高效脱硫工程菌的构建及其脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物脱硫具有选择性高、反应条件温和等优点,是实现石油及其产品深度脱硫最有效的技术之一。生物脱硫要实现工业化应用必须提高已有脱硫微生物的脱硫活性。本论文以专一性脱硫菌德氏假单胞菌(Pseudomonas delafieldii)R-8为出发菌株,利用基因工程的手段构建脱硫工程菌,以提高其脱硫活性,旨在为脱硫工程菌的应用奠定基础。
     根据P. delafieldii R-8菌的脱硫操纵子基因序列设计引物,PCR扩增得到了脱硫操纵子,利用pPR9TT穿梭质粒构建了脱硫操纵子表达载体pPR-dsz,转化原始菌R-8得到了一株多拷贝脱硫基因的脱硫工程菌R-8-1,并对其脱硫性能进行了研究。结果表明,在同样的生物催化脱硫反应条件下,工程菌的脱硫活性达到6.25μmol DBT /g dry cell/h,是原始菌R-8的2倍;柴油的脱硫实验结果表明,在12 h内工程菌静息细胞能将柴油中的硫含量从310.8 mg/L降至100.1 mg/ L,脱硫率达到68%,而原始菌R-8为53%。
     R-8菌是一种好氧微生物,为了提高其对氧的利用效率,采用基因工程的手段,将血红蛋白基因在R-8菌中进行异源表达,以期获得生长状况和脱硫活性都得到提高的工程菌。根据透明颤菌(Vitreoscilla)血红蛋白基因(vgb)的序列设计引物,PCR扩增得到vgb,利用pPR9TT穿梭质粒构建血红蛋白基因表达质粒pPR-Pdsz-vgb并电击转化原始菌R-8,获得了重组菌R-8-2。R-8-2菌的CO-差光谱在419 nm处有特征峰出现,表明血红蛋白在脱硫菌中得到了有效表达。在相同培养条件下,工程菌R-8-2和原始菌R-8的生长与脱硫活性比较研究发现,工程菌生长得到了改善,菌体密度比R-8菌提高了20%,脱硫活性达到了原始菌R-8的2.4倍。在柴油脱硫实验中,工程菌能将柴油中的硫含量从320.5 mg/L降至96.6 mg/L,脱硫率达到69.9%,而原始菌R-8为57.2%。
     对两株工程菌的遗传稳定性进行了研究。经过对菌株50代的传代培养研究,结果表明重组质粒pPR-dsz和pPR-Pdsz-vgb分别在两株工程菌R-8-1和R-8-2中均具有良好的遗传稳定性。
     本论文工作获得了两株生长与脱硫活性都得到提高的脱硫工程菌,为进一步利用基因工程的手段改造脱硫微生物提供了理论依据和技术支持,为脱硫工程菌的应用奠定了基础。
Biodesulfurization is one of the most promising techniques for deep desulfurization of petroleum with advantages of high selectivity and mild reaction conditions. The limiting factor is the low activity of the biocatalysts for the commercialization of BDS. The aim of this thesis is to improve the desulfurization activity of the specific desulfurization strain, Pseudomonas delafieldii R-8, using the approaches of genic engineering and establish the base for further application of desulfurization.
     In this study, the dsz operon of Pseudomonas delafieldii R-8 was first cloned into the expressing plasmid (pPR9TT) to construction the recombinant plasmid pPR-dsz, and then reintroduced into strain R-8 to obtain a muti-copy dsz operon engineering strain R-8-1. Compared to the wild-type, strain R-8-1 showed a higher desulfurization activity for dibenzothiophene (DBT). Initial rates of DBT removal by strain R-8-1 were 6.25μmol /g dry cell/h, about 2-fold higher than that for wild-type strain. The recombinant cells were also applied in the desulfurization progress of diesel. It resulted in a 68% reduction of total sulfur from 310.8 mg/L to 100.1 mg/L, whereas only 53% of sulfur was removed by strain R-8. The stability of pPR-dsz in strain R-8-1 had been studied. It indicated that engineering strain has a high genetic stability. These results first obtain a muti-copy dsz operon engineering strain and are helpful for further advance of the biodesulfurization.
     To construct an engineering strain of higher desulfurization activity with Vitreoscilla hemoglobin gene (vgb) and study vgb application to the desulfurization of diesel,we constructed the vgb expressing plasmid, pPR-Pdsz-vgb and transformed by electroporation to Pseudomonas delafieldii R-8, then obtained a genetic engineering strain R-8-2. The results of CO-difference spectrum analysis indicated that the Vitreoscilla hemoglobin (VHb) having biological activity was expressed in strain R-8-2. Compared with the wild-type R-8, the density of strain R-8-2 increased by 20%, and its desulfurization activity is also higher in the lower deliquescence oxygen environment. In the end, about 69.9% of total sulfur in diesel oil was removed by strain R-8-2 from 320.5 mg/L to 96.6 mg/L, whereas only 57.2% of sulfur was removed by strain R-8. The results showed that the desulfurization activity of strain R-8-2 was higher than that of R-8 not only under the hypoxic conditions but also under normal aeration.
     In the thesis, we construct two engineering strains of higher desulfurization activity of P. delafieldii R-8. Furthermore, the work is helpful for further improvement of desulfurization strains and development in biodesulfurization.
引文
1. Ohshiro T, Izumi Y. Microbial desulfurization of organic sulfur compounds in petroleum. Biosci. Biotechnol. Biochem. 1999, 63(1): 1~9.
    2. Kilbane J.J., Jackowski K. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8. Biotechnol. Bioeng. 1992, 40: 1107~1114.
    3. Gallardo M.E. Designing recombinant pseudomonas strains to enhance biodesulfurization. J. Bacteriol.1997, 179(22): 7156~7160.
    4. Gray K.A, Mrachko G.T. Squires C.H. Biodesulfurization of fossil fuels. Curr. Opin.Microbiol. 2003, 6(3): 229~235.
    5. Monticello D.J. Riding the fossil fuel biodesulfurization wave. Chemtech., 1998, 7: 38~45
    6. Grossman M.J., Lee M.K., Prince R.C.. Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl. Environ. Microbiol., 1999, 65(1): 181~188.
    7. Kodama K., Umehara K., Shimizu K.. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agr. Biol. Chem., 1973, 37(1): 45~50.
    8. Kilbane J.J., Sulfur-specific microbial metabolism of organic compounds. Res. Conser. Recycl., 1990, 3: 69~79.
    9. Kilbane J.J., 2nd. Microbial biocatalyst developments to upgrade fossil fuels. Curr.Opin. Biotechnol., 2006, 17(3): 305~314.
    10. Monticello D.J. Biodesulfurization and the upgrading of petroleum distillates. Curr.Opin. Biotechnol., 2000, 11(6): 540~546.
    11. Li J., Feng J., Li Q., Ma C., Yu B., Gao C., Wu G., Xu P. Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B. Bioresour Technol. 2009, 100(9): 2594~2599.
    12. Calzada J., Zamarro M.T., Alcón A., Santos V.E., Díaz E., García J.L., Garcia-Ochoa F. Analysis of dibenzothiophene desulfurization in a recombinant Pseudomonas putida strain. Appl Environ Microbiol. 2009, 75(3): 875~877.
    13. Chen H., Cai Y.B., Zhang W.J., Li W. Methoxylation pathway in biodesulfurization of model organosulfur compounds with Mycobacterium sp.Bioresour Technol. 2009, 100(6): 2085~2087.
    14.李焕杰,余志坚,熊小超,李玉光,李信.脱硫工程菌的构建及其脱硫性能分析.生物工程学报,2008,24(12): 2034~2040.
    15.余志坚,李焕杰,王海胜,李玉光,闫艳春,李信.德氏假单胞R-8菌脱硫的“硫饥饿”诱导机理.应用与环境生物学报,2009,15( 2 ): 235~239.
    16.白雪晶,熊小超,姜声华,刘会洲,李信.脱硫菌Rhodococcus.sp.LY822专一性脱硫活性及相关基因的研究.过程工程学报,2008,8(1): 125~129.
    17.白雪晶.硫酸盐对Rhodococcus sp. LY822脱硫代谢影响的研究及脱硫基因的克隆表达[硕士学位论文] .北京:中国农业科学院研究生院,2007.
    18.姜声华.专一性脱硫菌LY822的分离筛选及脱硫基因工程菌的构建[硕士学位论文].北京:中国农业科学院研究生院, 2006.
    19.刘一倩.专一性脱硫微生物(Gordonia nitida LSSEJ-1)的分离鉴定和dszB基因的克隆及其发酵条件的优化[硕士学位论文].北京:中国农业科学院研究生院,2002.
    20.熊小超.代谢工程在生物脱硫中的应用[博士学位论文].北京:中国科学院过程工程研究所,2007.
    21. Xiong X.C., Xing J.M., Li X., Bai X.J., Li W.L., Li Y.G., Liu H.Z. Enhancement of Biodesulfurization in Two-Liquid Systems by Heterogeneous Expression of Vitreoscilla Hemoglobin. Appl. Environ. Microbiol, 2007, 73(11): 2394~2397.
    22.熊小超,李望良,李信,邢建民,刘会洲.专一性脱硫菌脱硫活性与基因保守性研究.微生物学报. 2005,45(5): 733~737.
    23.熊小超,李信,缑仲轩,李望良,邢建民,黄杰勋,刘会洲.脱硫基因工程菌的构建及应用方法.申请号.200510112988.1.
    24.熊小超,李信,缑仲轩,李望良,邢建民,刘会洲.利用氧化还原酶基因dszD构建脱硫基因工程菌及应用.申请号.200510112986.2.
    25.熊小超,李信,缑仲轩,李望良,邢建民,李玉光,刘会洲.透明颤菌血红蛋白基因在生物脱硫中的应用.申请号.200510112987.7.
    26.姜成英,刘会洲,邢建民,安振涛,陈家镛,李珊,缑仲轩,罗明芳.德氏假单胞菌菌株及其在脱除含硫有机化合物中硫的应用.中国发明专利.申请号:01115921.9.
    27.姜成英,李磊,杨永谭,邢建民,刘会洲,陈家镛.表面活性剂对微生物脱除柴油中有机硫的影响.过程工程学报. 2002,2(2): 122~126.
    28.姜成英,刘会洲,邢建民,缑仲轩,刘会洲,安振涛,陈家镛.短芽孢杆菌菌株及其在脱除含硫有机化合物中的应用.中国专利,ZL 01115920. 0,2001-05-28.
    29.姜成英,邢建民,罗明芳,缑仲轩,刘会洲,安振涛,陈家镛.小球诺卡氏菌菌株及其在脱除化石燃料中有机硫的应用.中国专利,ZL 02155682,2002-12.
    30.缑仲轩.专一性脱硫微生物的菌种筛选研究所,2003.
    36.单国彬.π电子络合吸附及微生物脱硫工艺研究[博士学位论文] .北京:中国科学院过程工程研究所,2005.
    37.邢建民,刘一倩,缑仲轩,刘会洲,李信,罗明芳,刘俊果,李珊,刘会洲,陈家镛,林敏,陈明,安振涛.戈登氏菌及其在脱除含硫化合物中硫的应用.中国专利:ZL021162212.3,2002-05.
    38. Denome S.A.., Olson E.S., Young K.D., Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol., 1993, 59(9): 2837~2843.
    39. Piddington C.S. Kovavevich B. R., Rambosek J.. Sequence and molecular characterizeation of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. J. Bacteriol., 1996, 178, 6409~6418.
    40. Piddington. Sequence and mlecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. Strain IGTS8. Appl.Environ. Microbial. , 1995, 61(2): 468~475.
    41. Ishii Y., Konishi J., Okada H.. Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem. Biophy. Res. Commun., 2000, 270: 81~88.
    42. Ishii Y., Konishi J., Suzuki M.. Cloning and expression of the gene encoding the thermophillic NAD(P)H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2 J. Biosci. Bioeng., 2000, 90: 591~599.
    43. Ohshiro T., Hirata T., Hashimoto I.. Characterization of dibenzothiophene desulfurization reaction by whole cells of Rhodococcus erythropolis H-2 in the presence of hydrocarbon. J. Ferment. Bioeng., 1996, 82(6): 610~612.
    44. Piddington C.S., Kovavevich B.R., Rambosek J. Sequence and molecular characterizeation of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. J. Bacteriol., 1996, 178: 6409~6418.
    45. Piddington.. Sequence and mlecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. Strain IGTS8. Appl Environ Microbial , 1995 , 61(2): 468~475.
    46. Squires . Method of desulfurization of fossil fuel with flavoprotein. US 5985650 , 1999.
    47. David S., Reichmuth.. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxi2 doreductase gene. Biotechnology and Bioengineering , 2000 , 67 (1): 72~79.
    48. Matsui T. ,Hirasawa K., Koizumi K., Maruhashi K., Kurane R. Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotech Lett ,2001, 23: 1715~1718.
    49. Kazuaki H., Yoshitaka I., Morio K., Kenichi K., Kenji M. Improvement of DesulfurizationActivity in Rhodococcus erythropolis KA2-5-1 by Genetic Engineering. Biosci. Biotechnol. Biochem. 2001, 65(2): 239~246.
    50. Watanabe K., Noda K.I., Ohta Y.. Desulfurization of light gas oil by a novel recombinant strain from pseudomonas aeruginosa. Biotechnol. Lett., 2002, 24:897~903.
    51. Reichmuth D.S., Hittle J.L.,Blance H.W..Biodesulfurization of debenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene.Biotechnol Bioeng ,2000 ,67 :72~79.
    52. Li F.L., Xu P., Ma C.Q., Luo L.L., Wang X.S.. Deep desulfurization of hydrodesulfurization -treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS. Microbiol. Lett. ,2003,223: 301~307.
    53. Tao F., Yu B., Xu P., Ma C.Q. Biodesulfurization in Biphasic Systems Containing Organic Solvents. Appl.Environ. Microbial., 2006, 72(7): 4604~4609.
    54. Ma T., Li G.Q., Li J., Liang F.L., Liu R.L. Desulfurization of dibenzothiophene by Bacillus subtilis recombinants carrying dszABC and dszD genes.Biotechnol Lett.(2006)28:1095~1100.
    55. Wakabayashi S., Matsubara H., Webster D.A.. Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature, 1986, 322: 481~483.
    56. Kuhse J., Phler A.. Conserved sequence motifs in the untranslated 3′end of leghemoglobin transcripts isolated from broadbean nodules. PlantSc,i 1987, 49: 137~143.
    57. Joshi M., Mande S., Dikshit K. Applied and environment microbiology, 1998, 64 (8):2220~2228.
    58. Sambrook J., Fritsch E.F., Maniatis T..分子克隆实验指南.金冬雁,黎孟枫译.第二版.北京科学出版社. 1999,6~69.
    59. Caro A., Boltes K., Leton P., Garcia-Calvo E.. Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media. Chemosphere. 2008, 73(5): 663~669.
    60. Shavandi M., Sadeghizadeh M., Zomorodipour A., Khajeh K. Biodesulfurization of dibenzothiophene by recombinant Gordonia alkanivorans RIPI90A. Bioresour Technol. 2009, 100(1): 475~479.
    61. Yan H., Sun X., Xu Q., Ma Z., Xiao C., Jun N. Effects of nicotinamide and riboflavin on the biodesulfurization activity of dibenzothiophene by Rhodococcus erythropolis USTB-03.J Environ Sci (China). 2008, 20(5): 613~618.
    62. Li G.Q., Li S.S., Qu S.W., Liu Q.K., Ma T., Zhu L., Liang F.L., Liu R.L. Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol Lett. 2008, 30(10): 1759~1764.
    63. Li G.Q., Li S.S., Zhang M.L., Wang J., Zhu L., Liang F.L., Liu R.L., Ma T.. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol. 2008, 74(4): 971~976.
    64. Caro A., Boltes K., Letón P., García-Calvo E. Description of by-product inhibiton effects onbiodesulfurization of dibenzothiophene in biphasic media. Biodegradation. 2008, 19(4):599~611.
    65. Li Y.G., Xing J.M., Xiong X.C., Li W.L., Gao H.S., Liu H.Z.. Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems. J Ind Microbiol Biotechnol. 2008, 35(3): 145~150.
    66. Noda K., Kogure T., Irisa S., Murakami Y., Sakata M., Kuroda A.. Enhanced dibenzothiophene biodesulfurization in a microchannel reactor. Biotechnol Lett. 2008, 30(3):451~454.
    67. Alves L., Marques S., Matos J., Tenreiro R., Gírio F.M.. Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate. Chemosphere. 2008, 70(6): 967~973.
    68. Soleimani M., Bassi A., Margaritis A.. Extensive desulfurization of diesel by Rhodococcus erythropolis. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv. 2007, 25(6): 570~596.
    69. Mezcua M., Fernández-Alba A.R., Rodríguez A., Boltes K., Leton P., García-Calvo E. Chromatographic methods applied in the monitoring of biodesulfurization processes - State of the art. Talanta. 2007,15;73(1): 103~114.
    70. Kirkwood K.M., Andersson J.T., Fedorak P.M., Foght J.M,. Gray M.R.. Sulfur from benzothiophene and alkylbenzothiophenes supports growth of Rhodococcus sp. strain JVH1. Biodegradation. 2007, 18(5): 541~549.
    71. Folsom B.R., Schieche D.R., Digrazia P.M., Werner J., Palmer S.. Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl. Environ. Microbiol. 1999, 65(11): 4967~4972.
    72.葛保胜,任育红,唐志红,杨雨,秦松.表达重组别藻蓝蛋白质粒在工程菌株中的遗传稳定性研究.微生物学通报,2005,32(4): 32~42.
    73.钱垂文,黄立,王一飞,熊盛,张美英,李雪玲.表达NM23-H1NDPK-A工程菌的遗传稳定性研究.中国生物工程杂志,2005,25(2): 35~38.
    74.宫世勇,孙淑荣,周俊初.导入detABD和nifA基因对苜蓿中华根瘤菌共生固氮效率的影响.湖北农业科学,2006,45(5): 538~541.
    75.毛敬伟,李黔生,李磊.人巨细胞病毒UL82基因重组质粒的构建及其在大肠杆菌中的表达.西南国防医药,2004,14(4): 358~360.
    76.张椿,丛延广,胡福泉,饶贤才.肽抗生素hPAB2β制备工艺中基因工程菌的改建.第三军医大学报,2006,28(22): 2243~2246.
    77.杨利军,杨涛,解军,张娟,赵志强,罗佳,牛勃.重组Echistatin融合基因工程菌高密度发酵工艺优化.中国生物制品学杂志,2006,19(1): 84~86.
    78. Wakabayashi S., Matsubara H., Webster D.A.. Primary sequence of a dimeric bacterial hemoglobin from Vitreoscilla. Nature.1986,322: 481~483.
    79. Khosla C., Bailey J.E. The Vitreoscilla hemoglobin gene: Molecular cloning, nucleotide sequence and genetic expresion in Escherichia coli. Molecular Genetics and Genomics, 1988,214(1): 158~161.
    80.于慧敏,沈忠耀.透明颤菌血红蛋白及其基因的研究进展.微生物学报,1999,39(5): 478~482.
    81. Joshi, M., Mande, S., Dikshit, K. L.. Hemoglobin Biosynthesis in Vitreoscilla stercoraria DW: Cloning, Expression, and Characterization of a New Homolog of a Bacterial Globin Gene. Appl. Environ. Microbiol., 1998, 64: 2220~2228.
    82. Khosla C, Bailey J E.. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 1988, 331: 633~635.
    83. Wu Y., Yang S.L. Regulation and function of Vitreoscilla hemoglobin gene. Chinese Journal of Biotechnology, 1997, 13(1): 1~5.
    84. Meng C., Ye Q., Shi X.A.. Cloning and expression of Vitreoscilia hemoglobin in Streptomyces aureofacien. Acta Microbiologica Sin, 2002, 42(3): 305~310.
    85. Wu Y.M., Wang H.J., Sun Y.. Study on expression and activity of vgb in recombinant Sac. Erythrae. Pharmaceutical Biotechnology, 2007, 14(2): 090~093.
    86. Liu Q., Zhang J., Wei X.X..Microbial production of l-glutamate and l-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin genevgb. Appl MicrobiolBiot, 2008, 77(6): 1297~1304.
    87.裴海生,杨光,李春,张刚,曹竹安.透明颤菌血红蛋白的研究进展及其在发酵工业中的应用.中国生物工程杂志,2008, 28(7): 133~138.
    88. Dikshit K.L., Webster D.A. Cloning, characterization and expression of bacterial globin gene from Vitreoscilla in Escherichia coli. Gene, 1988, 70: 377~386.
    89. Khosla C., Bailey J.E. The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expresion in Eschericia coli. Mol Gen Genet, 1988, 214: 158~161.
    90. Khosla C., Bailey J.E. Characterization of the oxygen dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J Bacteriol, 1989, 171: 5995~6004.
    91. Pedro M.S., Ilaria D.B. , Svein V. New broad-host-range promoter probe vectors based on the plasmid RK2 replicon . FEMS Microbiol Lett, 2001, 195: 91~96.
    92.于慧敏,尹进,李红旗,杨胜利,沈忠耀.透明颤菌血红蛋白基因在产PHB重组大肠杆菌中的克隆表达.清华大学学报, 2000,40(2): 32~35.
    93.于慧敏,史悦,沈忠耀,杨胜利.CO差光谱法分析重组大肠杆菌中的透明颤菌血红蛋白.清华大学学报,2002,42(5): 615~618.
    94.张立国,罗人明,周集体,吕红,杜进民,郭建博,罗晓,王晓磊.透明颤菌血红蛋白基因克隆及在紫色非硫细菌中的表达.河北工业科技,2008,25(1): 1~4.
    95.李兵,周艳芬,何叶喧,赵晓瑜,朱宝成.CO差光谱法分析重组大肠埃希菌及产黄青霉中VHb的活性表达.中国抗生素杂志,2005,30(5): 267~303.
    96.胡玉琴,张杰,宋福平,束长龙,黄大防.广宿主稳定表达载体pQMV和pGMP的构建农业.生物技术学报,2004,12 (2): 202~205.
    97.马洁,王长水,张倩倩,张秀兰,郭雪清.利用两种微生物的协同作用进行柴油的深度脱硫.化学学报,2007,65(24): 2858~2862.
    98.沈齐英,赵锁奇.石油产品生物脱硫技术现状.北京石油化工学院报,2007,15(4):32~37.
    99.吴迪,杨明明,张亚妮,张炜炜,周乍琴,樊俊华.透明颤菌血红蛋白基因(vgb)表达载体的构建及其诱导表达.黑龙江畜牧兽医,2005,6: 6~8.
    100.祁艳霞,杨明明,高文,祝发明,樊俊华,陈玉林.透明颤菌血红蛋白基因(vgb)在大肠杆菌中的高效表达.黑龙江畜牧兽医,2005,8: 7~9.
    101.杨凌超,孙爱友,沈亚领,魏东芝,龚毅,马昱澍.透明颤茵血红蛋白基因在产TRAIL蛋白大肠杆菌中的克隆表达.华东理工大学学报(自然科学版),2006,32(8): 925~929.
    102.李尔炀,蔡志强,史乐文.透明颤菌血红蛋白基因在恶臭假单胞菌中的克隆及表达.江苏工业学报,2006,18(3): 20~23.
    103.周艳芬,赵晓瑜,张玉,冯书亮,王容燕.透明颤菌血红蛋白基因在苏云金杆菌中的表达.河北大学学报(自然科学版),2006,26(1): 33~37.
    104.龚跃鹏,赵玲玲,王峰,陈英文,沈树宝.VHB在假单胞菌中的表达及其在环境中的应用.环境科学与技术,2007,30(5): 98~101.
    105.Wu J.M., Hsu T.A , Lee C.K. Expression of the gene coding for bacterial hemoglobin improvesβ-galactosidase production in a recombinant Pichia pastoris. Biotechnol Lett, 2003, 25(17): 1457~1462.
    106.Kim Y., Webster D.A., Stark B.C. Improvement of bioremediation by Pseudomonas and Burkholderia by mutants of the Vitreoscilla hemoglobin gene (vgb) integrated into theirchromosomes. J IndMicrobiol Biotechno., 2005, 32(4): 148~154.
    107.Wu Q.W., CuiH.Z., Guo S.D. The Synthesis of the vgb M gene with plant preferential codon and its function identification in E. colli. Scientia Agricultura Sinica, 2004, 37(10): 1439~1443.
    108.贾盘兴,蔡金科.微生物遗传实验技术[M].北京:科学出版社,1992.
    109.Park K.W., Kim K.J., Howard A.J..Vitreoscilla hemoglobin binds to subunitⅠof cytochrome boubiquinol oxidases. J Boil Chem, 2002, 277: 33334~33337.
    110.Malin K., Ekaterina S.R., Ebbe N.. An investigation of the peroxidase activity of Vitreoscilla hemoglobin. J Biol Inrg Chem, 2007, 12(3): 324~334.
    111.Hu Z.B. Current research of Vitreoscilla hemoglobin and the prospective application in traditional Chinese medicine. J Chin IntegrMed, 2005, 3(5): 337~341.
    112.Wen Y., SongY., Li J.L..The effects of Vitreoscilla hemoglobin expression on growth and antibiotic production in Streptomyces cinnamonensis. Chinese Journal of Biotechnology, 2001, 17(1): 24~28.
    113.Feng L., Chen S.W., Sun M.. Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improves the cell density and insecticidal crystal proteins yield. Appl Microbiol Biot, 2007, 74(2): 390~397.
    114.Suthar D.H., Chattoo BB. Expression of Vitreoscilla hemoglob in enhances growth and levels of alpha-amylase in Schwanniomyces occidentalis. Appl. Microbiol. Biotechno, 2006, 72(1):94~102.
    115.Geckil H., Barak Z.E. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess BiosystEng, 2004, 26: 325~330.
    116.李林,唐晓东,王余平,孟科全.汽油养护脱硫技术的研究进展.天然气与石油,2008,26(4): 30~33.
    117.邹明旭,石洪波,廖克俭.清洁燃料的非加氢脱硫技术进展.化学工业与工程技术,2005,26(3): 30~36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700