-1expression, RT-PCR method to detect HIF-1a and MMP-9, TIMP-1expression, the Western blot test TIMP-1the protein expression, and through the dry wet weighing method combined with brain edema carries on the analysis, the electron microscope blood brain barrier dynamic change, discusses PAR-1、HIF-la and MMP-9、TIMP-1in the brain edema occurrence, development process in the possible role, and the correlation and clinical significance.
     Results:
     1. The water content of the brain changes, cerebral hemorrhage afterbrain edema degree with bleeding the extension of time progressive, in bleeding within6h water content, it started to increase,24h after a significantly higher,3d peak around, and then reduce (P<0.05).
     2. ICH under electron microscopy after6h inside, less cytoplasm, cytoplasm ribosomes is more, organelles other less. Edema area nerve cells and stellate cell cytoplasm and the nucleus began swelling.6to24h damage increase, edema area nerve cells and stellate cell cytoplasm and nuclear mild swelling, neurons have less show dark cell samples change, still not obvious, the mitochondria swelling of the mild, crest a shorter or disappear, secondary lysosomes increase, ribosomes reduce, capillary surrounding astrocytes foot processes swelling, still and capillary basement membrane is linked together, endothelial cells mild swelling.24h-3d and brain swelling obviously increase, neurons and glia dissolution, mitochondria swell, deformation, solid shrinkage, crest a shorter or disappear, ribosomes reduce, the empty bubble cytoplasm, nuclear chromatin the edge set, organelles structure disorder is not clear, deep dye, BBB obvious damage. Capillary no significant change.3d, the cytoplasm mitochondria swelling of the mild, rough endoplasmic reticulum and ribosomes organelles such as the basic normal. Swelling of the brain is somewhat better, glial cells start to shrink.
     3. In one week in focal cerebral hemorrhage hematoma PAR-1, HIF-la, MMP-9, TIMP-1a rate of expression, the control group and bleeding group significantly by sexual meaning (P<0.05), and bleeding between groups are comparison of difference (P<0.05). Bleeding after6h immune cells began to increase the number of positive,24h-3d group is the maximum number of positive cells, and then gradually decreases. PAR-1, HIF-la, MMP-9, TIMP-1a positive correlation with cerebral edema.
     4. PAR-1and HIF-la protein expression are related (r=0.8809, P<0.05), PAR-1and MMP-9protein expression are related (r=0.9080, P<0.05), HIF-la and MMP-9protein expression are related (r=0.8632, P<0.05).
     Conclusion:
     1. Surrounding cerebral hemorrhage, the expression of PAR-1, HIF-la, MMP-9and TIMP-1increased significantly, and brain edema closely related.
     2. The abnormal expression of PAR-1, HIF-la and MMP-9, TIMP-1plays an important role in early brain edema.
     3. PAR-1, HIF-1a and MMP-9significantly related to collaborative or complementary approach to the common participation, promote the occurrence of cerebral edema.
引文
[1]Brown D L, Morgenstem L B. Stopping the bleeding in intracerebral hemorrhage[J]. N Ensl J Med,2005,352(8):828-30.[2]Silva Y, Leim R, Tejada J, et al. Molecular signatures of vamthar injury a associated with early growth of intracerebral hemorrhage [J]. Stroke,2005,36(1):86-91.[3]Mayer S A. Ultra-early hemostatic therapy for intracerebral hemorrhage[J]. Stroke,2003,34(1):224-9.[4]Zheng G O, Huang P X. Influence of Naomai II capsule on dynamic expression of protease-activated receptors-1after acute intracerebral hemorrhage. Zhongguo Zhong Yao Za Zhi[J],2006,31(15):1265-8.[5]Gong C, Boulis N, Qian J, et al. Intracerebral hemorrhage-induced neuronal death. Neurosurgery.2001,48(4):875-82.[6]Qureshi A L, Ling G S, Khan J, et al. Quantitative analysis of injured, hemotic and apoptotic cells in a new experimental model of intracerebral hemorrhage. Crit Care Med,2001,29(1):152-7.[7]Xi G, Keep R F, Hoff J T. Mechanisms of brain injury after intracerebral hemorrhage. Laneet Neurol,2006,5(1):53-63.[8]Hua Y, Keep R F, Hoff J T, et al. Brain injury after intracerebral hemorrhage:the role of thrombin and iron[J]. Stroke,2007,38(2):759-62.[9]Levine J M, Snider R, Finkelstein D, et al. Early edema in warfarin related in tracerebral hemorrhage [J]. Neurocrit Care,2007,7:58-63.[10]Guan J X, Sun SG, Cao XB, et al. Effect of thrombin on blood brain barrier perme ability and its mechanism[J]. ChinMedJ(Engl),2004,117:1677-81.[11]Riek-Burchardt M, Striggow F, Hcnrich-Noack P, et al Increase of prothrombin-mRNA after global cerebral ischemia in rats, with constant expression of protease nexin-1and protease-activated receptors Neuroscie Lett,2002,76:501-5.[12]Xi G, Hua Y, Bhasin R R, et al. Mechanisms of edema formation after intracerebral hemorrhage, effects of extravasated red blood cells Oll blood flow and blood-brain barrier integrity [J]. Stroke,2001,32:2932-8.[13]Sodhi A, Montaner V, et al. The Kaposi's sarcoma-associated herpesvirus G Protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38pathways acting on hypozia inducible factor-1alpha[J]. Cancer Res,2000,60(17):4837-80.[14]Xue M, Hollenberg M D, Yong, et al. Combination of thrombin and matrix metalloproteinase-9??exacerbates neumtoxicity in cell culture and in cerebral hemorrhage in mice. J Neurosei,2006,26(40):10281-91.[15]Alvarez-Sabin J, Delgado P, Abilleira S, et al. Temporal profile of matrix metalloproteinase and their inllibitors after spontaleous intracerebral hemorrhage:Relationship to clinical and radiological outcome. Stroke,2004,35:1316-22.[16]Wang fuxi, He linlin, Zhang shuping, et al. Effect of MMP-9, TIMP-1expression on the Brain Edema around Hematonla Intracerebral Hemorrhage [J]. Chin J Clin Neurosei,2007,15(5):519-22.[17]Groves M D, Puduvali V K, Hess K R, et al. Phase trial of temozolomide plus the metalloproteinases inillibitor, marilnastst, in recurrent and progressive gliobl stomac multiforme[J]. Clin Oneol,2002,20(5):1383-8.[18]Rincon F, Mayer SA. Novel therapies for intracerebral hemorrhage [J]. Curr orin Crit Care,2004,10:94-100.[19]Turgeon V L, Salman N, Houenou L J. Thrombin:a neuronal cell modulator [J]. Thrombin Res,2000,99:417-7.[20]Hua Y, Keep RF, Schallert T, et al. A thrombin inhibitor reduces brain edema, gliomamass and neurological deficits in a rat glioma model [J]. Acta Neurochir Suppl,2003,86:503-6.[21]Raimondo De Cristofaro, Sepideh Akhavan, Cosimo Altomare, et al. A natural prothrombin mutant reveals an unexpected influence of the. A-chain's structure on the activity of human A-thrombin [J]. The Journal of Biological Chemistry,2004,279(13):13035-43.[22]R Rajesh Singh, Jui-yoa Chang. Structural stability of human A-thrombin studied by disulfide reduction and scrambling [J]. Biochimica et Biophysica Acta,2003,1651(12):85-92.[23]Dicera E, Cantwell A M. Determinants of thrombin specificity [J]. Ann N Yacad Sci,2001,936:133-46.[24]Kaufmann R, PaRs, Zieger M, et al. The two receptor system PAR21/PAR24mediates alpha thrombin induced Ca2+(i)mobilization in human astrocytoma cells [J]. Cancer Res Clin Oncol,2000,26(2):91-4.[25]Masada T, Xi G Hua Y, et al. The effects of thrombin preconditioning on focal cerebral ischemia in rats[J]. Brain Res,2000,867(122):173-9.[26]Landau E, rimsh R, Pins on A, et al. Protection of thrombin receptor expression under hypoxia[J]. J Biol Chem,2000,275(4):2281-7.[27]Jiang Y, Wu J, Hun Y, et al. Thrombin-receptor activation and thrombin-induced brain tolerance[J]. J Cereb Blooed Flow Metab,2002,22(4):404-10.[28]Guan Jing-xia, Sun Sheng-gang, Cao Xue-bing, et al. Effect of thrombin on blood brain barrier permeability and its mechanism [J]. Chinese Medical Journal,2004,117(11):1677-81.[29]Jiang Y, Wu J, Hua Y, et al. Thrombin-receptor activation and thrombin-induced brain tolerance[J]. J Cereb Blood Flow Metab,2002,22(4):404-10.[30]Gabazza EC, Taguchi O, Kamada H, et al. Progress in the understanding of protease-activated receptors[J]. Int J Hematol,2004,79(2):117.[31]Kaufrnan R, Part S, Zieger M, et al. The two-receptor system PAR-1/PAR-4mediates alpha-thrombin-induced Ca2+mobilization in human astrocytoma cells[J]. Cancer Res Clin Oncol,2000,126(2):91-4.[32]Melissa B, Ginrich F, Traynelis E, et al. Serine proteases and brian damage-is there a link?[J]. Trends neuroscei,2000,23(9):399-407.[33]Kawabata A. Gastrointestinal functions of protease-activated receptors [J]. Life Sei,2003,74(2-3):247.[34]Guan J, Sun S, Cao X, et al. Experimental study on the PAR-1expression around hematoma following intracerebral hemorrhage in rats[J]. Huazhong Univ Sci Techno log Med Sci,2004,24:266-8.[35]Ando S, Otani H, Yaqi Y, et al. Protease-activated receptor4stimulation-Induced epitheliam esenchymal transition in alveolar epithelia cells [J]. Respir Res,2007,8(1):31.[36]Griffin C T, SrinivasanY, ZhengY W, et al. A role for thrombin receptor signaling in endothelial cells during embryonic development[J]. Science,2001,293:1666-1700.[37]Riek-Burchardt M, Striggow F, Hcnrich-Noack P, et al. Increase of prothrombin-mRNA after global cerebral ischemia in rats, with constant expression of protease nexin-1and protease-activated receptors [J]. Neurosci Lett,2002,76:501-5.[38]Guohua Xi, Richard F Keep, Julian T Hoff. Mechanisms of brain injury after intracerebral hemorrhage. The Lcncet Neurology [J]. January2006,(5):53-63.[39]Citron B A, Smirnova I V, Arnold P M, et al. Up regulation of neurotoxic serine proteases, prothrombin, and protease-activated receptorl early after spinal cord injury [J]. J Neurotrauma,2000,17(12):1191-1203.[40]Rohde V, Rohde I, Reinges M H, et al. Frameless Stereotactically guided catheter placement and fibryoltic therapy for spontaneious supratentorial intracerebral hematomas:technical aspects intial clitical results [J]. Minim Invasive Neurosurg,2000,43:9-17.[41]Nakanishi-Matsui M, Zheng Yw, Sulciner D J, et al. PAR3is a cofactor for PAR4activation by thrombin[J]. Nature,2000,404:609-13.[42]Wagner K R, Sharp F R, Ardizzone T D, et al. Heme and iron metabolism:role in cerebral hemorrhage [J]. Cereb Blood Flow Metab,2003,23:629-52.[43]Hua Y, Xi G, Keep R F, et al. Complement activation in the brain after experimental intracerebral??hemorrhage[J]. Neurosurg,2000,92:1016-22.[44]Masada T, Xi G, Hua Y, et al. The effects of thrombin preconditioning on focal cerebral ischemia in rats[J]. Brain Res,2000,867(1-2):173-9.[45]Jiang Y, Wu J, Keep R F, et al. Hypoxia-Inducible Factor-1a Accumulation in the Brain After Experimental Intracerebral Hemorrhage [J]. Cerebral Blood Flow Metab,2002;22(6):689-696.[46]Gorlach A, Diebold I, Schini-Kerth V B, et al. Thrombin activates the hypoxia-inducible factor-1signaling pathway in vascular smooth muscle cells:Role of the p22(phox)-containing NADPH oxidase[J]. Circ Res,2001,89(1):47-54.[47]Hua Y, Keep R F, Hoff J T, et al. Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron[J]. J Cereb Blood Flow Metab,2003,23:1448-54.[48]Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor lalpha in vascular smooth muscle cells [J]. J Biol Chem,2000,275(35):26765-71.[49]Riehard D E, Vouret-Craviari V, Pouyssegur J. Angiogenesis and G-Proteincoupled receptors: Signals that bridge the gap [J]. Oneogene,2001,20(13):1556-62.[50]Xi G, Fewel M E, Hua Y, et al. Intracerebral hemorrhage:pathophysiology and therapy [J]. Neurocrit Car,2004,1:5-18.[51]Henrich-Noack P, Riek-Burchardt M, Baldauf K, et al. Focal ischemia induces expression of protease-activated receptor-1(PAR-1) and PAR3on microglia and enhances PAR-4labeling in the penumbra [J]. Brain Res,2006,1070:232-41.[52]Zheng G Q, Wang X T, Wang X M, et al. Long-time course of protease activated receptor-1expression after intracerebral hemorrhage in rats [J]. Neurosci Lett,2009,459:62-5.[53]Kaw akita K, N Kaw ai, et al. Expressio n of matrix, metalloproteinase-9in thrombin-induced bra in edema fo rmatio n in rats [J]. J Str oke Cerebrovasc Dis,2006,15(3):88-95.[54]Haorah J, Ramirez S H, Schall K, et al. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction [J]. Neurochem.2007, Apr10(2):566-76.[55]Wang X, Mori T, Jung J C, et al. Secretion of matrix metalloproteinase-2and-9after mechanicaltra-uma in jury in rat cortical cultures and involvement of MAP kinase [J]. J Neurotrauma,2002,19:615-25.[56]Mori T, Wang X, Aski T, et al. Downregulation of matrixmetalloproteinase-9and attenuation of edema via inhibition of ERK mitogen activated protein kinase in traumatic brain injury [J]. Neurotrauma,2002,19:1411-9.[57]Ando S, Otani H, Yaqi Y, et al. Protease-activated receptor4stimulation induced epithelia??mesenchymal transition in alveolar epithelia cells[J]. Respir Res,2007,8(1):31-19[58]Nagatsuna T, Nomura S, Suehiro E, et al. Systemic administration of argatroban reduces secondary brain damage in a rat model of intracerebral hemorrhage:histopathological assessment[J]. Cererova-sc Dis,2005,19(3):192-200.[59]Kitaoka T, Hua Y, Xi G, et al. Dalayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage[J]. Stroke,2002,33(12):3012-8.[60]Hadama R, Matsuoka H. Antithromb in therapy for intracerebral hemorrhage [J]. Stroke,2000,31(3):794-5.[61]Riekles F R, Patierno S. Fernandez P M. Tissue factor, thrombin, and cancer [J]. Chest,2003,124(3):585-685.[62]Hernandez-Rodriguez N A, Correa E, Sotelo R, et al. Thrombin is present in the lungs of patients with primary extremity osteosareoma and pulmonary metastases[J]. In J Biol Markers,2002,17(3):189-95.[63]Park Y S, Kim N H. Hypoxia and vaseular endothelial growth factor acutely up-regulate angiopoietin-1and Tie2mRNA in bovine retinal perieytes[J]. Mierovase Res,2003,65(2):125-13.[64]Hua Y, Keep R F, Gu Y, et al. Thrombin and brain recovery after intracerebral hemorrhage [J]. St-roke,2009,40(3):88-9.[65]Flashman E, McDonough M A, Schofield C J. OS-9:another piece in the HIF complex story [J]. Mol Cell,2005,17(4):472-3.[66]Leyland-Jones B. Evidence for erythropoietin as a molecular targeting agent[J]. Semin Oncol,2002,29(3Suppl11):145-54.[67]Bryant C S, Munkarah A R, Kumar S, et al. Reduction of hypoxia-induced angiogenesis in ovarian cancer cells by inhibition of HIF-1alpha gene expression[J]. Archives of Gynecology and Obstetrics,2010,2(7):677-83.[68]Bos R, van Diest PJ, Van der Groep P, et al. Expression of hypoxia-inducible factor-1alpha and cell cycle proteins in invasive breast cancer are estrogen receptor relate d[J]. Breast Cancer Res,2004,6(4):450-9.[69]Griffiths J R, McSheehy P M, Robinson S P, et al. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1wild-type tumors and tumors deficient in hypoxia-nducible factor-1beta(HIF-lbeta):evidence of an anabolic role for the HIF-1pathway[J]. Cancer Res,2002,62(3):688-95.[70]Jiang M, Wang C Q, Wang B Y, et al. Over expression of hypoxia inducible factor-1alpha(HIF-la) promotes the differentiation of endothelial progenitor cell ex vivo[J]. Zhong guo Shi Van Xue Ye Xue??Za Zhi,2006,14(3):565,570(in Chinese).[71]Krishnamachary B, Berg-Dixon S, Kelly B, et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor1[J]. Cancer Res,2003,63(5):1138-43.[72]Metzen E. Enzyme substrate recognition in oxygen sensing:how the HIF trap snaps[J]. Biochem J,2007,408(2):231-40.[73]Luo Y, He D L, Ning L, et al. Over-expression of hypoxia-inducible factor-lalpha increases the invasive potency of LNCaP cells in vitro [J]. BJU Int.2006,98(6):1315-9.[74]Hackenbeck T, Knaup K X, Schietke R. HIF-1or HIF-2induction is sufficient toachieve cell cycle arrest in NIH3T3mouse fibroblasts independent from hypoxia[J]. Cell Cycle.2009,8(9):1386-95.[75]Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1[J]. Cancer Cell,2004,5(5):405-6.[76]kakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-I alpha rendered pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation[J]. Cancer Res.2001,61(17):6548-54.[77]Brown J M, Wilson W R. Exploiting tumour hypoxia in cancer treatment [J]. Net Rew Cancer,2004,4(6):437-47.[78]Fryer B H, Sitmon M C. Hypoxia HIF and the placenta[J]. Cell Cycle,2006,5(5):495-8.[79]Lando D, Peet D J, Whelan D A, et al. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch [J]. Science,2002,295:858-61.[80]Kiichi Hirota, Gregg L, Semenza. Regulation of angiogenesis by hypoxia-inducible factor1[J]. Crit Rex, Oncol Hematol,2006,59(1):15-26.[81]Goldsp ink H, David L, Peter M, et al. Sex-related dimorphic response of HIF-1a expression in myocardial ischemia[J]. Am J Physiol Heart Circ Physiol,2006,291:957-64.[82]Li L, Xiong Y, Qu Y. The requirement of extracellular signal-related protein kinase pathway in the activation of hypoxia inducible factor1alpha in the developing rat brain. After hypoxia-ischemia[J]. Acta Neuropathol,2008,115(3):297-303.[83]Ruas JL, Poellinger L. Hypoxia-dependent activation of HIF into a transcriptional regulator[J]. Semin Cell Developmental Biology,2005,16:514-22.[84]Semanza G L, Oxygen regulated transcription factors and their role in pulmonary disease [J]. Respir Res,2000,1:159-62.[85]Huang L E, Gu J, Schau M, et al. Regulation of hypoxia inducible factor-1alpha is mediated by all02-dependent degradation domain via the ubiquitin protea some pathway [J]. Proc Natl Acad Sci USA,1998,95:7987-92.[86]Ohh M, Park C W, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding??to the IB-domain of the von Hippel-Lindau protein[J]. Nat Cell Biol,2000,2:423-7.[87]Cockman M E, Masson N, Mole D R, et al. Hypoxia inducible factor-alpha binding and ubiquitylation by the yon Hippel-Lindau tumor suppressor protein[J]. J Biol Chem,2000,275(33):25733-41.[88]Semenza G L. HIF-1:mediator of physiolngical and path of hysiolngical responses to hypoxia[J]. J Appl Physiol,2000,88(4):1474-80.[89]Tanimoto K, Makino Y, Pereira T, et al. Mechanism of regulation of the hypoxia-inducible factor-1ot by the yon Hippel-Lindau tumor suppressor protein[J]. EMBO J,2000,19:4298-309.[90]Zhu Y, Lawton M T, Du R, et al. Expression of hypoxia-inducible factor-1and vascular endothelial growth factor in response to venous hypertension[J]. Neurosurgery,2006,59(3):687-96.[91]Calvert J W, Cahill J, Yamaguchi Okada M, et al. Oxygen treatment after experiment hypoxiaia chemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes[J]. J Appl Physiol,2006,101(3):853-65.[92]Iwai M, Cao G, Yin W. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats [J]. Stroke,2007,(16):1412-20.[93]Kumral A, Baskin H, Yesilirmak D C. Erythropoieti attenuates lipopolys ache ride induced white matter injury in the neonatal rat brain[J]. Neonatology,2007,(92):269-78.[94]Yang J, Huang Y, Yu X. Erythropoietin preconditioning suppresses neuronal death following status epilepticus in rats[J]. Acta Neurobiol EXP,2007,67(2):141-8.[95]Viviani B, Bartesaghi S, Corsini E. Erythropoiet in protects primary hippocampal neurons increasing the expression of brain-derived neurotrophic factor[J]. J Neuroche,2005,93(2):412-21.[96]Costanza S, Rosetta P, Fulvio B. Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encepha-1omyelitis[J]. J Neuroimmunol,2006(172):27-37.[97]Mitsionis G I, Sakellariou E, Beris A E. The role of erythropoietin in central and peripheral nerve injury [J]. Clin Neurol Neurosurg,2007,109(8):639-44.[98]Stroka DM, Burkhardt T, Desbaillets I, et al. HIF-1is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia[J]. FASEB J,2001,15(3):2445-53.[99]Caramelo C, Pea Deudero J J, Castilla A, et al. Response to hypoxia. A systemic mechanismbased on the control of gene expression[J]. Medicina(B Aires),2006,66(2):155-64.[100]Narti H, Bemaudin M, Bellail A, et al. Short communication:oral lesions in HIV/AIDS patients undergoing HAART including efavirenz.[J]. Am J Pathol,2000,156(3):965-76.[101]Sharp F R, Bergeron M, Bernaudin M. Hypoxia-inducible factor in brain [J]. Adv Exp Med Biol,2001,5(2):273.[102]Bergeron M, Gidday JM, Yu AY, et al. Role of hypoxia-inducible factor-1in hypoxia-induced ischemic tolerance in neonatal rat brain [J]. Ann Neurol,2000,48(3):285.[103]Jin K L, Mao X O. Nagayama T, et al. Neuro science [J].2000,99(3):577-85.[104]Mu D, Jiang X, Sheldon R A, et al. Regulation of hypoxia-inducible factor1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model [J]. Neurobiol Dis,2003,14(3):524.[105]Chavez J C, LaManna J C. Activation of hypoxia-inducible factor-1in the rat cerebral cortex after transient global ischemia:Potential role of insulin like growth factor-1[j]. J Neurosci,2002,22(20):8922.[106]Pichiule P, Agani F, Chavez J C, et al. HIF-1alpha and veg expression after transient global cerebral ischemia [J]. Adv Exp Med Biol,2003,5(3):611.[107]Ferriero D M. Protecting neurons [J]. Epilepsia,2005,46(7):45-51.[108]Chavez J C, LaManna J C. Activation of hypoxia-inducible factor-1in the rat cerebral cortex after transient global ischemia:Potential role of insulin like growth factor-1[j]. J Neurosci,2002,22(20):8922.[109]Chen W, Jadhav V, Tang J, et al. Hif-1alpha inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model [J]. Neurobiol Dis,2008,31(3):433.[110]Chen D, Li M, Luo J, et al. Direct interaction between HIF-1alpha and Mdm2modulate p53function [J]. J Biol Chem,2003,278(16):13595-98.[111]Renton M. Networking neonatal units [J]. Pratt Midwife,2003,6(6):4-5.[112]Helton R, Cui J, Scheel J R, et al. Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage [J]. J Neurosci,2005,25(16):4099.[113]Gorlach A, Diebold I, Schini-Kerth VB, et al. Thrombin activates the hypoxia-inducible factor-1signaling pathway in vascular smooth muscle cells:Role of the p22(phox)-containing NADPH oxidase[J]. Circ Res,2001,89(1):47-54.[114]Richard D E, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxiain-ducible factor lalpha in vascular smooth muscle cells[J]. J Biol Chem,2000,275(35):26765-71.[115]Jiang Y, Wu J, Keep R F, et al. Hypoxia-inducible Factor-1a Accumulation in the Brain After Experimental Intracerebral Hemorrhage [J]. Cerebral Blood Flow Metab,2002,22(6):689-96.[116]Matsushita K, Meng W, Wang X, et al. Evidnece for apoptosis after intracerebral hemorrhage in rat striatum[J]. J Cereb Blood Flow Metab,2000,20(2):396-404.[117]Ohnishi M, Katsuki H, Fujimoto S, et al. Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury [J]. Exp Neurol,2007,206(1):43-52.[118]Yu R, Gao L, Jiang S, et al. Association of HIF-1alpha expression and cellapoptosis after traumatic??brain injury in the rat[J]. Chin J Traumatol,2001,4(4):218-21.[119]Feng Zhen, Chen Ping-sheng, Zhang ai-feng, et al. Expression of HIF-la and its down molecules in rat liver fibrosis tissue [J]. Mod Med J,2005,33(4):211-5.[120]Pugh C W, Ratcliffe P J. Regulation of angiogenesis by hypoxia:role of the HIF system [J]. Nat Med,2006,9(6):677-84.[121]Christiane B H, Jacques P. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion[J]. Bull Cancer,2006,93(8):73-80.[122]Shyu K G, Hsu FL, Wang M J, et al. Hypoxiainducible factor-1alpha regulates lung adenocar-cinoma cell invasion[J]. Exp Cell Res,2007,313(6):1181-91.[123]Krlshnamaehary B, Zag D, Nagasawa H, et al. Hypoxiaindueible factor-1dependent repression of E-eadherin in yon Hippel-Lin-dautumor suppressor, null renal cell carcinoma mediated by TCF3, ZFHXIA and ZFHX-IB[J]. Cancer Res,2006,66(5):2725-31.[124]Sun B, zhang D, Zhang S, et al. Hypoxia influences vaseulogenie mimicry channel formation and tumor invasion-related protein expression in Helunoma[J]. Cancer Letters,2007,249(2):1881-97.[125]Fujiwara Y, Komohara, R Kudo, et al. Oleanolic acid inhibits macrophage differentiation into the M2pheno type and glioblastoma cell proliferation by suppering the activation of STAT3[J]. Oncology Reports,2011,26(6):1533-37.[126]Higashida T, Kreipke C W, Rafols J A, et al. The role of hypoxia-inducible factor-1, aquaporin-4, and matrix metalloproteinase-9in blood-brain barrier disruption and brain edema after traumatic brain injury [J]. J Neurosurg,2011,114:92-101.[127]Power C, Henry S, Del Bigio M R, et al. Intracerebral hemorrhage induces macrophage activation and matrix mecalloproteinuses[J]. Ann Neurol,2003,53(6):731-42.[128]Dzwonek J, Rylski M, Kaezmarek L. Matrix metalloproteinases and their endogenous ilillibitors inneuronal physiology of the adult brain[J]. FEBS Lett,2004,567(1):129-35.[129]Hamacher S, Matem S, Roeb E. Extracellular matrix-from basic research to clinical significance. An overview with special consideration of matrix metalloproteinases [J]. Dtsch Med Wochenschr,2004,129(38):1976-80.[130]Yong VW, Power C, Forsyth P, et al. Metalloproteinases in biology and pathology of the nervous system [J]. Nat Rev Neurosci,2001,2:502-11.[131]Parks W C, Wilson C L, Lopez-Boado Y S. Matrix Metalloproteinases as modulators of inflammation and innate immunity [J]. Nat Rev Immunol,2004,4:617-29.[132]Overall C M, Dean R A. Degradomics. Systems biology of the protease web. Pleiotropic roles of MMPs in cancer[J]. Cancer Metastasis Rev,2006,25:69-75.[133]Page-Mcaw A, Ewald A J, Werb Z. Matrix Metalloproteinases and the regulation of tissue??remodeling[J]. Nat Rev Mol Cell Biol,2007,8:221-33.[134]Heo J H, Kim S H, Lee K Y, et al. Increase in plasma matrix metalloproteinase-9in acute stroke patients with thromb oly sis failure [J]. Stroke,2003,34(6):48-50.[135]Montaner J, Rovira A, Molina CA, et al. Plasmatic leverl of neurinflammatory makers predict the extent of diffusion-weighted image lesions in hyperacute stroke [J]. J Cereb Blood Flow Metab,2003,23:1403-7.[136]Cunningham L A, Wetzel M, Rosenberg G A. MultiPle roles for MMPs and TIMPs in cerebral ischemia[J]. Glia,2005,50(4):329-39.[137]Visse R, Nagase H. Matrix metalloproteinase and tissue inhibitors of metalloproteinase structure, function, and biochemistry [J]. Circ Res,2003,92(8):827-39[138]Robert PT Somerville, Samantha A oblander and Suneel S APte Matrix metallo-proteinases:old dogs with new trieks[J]. Genome Biology,2003,4:216.[139]Jovanovic DV, Martel-Pelletier J, Di Battista JA, et al. Stimulation of92-Kd gelatinase(matrix metalloproteinase-9)production by interleukin-17in human monoeyte/maerophages:a possible role in rheumatoid arthritis [J]. Arthritis Rheum,2000,43:1134-44.[140]Inoue K, Slaton JW, Kim SJ, et al. Interleukin8expression regulates tumor igenicity and metastasis in human bladder cancer [J]. Cancer Res,2000,60(8):2290-9.[141]Mengshol J A, Vincenti M P, Brinckerh off C R. IL-1induces collagenase-3(MMP-13) promoter activity in stably transfected chondrocytic cell:requirement for Runx-2and activation by p38MAPK and JNK pathways [J]. Nucleic Acids Res,2001,29(21):4361.[142]Reno F, ombardi F, Cannas M. Polystyrene surface coated with vitamin E modulates human granulocyte adhesion and MMP-9release [J]. Biomol Eng,2004,21(2):73-80.[143]Chebassier N, E1Houssein O, Viegas I, et al. In vitro induction of matrix metalloproteinase-2and matrix metalloproteinase-9expression in keratinocytes by boron and manganese [J]. Exp Dermatol,2004,13(8):484-90.[144]Ian Chau, Anne Rigg, David Cunningham. Matrix metalloproteinase inhibitors-an emphasis on gastrointestinal malignancies [J]. Critical Reviews in Oncology/Hematology,2003,45:151-76.[145]Kontogiorgis CA, Papaioannou P, Hadjipavlou-Litina D J. Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results [J]. Curr Med Chem,2005,12(3):339-55.[146]Cuzner M L, Opdenakker G. Plasminogen activators and matrix metalloproteases, mediators of extracellular proteolysis in inflammatory demyelination of the central nervous system[J]. J Neuro-imunol,1999,94(1-2):1-14.[147]Mira E, Lacalle RA, Buesa JM, et al. Secreted MMP9promotes angiogenesis more efficiently than??constitutive active MMP9bound to the tumor cell surface[J]. J Cell Sci,2004,117:1847-57.[148]Dzwonek J, Rylski M, Kaczmarek L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain [J]. FEBS Lett,2004,567:129-13.[149]Kaija V, Taina T H. Serum tissue inhibitor of metalloproteinase-2(TIMP-2) and matrix-metalloproteinase-2in complex with the inhibitor(MMP-2:TIMP-2)as progn ostic markers in bladder cancer[J]. Clin Biochem,2007,40(9-0):640-4.[150]Cannelie P, Moons L, Lijnen R, et al. Urokinase-generated plasmin activates matrix metalloprotein-ases during aneurysm formation[J]. Nat Genet,2003,17(4):439-44.[151]Ries C, Petrides PE. Cytokine regulation of matrix metailoProteinases activity and its regulatory dysfunetion in disease [J]. Biolehem Hopper Seyler,2001,376:345-55.[152]Jordan A, Roldan V, Garcia M, et al. Matrix metalloproteinase-1and its inhibitor, TIMP-1, in systolic heart failure relation to functional data and prognosis [J]. J Intern Med,2007,6(3):385-92.[153]Zhang S, Li L, Lin J Y, et al. Imbalance between expression of Matrix metallproteinases-9and tissue inhibitor of metalloproteinases-1in invasiveness and metastasis of human gastric carcinoma[J]. World J Gastroenterol,2003,9(5):899-904.[154]Tan H K, Heywood D, Ralph G S, et al. Tissue inhibitor of metalloproteinase-1inllibits exeitotoxic cell death in neurons [J], Mol Cell Neurosi,2003,22(1):98-106.[155]Alvarez-Sabin J、Delgado P. Abilleira S, et al. Temporal profile of matrix metalloproteinase and their inllibitors after spontaleous intracerebral hemorrhage:Relatiorship to clinical and radiological outcome [J]. Stroke,2004,35:1316-22.[156]Von Gertte C. Holnmin S, Mathiese, T, et al. Increases in Metalloproteinase-9, And tissue inhibitor of matrix Metalloproteinase-1mRNA after cerebral contusion and depolarization[J]. Neurosci Res,2006,73(6):803-10.[157]Wang fuxin, He linlin. Zhang Shuping, et al. Eeffect of MMP-9、TIMP-1Expression on the Brain Edema around Hematoma intracerebral Hemorrhage[J]. Chin J Clin Neurosci,2007,15(5):519-22.[158]Tejima E, Guo s, Murata Y, et al. Neuroprotective effects of over expressing tissue inhibitor of metalloproteinase TIMP-101[J]. J Neurotrauma,2009,26(11):1935.[159]Tang J, Liu J, Zhou C, et al. MMP-9deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice[J]. J Cereb Blood Flow Metab,2004,24(10):1133-45.[160]Gursoy-Ozdemir Y, Qiu J, Mat suoka N, et al. Cortical spreading depression activates and upregulates MMP-29[J]. Clin Invest,2004,113(10):1447-55.[161]Power C, Henry S, Del Bigio MR, et al. Intracerebral hemorrhage induces macrophage activation and matrix mecalloproteinuses[J]. Ann Neurol,2003,53(6):731-42.[162]Rosenberg G A, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat[J]. Neurology,1997,48(4):921-6.[163]Xue M, Fan Y, Liu S, et al. Contributions of multipleprotetmes10neurotoxicity in a mouse model of intracerebral hemorrhage [J]. Brain,2009,132(2):26-36.[164]Rosenberg G A, Estrada B S, Dencoff J E. Matrix metalloproteinases and TIMPs are associated with blood brain barrier opening after reperfusion in rat brain[J]. Stroke,1998,29(10):2189-95.[165]Cunningham L A, Wetzel M, Rosenberg G A. Multiple roles for MMPs and TIMPs in cerebral ischemia[J]. Glia,2005,50(4):329-39.[166]Gasche Y, Fujimura M, Morita Fujimur A Y, et al. Early appearance of activated matrix metallo-Droteinase-9after focal cerebral ischemia in mice:a possible role in blood-brain barrier dysfunc-tionCJ3[J]. J Cereb Blood Flow Metab,1999,19(9):1020-8.[167]Power C, Henry S, Del Bigio MR, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases [J]. Ann Neurol,2003,53(6):731-42.[168]Alvarez-Sabin J, Delgado P, Abilleira S, et al. Temporal profile of matrix. Meta-lloproteinase and their inhibitors of matrix after spontaneous intracerebral hemorrhage:relationship to clinical and radiological outcome [J]. Stroke,2004,35(6):1316-22.[169]Anthony D C, Ferguson B, Matyzak M K, et al. Differential matrix metalloproCeinase expression in cases of multiple sclerosis and stroke [J]. Neuropathol Appl Neurobiol,1997,23(5):406-5.[170]Planas A M, Sole S, Justicia C, et al. Expression and activation of matrix metalloproteinase-2and-9in rat brain after transient focal cerebral ischemia[J]. Neurobiol Dis,2001,8(5):833-46.[171]Gasche Y, Sugawara T, et al. Matrix metalloproteinase inhibition prevents oxidative stress ass-ociated blood-brain barrier disruption after transient focal cerebral ischemia[J]. J Cereb Blood Flow Metab,2001,21(12):1393-1400.[172]Wells J E, Biernaskie J, Szymanska A, et al. Matrix metalloproteinase(MMP)-12expression has a negative impact on sensorimotor function following intracerebral hemorrhage in mice[J]. Eur J Neurosci,2005,21(1):187-96[173]Abilleira S, Montaner J, Molina CA, et al. Matrix metalloproteinase-9concentration after spontaneous intracerebral hemorrhage [J]. J Neurosurg,2003,99:65-70.[174]Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9pretreatinentcle-vel predicts intracramal hemorrhagic complieations after thrombolysis in human stroke[J]. Circulatio-n,2003,107(4):598-603.[175]Asahi M, Asahi K, Jung J C, et al. Role for matrix metalloproteinase-9after focal cerebral ischemia:effects of gene knock out and enzyme inhibition with BB-94[J]. J Cereb Blood Flow Metab,2000,20(12):1681-9.[176]Lapchak P A, Chapman D F, Zivin J A. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)induced hemorrhage after thromboembolic stroke[J]. Stroke,2000,31(12):3034-40.[177]Dijkhuizen R M, Asahi M, Wu O, et al. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator in a embolic stroke model[J]. stroke,2002,33:2100-4.[178]Thomas P fefferkom, M D:Gary A. Rosenber, MD Closure of the Blood-BrainBarrier by Matrix MetalloProteinase Inhibition Reduees rtPA-Mediated Mortality in Cerebral Isehemia With Delayed RePerfusion[J]. Stroke,2003,34:2025-30.[179]Joan Montaner, Carlos A, Molina, et al. Matrix Metalloproteinase-9Pretreatment Level Prediets Intracerenial Hemorrhage Complieations After Thrombolysis in Human Stroke [J]. Cireulation,2003,107:598-603.[180]Pfefferkom T, Rosenbe C A. Closure of the blood-brain barrier by matrix metallopro teinase inhibition educes rtPA-mediated mortality in cerebral ischemia with delayed reperfusion[J]. Stroke,2003,34(8):2025-30.[181]Xu Z, Zhao S, Zhou H, et al. Atorvastatin lowers Plasma matrixmetalloproteinase-9in Patients with aeute coronary syndrome [J]. Clin Chem,2004,50:750-3.[182]Sottile J. Regulation o fangiogenesis by extracellular matrix[J]. Bioehim BioPhys Acta,2004,1654(1):13-22.[183]Keep R F, Xi G, Hua Y, et al. The deleterious or beneficial effects of different agents in intracerebral hemorrhage:think big, think small, or is hematomasize important [J]. Stroke,2005,36(7):1594-6.[184]Tsopnoglou N E, Maragoudakis M E. Role of thrombin in angiogenesis and tumor progression [J]. Semin Thromb Hemost,2004,30(1):63-91.[185]Bergers G, Brekken R, MeMahon G, et al. Matrix metalloproteinase-9trigger the angiogenic switch during careinogenesis[J]. Nat Cell Biol,2000,2(10):737-44.[186]Carhupoma J, Wang P Y, Beuaehmap N J, et al. Diffusion-weihgted MRI and proton MR spectroseopic imgainging in the study of secondary neuronal injury after intracebral[J]. Stroke,2000,313:726-32.[187]Buteher K S, Baid T, Macgregor L, et al. Perihemoatmal edema in primary Inrtacerebarl hemorrhage is plasma derived [J]. Sortke,2004,35(8):1879-85.[188]Heo J H, Han S W, Lee S K. Free radicals as triggers of brain edema formation after stroke [J]. Free Radie Biol Med,2005,39(1):51-70.[189]G A Tung, B D Julius, J M Rogg. MRI of intracerebral hematoma:value of vasogenic edema ratio??for predicting the cause [J]. Neuroradiology,2003,45:357-62.[190]Wang X, Mori T, Sumii T, et al. Hemoglobin-Induced Cytotoxicity in Rat cerebral cortical neurons:caspase activation and oxidative stress [J]. Stroke,2002,33(7):1882-8.[191]Sandoval K, Witt K, Guo S, et al. Blood brain barrier tight junction permeability and ischemic stroke [J]. Neurobiol Dis,2008,32(2):200.[192]Hua X Schallert T, Keep RF, et al. Behavioral tests after intracerebral hemorrhage in the[193]Eli Hua Y, Keep RF, Hoff JT, et al. Brain injury after intracere-bral hemorrhage:The role of thrombin and iron[J]. Stroke,2007,38:759-62.[194]Kawakita K, Kawai N, Kuroda Y, et al. Expression of matrix metalloproteinase-9in thrombin-induced brain edema formation in rats [J]. Stroke Cerebrovasc Dis,2006,15(3):88-95.[195]Keep R F, Xiang J, Ennis S R, et al. Blood-brain barrier function in intracerebral hemorrhage [J]. Acta Neurochir Suppl,2008,105:73-7.[196]Maclellan CI, Davies I, M. Fingas MS, et al. The influence of hypothermia on outcome after intracerebral hemorrhage in rats [J]. Stroke,2006,37(5):1266-70.[197]Kiyatkin EA, Brown PI. Sharma HS. Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication:critical role of brain hyperthermia[J]. Eur J Neurosci,2007,26(5):1242-53.[198]Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral hemorrhage[J]. Lancet Neurol,2006,5:53-63.[199]Griffin CT, Srinivasan Y, Zheng YW, et al. A role for thrombin receptor signaling in endothelial cells during embryonic development[J]. Science,2001,293:1666-1700.[200]Melissa B, Gingrich F, Traynelis E, et al. Serine proteases and brain damage is there a link Trends [J]. Neurosci,2000,23:399-407.[201]Ybartha K, Domotor E, Lanza F, et al. Identification of thrombin receptors in rat brain capillary end the lial cells[J]. J Cereb Blood Flow Metab,2000,20(1):175-82[202]Kitacka T, Hua Y, Xi G, et al. Delayed argatroban treatment reduces edema in a rat model of intracerebral hemorrhage [J]. Stroke,2002,33(12):3012-8.[203]Abilleira S, Montaner J, Molina CA, et al. Matrix metalloproteinase-9concentration after spontaneous intracerebral hemorrhage [J]. J Neurosurg,2003,99(1):65-70.[204]Alvarez-Sabin J, Delgado P, Abilleira S, et al. Matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage:relationship to clinical and radiological outcome [J]. Stroke,2004,35(6):1316-22.[205]Mutch NJ, Robbie LA, Booth NA. Human thrombi contain anabundance of。active thrombin[J]. Thromb Haemost,2001,86(4):1028-34.[206]Di Cera E, Cantwell AM. Determinants of thrombin specificity[J]. Ann NYAcad Sci,2001,936:133-46.[207]Montaner J, Alvarez Sabin J, Molina CA, et al. Matrix metalloproteinase expression is related to to hemorrhagic transformation after cardioembolic stroke [J]. Stroke,2001,32(12):2762-7.[208]Badaut J, Verbavatz JM, Freund Mercier MJ, et al. Presence of aquaporin-4and muscarinic receptors in astrocytes and ependynal cells in rat brain:a clue to a common function [J]. Neurosci Lett,2001,297(3):163-261.[209]Nicchia G P, Frigeri A, Liuzzi G M, et al. Inhibition of aquaporin-4expression in astrcytes by RNA determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes [J]. FASEB J,2003,17(11):1508.[210]Griesdale D E, Honey C R. Aquaporins and brain edema [J]. Surg Neurol,2004,61:418-421.[211]Tang Y, Cai D, Chen Y, Thrombin inhibits aquaporin4expression through protein kinase C-dependent pathway in cultured astrocytes [J]. JM Neurosci,2007,31(1):83-93.[212]Kaufmann, Zieger M, et al. The two receptor system PAR-1/PAR-4mediates alpha-thrombin-induced Ca+(i)mobilization in human astrocytoma cells[J]. J Cancer Res Clin Oncol,2000,126(2):[213]Xi G, Hua Y, Bhasin R R, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood-brain barrier integrity[J]. Stroke,2001,32:2932-8.[214]Striggow F, RieK M, Breder J, et al. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations [J]. Proc Natl Acad Sci USA,2000,97:2264-9.[215]Nagatsuna T, Nomura S, Suehiro E, et al. Systemic administration of argatroban reduces secondary brain damage in a rat model of intracerebral hemorrhage:histopathological ssessment[J]. Ce arebrovasc Dis,2005,19:192-200.[216]Kitaoka T, Hua Y, Xi G, et al. Effect of delayed argatroban treat-ment on intracerebral hemorrhage-induced edema in the rat [J]. Acta Neurochir Suppl,2003,86:457-61.[217]Gorlach A, Diebold I, Schini-Kerth VB, et al. Thrombin activates the hypoxia-inducible factor-1signaling pathway in vascular smooth muscle cells:Role of the p22(phox)-containing NADPH oxidase[J]. Circ Res,2001,89(1):47-54.[218]Jiang Y, Wu J, Hua Y et al. Thrombin-receptor activation and thrombin-induced brain tolerance [J]. J Cereb Blood Flow Metab,2002,22:404-10.[219]Liu W H, Chen X M, Fu B. Thrombin stimulates MMP-9mRNA expression through AP-1pathway in human mesangial cells [J]. Acta Pharmacol Sin,2000,21(7):641-5.[220]Kenya Kawakita, Nobuy Uki Kawai, Yasuhiro Kuroda, Susumu Yasashita, and SeigoNaga. Expre-??ssion of Matrix Metalloproteinse-9in Thrombin-Induced Brain Edemation in Rats [J]. Journal of Stroke and Cerebro vaseular Diseases,2006,3(15):88-95.[221]Sharp ER, Bergeron M, Bemaudin M. Hypoxia-inducible factor in brain [J]. Adv ExpMed Biol,2001,502:273-91.[222]Chevez J C, Lamanna J C. Actication of hypoxia-inducible factor-1in the rest cerebral cortex after transient global ischemia:potential role insulin like growth factor-la [J]. J Neurosci,2002,22(20):8922-31.[223]Bemaudin M, Nedelec A S, Divoux D, et al. Normobaric hypoxia induces tolerance to focal cerebral ischemia in association with all increased expression of hypoxia-inducible factor-1and its target genes, erythropoietin in and VEGF in the adult mouse brain [J]. J Cereb Blood Flow Metab,2002,22(47):393-403.[224]Marti H J, Bemaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia[J]. Am J Pathot,2000,156(3):965-76.[225]Demougeot C, Van Hoecke M, et al. Cytoprotective efficacy and mechanisms of the liposoluble iton chelator2,2-dipyridyl in the rat photo thrombotic ischemic stroke model[J]. Pharmacol Exp Ther2004,3:1080-7.[226]Chandel N S, McClintock D S, Feliciano C E, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia:a mechanism of O2sensing [J]. J Biol Chem,2000,275(33):25130-8.[227]Liu Q, Berchner-Pfannschmidt U, Moller U, et al. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression [J]. Proc Nail Acad Sci USA,2004,9(5).[228]Helminger G, Yuan F, Dellium M, et al. Interstitial PH and PO2gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation [J]. NatlMed,1997,3:177-82.[229]Schumacker PT. Hypoxia-inducible factor-1(HIF-1)[J]. Crit Care Med,2005,33(12):4232-51.[230]Berra E, Pages G. Pouyssegur J1MAP kinases and hypoxia in the control of VEGF expression [J]. Cancer Metastasis Rev,2000,19(1/2):139-45.[231]Zhang CP. Characteristics of neural stemcels expanded in lowered oxygen and the potential role of hypoxia-inducible factor-la[J]. J Neurosignals,2007,15(5):259-65.[232]Semenza GL. HIF-1:mediator of physiological and pathophysiological response to hypoxia[J]. J App J Physiol,2000,88(2):1474-80.[233]Piret, Mottor D, Raes M, et al. Is HIF-1alpha a proo all antiapoptotic protein7[J]. Biochem Pharmacol,2002,64(5-6):889-92.[234]Huang LE, BunnHF. Hypoxia-indueible factor and its biomedicel relevanee[J]. J BiolChem,2003,278(22):19575-8.[235]Hirota K. Hypoxia-indueible factor1, amaster transcription factor of cellular hypoxic gene expression[J]. J Anesth,2002,16(2):150-9.[236]Hammond EM, Giaccia A J. The role Of p53in hypoxia-induced apoptosis[J]. Biochem Biolphys Ras Commun,2005,331(3):718-25.[237]Papandreou I, Cairns R A, Fontana L, et al. HIF-I mediates adaptation to hypoxia by actively down regulating mitechondrial oxygen consumption [J]. Cell Metab,2006,3(3):187-97.[238]Hammond E M, Giaccia A J. The role of p53in hypoxia-induced apoptosis[J]. Biochem Biolphys Ras Commun,2005,331(3):718-25.[239]Chen W, Ostrowski R P, Obenaus A, et al. Prodeath or prosurvival:two facets of hypoxia inducible fator-1in perinatal brain in jury [J]. Exp Neurol,2009,16:7-15.[240]Matsuda T, Abe T, Wu J L, et al. Hypoxia-inducible factor-1DNA induced angiog gnesis in a rat cerebral ischemia model[J]. Neurol Res,2005,27(5):503-8.[241]Liu J, Narasimhan P, Yu F, et al. Neumprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and eythropoietin[J]. stoke,2005,36(6):1264-9.[242]Helton R, Cui J, Scheel J R, et al. Brain-specific knock-ore Of hypoxia-inducible factor-1alpha reduce rather than increases hypoxic-ischemic damage[J]. J Neurosei,2005,25(16):4099-107.[243]Gorlach A, Diebold I, Schini-Kerth VB, et al. Thrombin activates the hypoxia-inducible acor-1signaling pathway in vascular smooth muscle cells:Role of the p22(phox)-containing NADPH oxidased[J]. Cire Res,2001,89(1):47-54.[244]Wang G L, Semenza G L. General involvement of hypoxiq-inducible factor1in transcription response to hypoxia. Proc Natl Acad Sci USA,1993,90(9):4304-8.[245]Jung YS, Isaacs JS, Lee S, et al. IL-lbeta mediated up regulation of HIF-1alpha via an NF-Kappa B/COX-2pathway identifies HIF-1a as a critical link between inflammation and oncogensis [J]. FASEB J,2003,17(14):2115-7.[246]Hua Y, Keep R F, Hoff J T, et al. Thrombin preconditioning attenuates brain edema induced by erythrocytes and iron [J]. J Cereb Blood Flow Metab,2003,23:1448-54.[247]Semenza G L. HIF-land tumor progression:Path ophysiology and the rapeuties [J]. Trends Mol Med,2002,8(4):562-7.[248]Lauzier M C, Michaud M D, Dery M A, et al. HIF-1a activation during tumor progression: implications and eonsequenees [J]. Bull Cancer,2006,93(4):349-56.[249]Tetsuhiro Higashida. The role of hypoxia-inducible factor-la, aquaporin-4, and matrix metallopro-??teinase-9in blood-brain barrier disruption and brain edema after traumatic brain injury [J]. Neurosurg,2011,114:92-101.[250]Planas AM, Sole S, Justicia C, et al. Expression and activation of matrix metalloproteinase-2and-9in rat brain after transient focal cerebral ischemia [J]. Neurobiol Dis,2001,8(5):833-46.[251]Gasche Y Cop in J L, Sugawara T, et al. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood. brain barrier disruption after transient focal cerebral ischemia[J]. Cereb Blood Flow Metab,2001,21(12):1393-1400.[252]Xue M, Hollenberg M D, Yong V W. Combination of thrombin and matrix metalloproteinase-9exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice [J]. Neurosci,200626(40):10281-91.[253]Liebetran M, Burggraf D, Wunderlich N, et al. ACE inhibition reduces activity of the plasminogen/plasmin and MMP systems in the brain of spontaneous hypertensive stroke-prone rats [J]. Neurosei Lett,2005,376:205-9.[254]Zhao C H, Ling Z D, Desai B S, et al. Minocyeline and TNF-a knockout attenuatesneunro inflammation and prevents blood-brain barrier(BBB)leak age following MPTP treatment [J]. Experimental Neurology,2006,198(2):597-602.[255]Nguyen j, Gogusev J, Knapnougel P, et al. Protein tyresine kinase and p38MAP kinase pathways am involved in stimulation of matrix metalloproteinase-9by TNF-a in human monocytes[J]. Immu-nology Letters,2006,106(1):34-41.[256]Lee J G, Lee S H, Park D W, et al. Phosphatidic acid as a regulator of matrix metalloproteinase-9expression via the TNF-2007[J]. FEBS Lett,2007,581(4):787-93.[257]Wang Jian。Tsirka S. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral hemorrhage [J]. Brain,2005,128:1622-33.[258]Hu Q, Chen C, Yan J, et al. Therapeutic application of gene silencing MMP-9in a middle cerebral artery occlusion-induced focal ischemia rat model [J]. Exp Neurol,2009,216(1):35-46.[259]Akamatsu Y, Saito A, Fujimura M, et al. Stachybotrys microspora triprenyl phenol-7, a novel fibrinolytic agent, suppresses superoxide production, matrix metalloproteinase-9expression, and thereby attenuates is chemia/reperfusion injury in rat brain [J]. Neurosci Lett,2011,503(2):110-4.[260]Abilleira S, Montaner J, Molina CA, et al. Matrix metalloproteinase-9concentration after spontaneous intracerebral hemorrhage [J]. J Neurosurg,2003,99(1):65-70.[261]J Malemud C J. Matrix metalloproteinases(MMPs)in health and disease:Jan overview [J]. Front Biosei,2006,11(1):1696-1701.[262]Alvarez-Sabin J, Delgado P, Abilleira S, et al. Temporal profile of matrix metalloproteinases and their inhibitom after spontaneous intracerebral hemorrhage:relationship to clinical and radiological??outcome[J]. Stroke,2004,35(6):1316-22.[263]Wang J, Tsirka S. Neuro protection by inhibition of matrix metalloproteinases in a mouse model of intracerebral hemorrhage [J]. Brain,2005,128:1622-43.[264]Lee ST, Chu K, Jung K H, et al. Memantine reduces hematoma expansion in experimental intracerebral hemorrhage, resulting in functional improvement[J]. Cereb Blood Flow Metab,2006,26:536-41.[265]Kitaka T, Hua Y, Xi G, et al. Delayed argatroban treatment reduces edema in a ratmodel of Intracerebral hemorrhage [J]. Stroke,2002,33:3012.[266]Rvera S, Ogier C, Jourquin J, et al. Gelatinase B TIMP-1are regulated in a cell and time-dependent manner in association with neuronal death and glial reaetivity after global forebrain ischemia [J]. EurJ Neurosei,2002,15(1):19-32.[267]Abilleira S, Montaner J, Molina CA, et al. Matrix metalloproteinase concentration after spontaneous intracerebral hemorrhage [J]. J Neurosurg,2003,99:65-70.[268]T Sopanoglou N E, Maragoudakis M E. Role of thrombin in angiogenesis and tumor progression-[J]. Semin Thromb Hemost,2004,30(1):63-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700