差异表达小RNA及其下游靶基因与胃癌淋巴结转移的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过比较胃癌原发灶与配对淋巴结转移灶中小RNA表达谱,寻找差异表达小RNA,并检测其在胃癌原发灶中的表达量,研究差异表达小RNA与胃癌淋巴结转移的关系。最后通过生物信息学方法预测其靶基因,研究小RNA参与胃癌淋巴结转移的下游通路,旨在为胃癌淋巴结转移机制研究探寻潜在的靶基因。
     一、激光捕获显微切割纯化肿瘤与RNA质检体系的建立
     目的:建立激光显微切割纯化肿瘤与微量RNA提取、质检的标准流程,为后续实验提供质量可靠的RNA标本。方法:使用紫外分光光度仪、琼脂糖凝胶电泳、real-time PCR检测不同离体时间正常胃粘膜中RNA降解的情况。选取5例胃癌原发灶及配对淋巴结转移灶,使用激光捕获显微切割获得纯化肿瘤标本,紫外分光光度仪、琼脂糖凝胶电泳、Agilent2100生物分析仪检测纯化标本的RNA质量。结果:抽提自离体时间分别为0’,15’,30’,60’,120’,240’的胃正常粘膜中的总RNA未见明显降解;miR-125b、U6、18S和GAPDH在0’和240’两组中的表达量无明显差异。激光捕获显微切割8um厚切片10mm2能获得606-1038ng的总RNA量,激光捕获显微切割标本中存在总RNA降解。Agilent2100生物分析仪检测见激光捕获显微切割标本中总RNA降解,但小RNA水平未见明显降解。结论:离体时间在240’内的正常胃粘膜中总RNA无明显降解;总RNA水平的降解并不指示小RNA水平的降解;激光捕获显微切割所获总RNA质与量满足后续实验要求。
     二、胃癌原发灶与淋巴结转移灶间差异表达小RNA筛选及其与淋巴结转移的关系分析
     目的:寻找胃癌原发灶与配对淋巴结转移灶间差异表达的小RNA,研究差异表达小RNA在胃癌组织标本中的表达情况及其与淋巴结转移的关系。方法:使用小RNA芯片检测5例胃癌原发灶与配对淋巴结转移灶,寻找差异表达的小RNA。使用Stem-loop RT-PCR检测33例胃癌患者术后标本中差异表达小RNA的表达情况,并统计其表达与淋巴结转移的关系。结果:小RNA芯片共检测到5个表达有统计学差异的小RNA,相对原发灶,miR-24-1*、miR-510、miR-1284在淋巴结转移灶中低表达,miR-10a、miR-1259在淋巴结转移灶中高表达。miR-10a、miR-24-1*、miR-510在33例胃癌原发灶中的表达量检测显示,miR-10a在伴有淋巴结转移的原发灶中的表达量低于不伴淋巴结转移的(p=0.047),但在伴淋巴结转移的原发灶中,miR-10a表达量与淋巴结转移程度无相关性。结论:在胃癌原发灶与淋巴结转移灶中检测到miR-10a、miR-24-1*、miR-510、miR-1259、miR-1284等5个差异表达小RNA,其中miR-10a在伴淋巴结转移的胃癌原发灶中较不伴淋巴结转移的表达低,但其表达量与淋巴结转移程度无相关性。
     三、差异表达小RNA的靶基因预测与筛选
     目的:预测差异表达小RNA的靶基因,研究小RNA参与胃癌淋巴结转移的下游通路,为后续研究小RNA调控的胃癌淋巴结转移通路提供潜在分子目标。方法:使用TargetScan预测miR-10a、miR-24-1*和miR-510的靶基因,检索已发表的胃癌淋巴结转移相关基因谱或蛋白质谱相关研究,对比优化小RNA的靶基因预测。结果:使用TargetScan分别为miR-10a、miR-24-1*和miR-510预测到186个、438个和62个靶基因。结合已发表文献,进一步筛选得miR-10a靶基因CDK6、TPM4;miR-24-1*靶基因PURA;miR-510靶基因EGR1。结论:经生物信息学方法获得miR-10a靶基因CDK6、TPM4;miR-24-1*靶基因PURA;miR-510靶基因EGR1。
     四、小结
     经激光捕获显微切割获得的RNA标本质与量均满足后续小RNA研究的要求。小RNA芯片检测到胃癌原发灶与淋巴结转移灶间miR-10a、miR-24-1*、miR-510、miR-1259、miR-1284等5个差异表达小RNA,其中miR-10a在胃癌原发灶中的表达量与有无淋巴结转移有关,但与淋巴结转移程度无关。生物信息学研究获得miR-10a靶基因CDK6、TPM4;miR-24-1*靶基因PURA;miR-510靶基因EGR1。这四个基因可作为后续胃癌淋巴结转移机制研究的目标,其中miR-10a介导的通路可作为重点关注的对象。
In this study of gastric cancer, we compare the primary gastric cancer and corresponding lymph node metastases in microRNA expression profiling to find the differential expression of microRNA. Meanwhile, we detect the lymph node metastasis predicting capbility of differential expression microRNA. Finally, adoption of bioinformatics predicts differential expression microRNA target genes to find out the candidate target genes suitable for follow up research.
     Part One:The establishment of tumor tissue purification and RNA quality control system
     Objective:To establish the standard process of tumor tissue purification by laser microdissection and RNA extraction and quality control system. Methods:Detect normal gastric mucosa RNA in vitro degradation by UV spectrophotometer, agarose gel electrophoresis, real-time PCR. Select five cases of primary gastric cancer and corresponding lymph node metastases, purify the tumor tissue by laser microdissection and test RNA quality by UV spectrophotometer, agarose gel electrophoresis and Agilent2100 bio-analyzer. Results:According to the time in vitro, six groups were set in 0′,15′,30′,60′,120′,240′, respectively. No obvious RNA degradation was found by UV spectrophotometry and agarose gel electrophoresis.The real-time PCR detection found expression of miR-21, U6,18S, and GAPDH at 0′and 240′were no significant difference. UV spectrophotometer and agarose gel electrophoresis shown the existence of total RNA degradation in laser microdissected samples. Agilent2100 bio-analyzer indicated total RNA degradation, but no significant degradation of the microRNA. Conclusions:Within the in vitro time of 240′, the normal gastric mucosa had no significant degradation of total RNA. The degradation of total RNA does not indicate the degradation of microRNA. Laser microdissection derived total RNA quality and quantity meets the follow-up experiments'requirements.
     Part two:Microarray analysis of microRNA expression and validation in a gastric cancer cohort
     Objective:Search for different expressing microRNA between gastric cancer primary tumor and corresponding lymph node metastasis. Study the differential expressed microRNAs in a gastric cancer cohort. Methods:The use of microRNA microarray tested five cases of primary gastric cancer and corresponding lymph node metastases to find differential expression of microRNA. The use of stem-loop RT-PCR detected differential expressed microRNAs in a cohort with 33 cases of gastric cancer, and found the correlation between differential expressed microRNAs and lymph node metastasis. Results:Microarray had found five significant differential expressed microRNAs including miR-24-1*, miR-510, miR-1284 which were down-expressed in metastases, and miR-10a, miR-1259 which were up-expressed in metastases. Stem-loop RT-PCR found miR-10a expression is significantly correlated with metastasis, but the expression level is not correlated with the amount of metastatic lymph nodes. Conclusions:we have found five significant differential expressed microRNAs including miR-10a, miR-24-1*, miR-510, miR-1259, miR-1284. miR-10a expression is significantly correlated with metastasis, but the expression level is not correlated with the amount of metastatic lymph nodes.
     Part Three:Targets prediction of differential expression microRNAs
     Objective:Predict the target genes of differential expressed microRNAs to provide the candidates of further research. Methods:The use of TargetScan to predict the target genes of miR-10a、miR-24-1*、miR-510 respectively. Search for published dates from gastric cancer gene expression profiling or proteomics studies to improve the prediction efficiency. Results:We have found 186,438,62 genes of miR-10a, miR-24-1*, miR-510 by TargetScan respectively. Combined the published date, we further filter out CDK6 and TPM4 as miR-10a's target gene, PURA as miR-24-1*'s and EGR1 as mi-510's. Conclusions:we filter out CDK6 and TPM4 as miR-10a's target gene, PURA as miR-24-1*'s and EGR1 as mi-510's by bioinformatics.
     Part four:Summary
     Laser microdissection derived total RNA quality and quantity meets the follow-up experiments'requirements. five significant differential expressed microRNAs were found in microarray analysis, including miR-10a, miR-24-1*, miR-510, miR-1259, miR-1284. miR-10a expression is significantly correlated with metastasis, but the expression level is not correlated with the amount of metastatic lymph nodes. CDK6 and TPM4 is found to be miR-10a's target gene by bioinformatics, so as PURA to miR-24-1* and EGR1 to mi-510. These four genes can be candidates in following research.
引文
1. Crawford NP, Hunter KW. New perspectives on hereditary influences in metastatic progression. Trends Genet 2006;22:555-561.
    2. Hunter K. Host genetics influence tumour metastasis. Nat Rev Cancer 2006;6:141-146.
    3. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031-7.
    4. Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with anti-sense complementarity to lin-14. Cell 1993;75:843-54.
    5. Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat cell Biol 2008;10:202-10.
    6. Otsuka Y, Ichikawa Y, Kunisaki C, et al. Correlating purity by microdissection with gene expression in gastric cancer tissue. Scand J Clin Lab Invest 2007; 67:367-79.
    7. Shibata D, Hawes D, Li ZH, et al. Specific genetic analysis of microscopic tissue after selective ultraviolet radiation fractionation and the polymerase chain reaction. Am J Pathol 1992;141:539-43.
    8. Becher I, Becker KF, Rohrl MH, et al. Single-cell mutation analysis of tumors from stained histologic slides. Lab Invest 1996;75:801-7.
    9. Whetsell L, Maw G, Nadon N, et al. Polymerse chain reaction microanalysis of tumors from stained histological slides. Oncogene 1992;7:2355-61.
    10. Going JJ, Lamb RF. Pratical histological microdissection for PCR analysis. J Pathol 1996; 179:121-4.
    11. Bohm M, Wieland I, Schutze K, et al. Microbeam MOMeNT:non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol 1997;151:63-7.
    12. Emmert-Buck MR, Bonner RF, Smith PD, et al. Laser capture microdissection. Science 1996;274:998-1001.
    13. Bonner RF, Emmert-Buck M, Cole K, et al. Laser capture microdissection: molecular analysis of tissue. Science 1997;278:1481-3.
    14. Doleshal M, Magotra AA, Choudhury B, et al. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedd tissues. J Mol Diagn 2008; 10:203-11.
    15. Xi YG, Nakajima G, Gavin E, et al. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007; 13:1668-74.
    16. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase:tools for microRNA genomics. NAR 2008;36(Database Issue):D154-8.
    17. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism and function. Cell 2004;116:281-87.
    18. Lira LP,Lau NC,Garrett-Engele P,et al. Microarray analysis shows that some microRNAs downregulate large number of target mRNAs. Nature 2005,433:769-773.
    19. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and downregulation of microRNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9.
    20. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33.
    21. Schetter AJ, Leung SY, Sohn JJ, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008;299:425-36.
    22. Lipshutz RJ, Morris D, Chee M, et al. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques 1995; 19:442-7.
    23. Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467-70.
    24. Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Sicence 1977;197:893-5.
    25. Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms:origins and implication. Science 1982;217:998-1003.
    26. Eccles SA, Heckford SE, Alexander P, et al. Effect of cyclosporine A on the growth and spontaneous metastasis of syngeneic animal tumours. Br J Cancer 1980;42:252-9.
    27. Van de Vijver MJ, He YD, vant's Veer LJ, et al. A gene-expression signature as a predictor of survival in breat cancer. N Engl J Med 2002;347:1999-2009.
    28. van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530-6.
    29. Feng YM, Sun BC, Li XQ, et al. Differetially expressed genes between primary cancer and paired lymph node metastases predict clinical outcome of node-positive breast cancer patients. Breast Cancer Res Treat 2007; 103:319-29.
    30. Vecchi M, Confalonieri S, Nuciforo P, et al. Breast cancer metastases are molecularly distinct from their primary tumors. Oncogene 2008;27:2148-58.
    31. Britta W, Annuska G, Lodewyk W, et al. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci U S A 2003;100:15901-5.
    32. Mika S, David T. Gene expression profiling of human lymph node metastases and matched primary breast carcinomas:clinical implications. Mol Oncol 2007;1:172-180.
    33. Weigelt B, Wessels LFA, Bosma AJ, et al. No common denominator for breast cancer lymph node metastasis. Brit J Cancer 2005;93:924-32.
    34. Hao XS, Sun BC, Hu LM, et al. Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 2004; 100: 1110-22.
    35. Lahdesmaki H, Hao XS, S BC, et al. Distinguishing key biological pathways between primary breast cancers and their lymph node metastases by gen function-based clustering analysis. Int J Oncol 2004;24:1589-96.
    36. Schmidt-Kittler O, Ragg T, Daskalakis A, et al. From latent disseminated cells to overt metastasis:genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 2003;100:7737-42.
    37. Gangnus R, Langer S, Breit E, et al. Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients. Clin Cancer Res 2004;10:3457-64.
    38. Wang L, Zhu JS, Song MQ, et al. Comparison of gene expression profiles between primary tumor and metastatic lesions in gastric cancer patients using laser microdissection and cDNA microarray. World J Gastroenterol 2006; 12:6949-54.
    39. Mori M, Mimori K, Yoshikawa Y, et al. Analysis of the gene-expression profile regarding the progression of human gastric carcinoma. Surgery 2002; 131:39-47.
    40. Ji JF, Chen X, Leung Y, et al. Comprehesive analysis of the gene expression profiles in human gastric cancer cell lines. Oncogene 2002;21:6549-56.
    41. Hippo Y, Taniguchi H, Tsutsumi Shuichi, et al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res 2002;62:233-240.
    42. Lau NC, Lim LP, Weinstein EG, et al. An abundant class of tiny RNAs with probable regulatory roles in caenorhabaditis elegans. Science 2001;294:858-62.
    43. Krichevsky AM, King KS, Donahue CP, et al. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003; 9:1274-81.
    44. Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA 2004; 101:9740-4.
    45. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 [-Delta Delta C(T)] Method. Methods 2001;25:402-8.
    46. Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR. Genome Res 1996; 6:986-94.
    47. Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by Stem-loop RT-PCR. NAR 2005;33:e179.
    48. Sirotkin AV, Laukova M, Ovcharenko D, et al. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010;223:49-56.
    49. Veerla S, Lindgern D, Kvist A, et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 2009;124:2236-42.
    50. Weiss FU, Marques IJ, Woltering JM, et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastastic behavior of pancreatic cancer. Gastroenterology 2009;137:2136-45.
    51. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008;30:460-71.
    52. Huang H, Xie C, Sun X, et al. Mir-10a contributes to RA-induced smooth muscle cell differentiation. J Biol Chem 2010 (epub ahead of print).
    53. Enright AJ, John B, Gaul U, et al. MicroRNA targets in Drosophila. Genome Biol 2003;5:R1.
    54. Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003;115:787-98.
    55. Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA target duplexes. RNA 2004; 10:1507-17
    56. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nature Genet 2005;37:495-500.
    57. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 2006;126:1203-17.
    58. Iovino N, Unnerstall U, Gaul U, et al. The role fo site accessibility in microRNA target recognition. Nat Genet 2007;39:1278-84.
    59. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often anked by adenosines indicates that thousands of human genes are MicroRNA targets. Cell 2005;120:15-20.
    60. Andrew G, Kyle KF, Wendy KJ. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell 2007;27:91-105.
    61. Ritachie W, Flamant S, Rasko J. Predicting microRNA targets and functions:traps for the unway. Nat Methods 2009;6:397-8.
    62. Lucas JJ, Domenico J, Gelfand EW. Cyclin-dependent kinase 6 inhibits proliferation of human mammary epithelial cells. Mol Cancer Res 2004;2:105-14.
    63. Mendrzyk F, Radlwimmer B, Joos S, et al. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol 2005;23:8853-62.
    64. Lim JT, Mansukhani M, Weinstein IB. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells. Proc Natl Acad Sci U S A 2005;102:5156-61.
    65. Van Dekken H, van Marion R, vissers KJ, et al. Molecular dissection of the chromosome band 7q21 amplicon in gastroesophageal junction adenocarcinomas identifies cyclin-dependent kinase 6 at both genomic and protein expression levels. Genes Chromosomes Cancer 2008;47:649-56.
    66. Lee KH, Lotterman C, Karikari C, et al. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009;9:293-301.
    67. Jazii FR, Najafi Z, Malezadeh R, et al. Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006;28:7104-12.
    68. Du XL, Hu H, Lin DC, et al. Proteomic profiling of proteins dysregulated in Chinese esophageal squamous cell carcinoma. J Mol Med 2007;85:863-75.
    69. Qi Y, Chiu JF, Wang L, et al. Comparative proteomic analysis of esophageal squamous cell carcinoma. Proteomics 2005;5:2960-71.
    70. Li DQ, Wang L, Fei F, et al. Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 2006;6:3352-68.
    71. Siewert JR, Bottcher K, Stein HJ, et al. Relevant prognostic factor in gastric cancer:ten-year results of the German Gastric cancer study. Ann Surg 1998;340:908-914.
    72. Kim DY, Joo JK, Seo KW, et al. T4 gastric carcinoma:The benefit of non-curative resection. ANZ J Surg 2006;76:453-457.
    73. Onate-Ocana LF, Aiello-Crocifoglio V, Mondragon-Sanchez R, et al. Survival benefit of D2 lympadenectomy in patients with gastric adenocarcinoma. Ann Surg Oncol 2000;7:210-217.
    74. de Gara CJ, Hanson J, Hamilton S. A population-based study of tumor-node relationship, resection margins, and surgeon volume on gastric cancer survival. Am J Surg 2003;186:23-27.
    75. Tahara E. Molecular mechanism of stomach caricinogenesis. J Cancer Res Clin Oncol 1993;119:265-72.
    76. Yasui W, Yokozaki H, Fujimoto J, et al. Genetic and epigenetic alteration in multistep carcinogenesis of the stomach. J Gastroenterol 2000;35:111-5.
    77. Yokozaki H, Yasui W, Tahara E. Genetic and epigenetic changes in stomach cancer. Int Rev Cytol 2001;204:49-95.
    78. Yasui w, Oue N, Kuniyasu H, et al. Molecular diagnosis of gastric cancer:present and future. Gastric Cancer 2001;4:113-121.
    79. Tamura G. Genetic and epigenetic alterations of tumor suppressor and tumor-related genes in gastric cancer. Histol Histopathol 2002; 17:323-329.
    80. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000;406:747-52.
    81. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patters of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869-74.
    82. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003;100:8418-23.
    83. Rouzier R, Perous CM, Symmans WF, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005; 11:5678-85.
    84. Smid M, Wang YX, Zhang Y, et al. Subtypes of breast cancer show preferential site of replase. Cancer Res 2008;68:3108-14.
    85. Landemaine T, Jackson A, Bellahcene A, et al. A Six-Gene signature Predicting Breast Cancer Lung Metastasis. Cancer Res 2008;68:6092-99.
    86. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031-7.
    87. Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with anti-sense complementarity to lin-14. Cell 1993;75:843-54.
    88. Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation dfine restriction and potential of neuronal progenitors. Molecular Cell 2008;
    89. Komashko VM, Acevedo LG, Squazzo SL, et al. Using ChIP-chip technology to reveal common principles of transcriptional repression in normal and cancer cells. Genome Research 2008;
    90. Sharp A, Hansen S, Selzer RR, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 2006;38:1038-42.
    91. Bowers RR, Kim JW, Otto TC, et al. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation:Role of the BMP-4 gene. Proc Natl Acad Sci U S A 2006; 103:13022-7.
    92. Ray S, Britschgi M, Herbert C, et al. Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nature Medicine 2007; 13:1359-62.
    93. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8.
    1. He L, Hannon GJ. MicroRNAs:small RNAswith a big role in gene regulation. Nat Rev Genet,2004,5 (7):522-531.
    2. Kento A, Mendell JT. A small p iece in the cancer puzzle:microRNAs as tumor supp ressors and oncogenes. Oncogene,2006,25 (46):6188-6196.
    3. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75 (5): 843-854.
    4. Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer Res,2005, 65 (9):3509-3512
    5. Li SC, Tang P, Lin WC. Intronic microRNA:discoverry and biological implications. DNA Cell Biol,2007,26(4):195-207.
    6. Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP. Nat Cell Biol,2008,10(5):593-601.
    7. Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migrationby direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem,2008,283(22):14910-14914.
    8. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep,2008,9(6):521-522.
    9. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF et al. (2008). A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846-7854.
    10. Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the ransforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol,2008,28(22):6773-6784.
    11. Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell,2009,137(6):1032-1046.
    12. Li XF, Yan PJ, Shao ZM. Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene,2009,28:3937-3948.
    13. Salvi A, Sabelli C, Moncini S, Venturin M, Arici B, Riva P et al. (2009). MicroRNA-23b mediates urokinase and c-met downmodulation and a decreased migration of human hepatocellular carcinoma cells. FEBS J,2009,276: 2966-2982.
    14. Liu X, Yu J, Jiang L, Wang A, Shi F, Ye H et al. MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics,6:131-139.
    15. Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S et al. microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 2009,1269:158-165.
    16. Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR. (2009). Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res,2009,69:1279-1283.
    17. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-lOb in breast cancer. Nature,2007,449(7163):682-688.
    18. Schuldt A. Micromanaging metastasis. Nat Cell Biol,2007,9(10):1121.
    19. Steeg PS. Cancer:micromanagement of metastasis. Nature,2007, 499(7163):671-673.
    20. Edmonds MD, Hurst DR, Vaidya KS, Stafford LJ, Chen D, Welch DR. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. Int J Cancer 2009,125:1778-1785.
    21. Gee HE, Camps C, Buffa FM, Colella S, Sheldon H, Gleadle JM et al. MicroRNA-10b and breast cancer metastasis. Nature,2008,455:E8-E9; author reply E9.
    22. Krichevsky AM, Gabriely G. miR-21:a small multi-faceted RNA. J Cell Mol Med,2009,13:39-53.
    23. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol,2008,28:5369-5380.
    24. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene,2007, 26(19):2799-2803.
    25. Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem,2007,282(19):14328-14336.
    26. Yan LX, Huang XF, Shao Q, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA,2008,14(11):2348-2360.
    27. Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res,2008,18(3):350-359.
    28. Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21 (miR-21) posttranscriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene,2008, 27(15):2128-2136.
    29. Sayed D, Rane S, Lypowy J, et al. MicroRNA-21 targets sprouty2 and promotes cellular outgrowths. Mol Biol Cell,2008,19(8):3272-3282.
    30. Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocel-lular cancer. Gastroenterology,2007,133(2):647-658.
    31. Roldo C, Missiaglia E, Hagan JP, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol,2006,24(29):4677-4684.
    32. Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol,2008,10(2): 202-210.
    33. Wang G, Mao W, Zheng S. MicroRNA-183 regulates Ezrin expression in lung cancer cells. FEBS Lett,2008,582:3663-3668.
    34. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 2008,451:147-152.
    35. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced Expression of the Let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival. Cancer Res,2004,64 (11):3753-3756.
    36. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng Aet al. RAS is regulated by the let-7 microRNA family. Cell,2005,120:635-647.
    37. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science,2007,315:1576-1579.
    38. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet,2008,40: 43-50.
    39. Watanabe S, Ueda Y, Akaboshi S, Hino Y, Sekita Y, Nakao M. (2009). HMGA2 maintains oncogenic RAS-induced epithelial mesenchymal transition in human pancreatic cancer cells. Am J Pathol,2009,174:854-868.
    40. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC induced growth in Burkitt lymphoma cells. Cancer Res,2007,67:9762-9770.
    41. Lee DY, Deng Z, Wang CH, Yang BB. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA,2007,104:20350-20355.
    42. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood,2008,111:1217-1226.
    43. Kawasaki H, Wadhwa R, Taira K. World of small RNAs:from ribozymes to siRNA and miRNA. Differentiation,2004,72(2-3):58-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700