Cecropin AD在毕赤酵母中的组成型表达及对断奶仔猪生长性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要
     抗菌肽Cecropin AD是人工合成的由CecropinA的N端1-11肽段和Cecropin D的C端12-37肽段组成的杂合肽。本试验的目的是利用组成型表达方法在毕赤酵母SMD1168菌株表达抗菌肽Cecropin AD,探讨优化发酵重组SMD1168菌株的条件,并研究抗菌肽Cecropin AD对断奶仔猪生长性能的影响。主要从以下几方面进行研究:
     1抗菌肽Cecropin AD在毕赤酵母中的组成型表达
     利用化学方法合成编码抗菌肽Cecropin AD的基因片段SH,并进行PCR扩增。基因片段SH与表达载体pGAPZa-A经Xho I和Not I双酶切后连接构建为重组表达质粒pGAPZa-ASH。经过鉴定并测序正确后将pGAPZa-ASH电转化至毕赤酵母SMD1168中,通过Zeocin抗性筛选阳性重组毕赤酵母工程菌。Tricine-SDS-PAGE分析表明在3.0 KD处有目的条带,并且表达产物抗菌肽Cecropin AD有生物活性。20μL浓缩10倍的表达上清液对E.coli DH5α的抑菌直径可达到17.5 mm,小于20μLAmp (100μg/mL)相应的抑菌直径(20.5 mm)。外源基因在酵母中的稳定性很高。重组酵母与其受体菌的生长曲线相近。试验结果表明,用组成型表达方法在毕赤酵母菌株成功表达了抗菌肽Cecropin AD并且其基因片段SH的插入对酵母菌的生长规律影响不显著。
     2抗菌肽Cecropin AD小规模发酵主要参数的优化
     按表达手册进行表达试验,从发酵液pH、溶氧和补料等方面优化重组毕赤酵母SMD1168的主要发酵参数。采用优化的发酵参数进行发酵,对上清液TCA沉淀纯化后以Tricine-SDS-PAGE鉴定。优化后的重组毕赤酵母SMD1168发酵主要参数:发酵液pH5.5,溶氧30%-40%,补料采用变速流加方式。发酵周期为60 h,上清液中Cecropin AD的表达量为225 mg/L, Cecropin AD占表达总蛋白量的26%。发酵液离心后的上清液占总发酵液体积的70%。
     3抗菌肽Cecropin AD对断奶仔猪生长性能的影响
     试验选取体重约10kg的杜×大×长三元杂交断奶仔猪300头,采用单因子完全随机区组设计,分为对照组、抗生素组、试验1组、试验2组、试验3组,每个处理6个重复,每个重复10头猪,研究毕赤酵母组成型表达的抗菌肽对断奶仔猪生长性能的影响。对照组饲喂基础日粮,抗生素组在基础日粮中添加10%的硫酸抗敌素300 mg/kg和10%的杆菌肽锌1500 mg/kg,试验1组、试验2组、试验3组分别在基础日粮中添加抗菌肽Cecropin AD 10 mg/kg、20 mg/kg、30 mg/kg。试验结果表明,与对照组相比,日粮中添加抗生素或抗菌肽有提高断奶仔猪日增重和饲料转化效率的趋势,但没达到显著差异(P>0.05);试验各组仔猪的腹泻率均显著低于对照组(P<0.05),表明抗菌肽CecropinAD可以达到与抗生素类似的防腹泻效果。综合考虑仔猪的生长性能和腹泻指数,以添力口10 mg/kg Cecropin AD效果最佳。
Cecropin AD is a hybrid peptide that exhibits greater antibacterial activity than that of the natural Cecropins. It is composed of 1-11 amino acid residues of Cecropin A and 12-37 amino acid residues of Cecropin D. The purpose of this study is to take constitutive expression method that antibacterial peptide Cecropin AD was expressed in Pichia pastoris SMD1168, explore the optimization of fermentation conditions for SMD1168, and study the effects of Cecropin AD on the performance of weaned piglets. The main contents include three parts as follows.
     1, Take constitutive expression method that antibacterial peptide Cecropin AD was expressed in Pichia pastoris SMD1168. Gene fragments SH encoding antimicrobial peptides Cecropin AD was synthesized by chemical methods. Gene fragment SH was inserted into the vector pGAPZa-A and named pGAPZa-ASH. Plasmid PGAPZa-ASH was converted to Pichia pastoris SMD1168 using electrotransformation. The result of Zeocion resistance screening showed that there was positive recombinant. Tricine-SDS-PAGE analysis showed that the molecular weight of peptides Cecropin AD was 3.0 kD, and the expression products had antibacterial activity.20μL spissated fermentation broth bacteriostasis was 17.5 mm, and 20μL Amp was 20.5 mm. Exogenous gene is stable in recombinant SMD1168. The growth curve of recombinant SMD1168 and SMD1168 was similar. This result meaned that insertion of Cecropin AD gene was not affect the growth of Pichia pastoris SMD1168.
     2, The optimization of main fermentation parameters of antimicrobial peptides Cecropin AD of Pichia pastoris SMD1168 in a small-scale.
     Optimize main fermentation parameters of recombinant SMD1168 were fermentation broth pH, dissolved oxygen, and feeding mode. The index was the identified supernatant protein with Tricine-SDS-PAGE analysis after fermentation. The optimized conditions of recombinant SMD1168 were pH 5.5,30%-40% dissolved oxygen and accelerant feeding. The expression of Cecropin AD is 225 mg/L fermentation culture liquid and 26% of total proteion was Cecropin AD 70% of fermentation broth was culture liquid.
     3, The effects of Cecropin AD on performance of weaned piglets
     Three hundred crossbred weaned piglets (Duroc×Landrace×Yorkshine), with initial BW of 10 kg, were randomly divided into 5 groups. Each group had 6 replicates (pen) and each pen had 10 piglets. Piglets of the control group were fed basal dietary and the other groups were fed basal dietary with 10% Colistin Sulfate 300 mg/kg and 10% bacitracin zinc 1500 mg/kg, Cecropin AD premix 10,20 and 30 mg/kg, respectively. The experiment was lasted 32 days.
     The result showed that there had a trend of improve average daily gain and Feed/Gain of the piglets in the antibiotic group and three Cecropin AD groups than that of the control group, however, there were no significant different among the groups (P>0.05). The diarrhea rate of the antibiotic group and three Cecropin AD groups were significantly lower than that of the control group (P<0.05). These results indicated that Cecropin AD has similar effect on decreasing diarrhea rate of weaned piglets and the optimum level Cecropin AD in weaned piglets diet-is 10 mg/kg.
引文
[1]Hancock R E, Diamond G. The role of cationic antimicrobial pepeides in innate host defences[J]. Trends in Microbiology,2000,8(9):402-410.
    [2]Zasloff M. Antimicrobial peptides of multicellular of organisms[J]. Nature,2002,415(6870):389-395.
    [3]王芸,刘忠渊,吕国栋,等.家蚕抗菌肽在毕赤酵母中的表达[J].生物技术,2004,14(16):16-18.
    [4]沈俊卿,屈贤铭,田昱.抗菌肽ABP3基因的克隆及其在Pichia pastoris中的表达[J].生物工程学报,1999,15(4):489-493.
    [5]吴代飞,曾宪松,张银东,等.抗菌肽B基因的点突变及在昆虫细胞中的表达[J].热带作物学报,1999,20(3):54-59.
    [6]黄亚东,郑青,王林川,等.柞蚕抗菌肽D基因重组杆状病毒表达载体的构建及其表达(简报)[J].农业生物技术学报,1999,7(1):56-57.
    [7]黄亚东,郑青,李校,等.抗菌肽AD基因的改造及在毕赤酵母中的表达[J].华南理工大学学报(自然科学版),2002,30(2):13-16.
    [8]李秀兰,戴祝英,张双全,等.家蚕抗菌肽CMIV基因结构改造及表达产物的研究[J].中国生物化学与分子生物学报,1999,15(3):387-391.
    [9]Boman H G, Nilsson I, Rasmuson B. Inducible antibacterial defense system in drosophila[J]. Nature, 1972,237:232-235.
    [10]黄亚东,郑青,李校,等.天蚕抗菌肽AD基因在AcNPV载体系统中的表达研究[J].中国抗生素杂志,2003,28(5):304-307.
    [11]Cereghino J L, Cregg J M. Heterologous protein expression in the methylotropHic yeast Pichia pastoris[J]. FEMS Microbiology Review,2000,24:45-66.
    [12]Zhang A L, Zhang T Y, Luo J X, et al. Constitutive expression of human angiostatin in Pichia pastoris by high-density cell culture[J]. Journal of Industrial Microbiology and Biotechnology.2007,34: 117-122.
    [13]Daly R, Hearn M T. Expression of heterologous proteins in Pichia pastoris:a useful experimental tool in protein engineering and production[J]. Journal of Molecular Recognition,2005,18(2):119.
    [14]Schroder J M. Epithelial peptide antibiotics[J]. Biochemical PHarmacology,1999,57:121.
    [15]孙艳发,张爱忠,姜宁.抗菌肽在畜牧生产中的应用[J].饲料研究,2009,11:21-23.
    [16]Skerlavaj B, Romeo D, Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins [J]. Infect Immun,1990,58(11):3724-3730.
    [17]Hancock R E, Lehrer R. Cationic peptides:a new source of antibiotics[J]. Trends in Biontechnology, 1998,16(2):82-88.
    [18]Epand R M, Vogel H J. Diversity of antimicrobial peptides and their mechanisms of action[J]. Biochemica et BiopHysicaActa,1999,1462(1-2):11-28.
    [19]Brogden K A, Ackermann M, McCray P B Jr, et al. Antimicrobial peptides in animals and their role in host defences [J]. International Journal of Antimicrob Agents,2003,22(5):465-478.
    [20]Choi M J, Kang S H, Kim S, et al. The interaction of an antimicrobial decapeptide with phospholipid vesicles [J]. Peptides,2004,25:675.
    [21]Egal M, MacDonald D L, Maloy W L, et al. Antiviral effects of synthetic membrane-active peptides on herpes simplex virus, type 1 [J]. International Journal of Antimicrobial Agents,1999,13(2):57-60.
    [22]Ekengren S, Hultmark D. DrosopHila cecropin as an antifungal agent[J]. Insect Biochemisry and Molcular Biology,1999,29(11):965-972.
    [23]朱元军,李明远.防御素抗HIV作用[J].国际病毒学杂志,2006,13(1):2-4.
    [24]Huang H W. Molecular mechanism of antimicrobial peptides:the origin of cooperativity[J]. Biochimica et Biophysica Acta,2006,1758(9):1292-1302.
    [25]韦岩.抗菌肽的研究进展和临床应用[J].菏泽医学专科学校学报,2007,19(1):76-78.
    [26]Diaz-Oltra S, Murga J, Falomir E, et al. Stereoselective synthesis of anamarine[J]. Tetrahedron.2004, 60(13):2979-2985.
    [27]孙超,王晖,孙波,等.多肽抗生素研究进展[J].中国药理学通报,2000,16(6):605-609.
    [28]Dagan A, Efron L, Gaidukov L, et al. In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother,2002,46(4):1059-1066.
    [29]Mystkowska E T, Niemierko A, Komar A, et al. Embryotoxicity of magain-2-amide and its enhancement by cyclodextrin, albumin, hydrogen peroxide and acidification. Hum Reproduction, 2001,16(7):1457-1463.
    [30]Lai R, Zheng Y T, Shen J H, et al. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides,2002,23(3):427-435.
    [31]Zughaier S M, Shafer W M, Stephens D S. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiology,2005,7(9):1251-1262.
    [32]饶贤才.人肽抗生素hPAB-β的基因克隆、表达及活性研究[D].重庆:第三军医大学博士学位论文,2002.
    [33]Rodriguez-Hernandez M J, Saugar J, Docobo-Perez F, et al. Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii [J]. Journal of Antimicrobial Chemotherapy.2006,58(1):95-100.
    [34]Dekker N, Cox R C, Kramer R A, et al. Substrate specificity of the integral membrane protease Omp T determined by spatially addressed peptide libraries[J]. Biochemistry,2001,40 (6):1694-1701.
    [35]Bobek L A, Situ H. MUC7 20-Mer:investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action[J]. Antimicrobial Agents and Chemotherapy,2003,47(2): 643-652.
    [36]Chen Y, Xu X, Hong S, et al. RGD-Tachyples in inhibits tumor growth[J]. Cancer Research,2001, 61(6):2434-2438.
    [37]Fehlaum P, Bulet P, Chernysh S, et al. Structre-activity analysis of thanation, a 21-residue inducible insect defense petide with sequence homology to frog skin antimicrobial peptides. Proceedings of the National Academy of Science of the United States of America,1996,93(3):1221-1225.
    [38]宫霞,施用晖,乐国伟.荧光光谱分析家蝇幼虫抗菌肽与大肠杆菌染色体DNA作用机理[J].光谱学与光谱分析,2005,25(3):420-423.
    [39]Hariton G E, Feder R, Mor A, et al. Targeting of onokaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals[J]. Biochemistry,2002, 41(29):9208-9214.
    [40]张海涛,伍俊,汪亚君等.鲎素激活FAS途径促使HL-60细胞凋亡的实验研究[J].中国海洋药物,2008,27(4):39-43.
    [41]Mai J C, Mi Z, Kim S H. A proapoptotic peptide for the treatment of solid tumors[J]. Cancer Research. 2001,61(21):7709-7712.
    [42]Kurata S. Recognition and elimination of diversified pathogens in insect defense systems[J]. Molecular Diversity,2006,10(4):599-605.
    [43]Keiichi Ando, Shunji Natori. Inhibitory effect of sarcotoxin Ⅱ A, an antibacterial protein of SarcopHaga peregrina, on growth of Escherichia coli[J]. Journal of Biochemistry,1988,103: 735-739.
    [44]Harder J, Bartels J, ChristopHers E, et al. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic[J]. Journal of Biological Chemistry,2001,276:5707-5713.
    [45]赵东红,张双全,戴祝英,等.重组家蚕抗菌肽CM4对癌细胞骨架及核骨架破坏作用的观察[J].高技术通讯,2000,10(1):23-27.
    [46]祝斌,吴尚辉,顾焕华,等.野生蚕抗菌肽对癌细胞的杀伤作用及其超微结构的研究[J].实用预防医学,2007,14(1):16-19.
    [47]Chen H M, Leung K W, Thakur N N. Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3[J]. European Journal Biochemistry,2003, 270(5):911-920.
    [48]贾素娟,路福平,王昌禄,等.生物抗菌多肽[J].氨基酸和生物资源,2000(4):5-8.
    [49]Shai Y, Hadari Y R, Finkels A. PH-dependent pore form ation prop-erties of pardaxin analogues[J]. The Journal of Boilogical Chemistry,1991,266:22346-22354.
    [50]Jaynes J M, Burton C A, Barr S B, et al. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosom cruzi[J]. The FASEB Journal,1988,2:2878-2883.
    [51]Ogata K, Nishikaw H, Ohsugizing M. A yeast capable of utilizing methanol. Agricultural and Biological Chemistry,1969,33:1519-1520.
    [52]Sreekrishna K, Brankamp R G. Kropp K E, etal. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotropHic yeast Pichia pastoris[J]. Gene,1997,190(1):55-62.
    [53]Romanos M A, Seorer C A, Clare J J. Foreign gene expression in yeast:a review[J]. Yeast,1992,8(6): 423-448.
    [54]Brankamp R G, Sreekrishna K, Smith P L. Expression of a synthetic gene encoding the anticoagulant-antimetastatic protein ghilanten by the methylotropHic yeast Pichia pastoris[J]. Protein Expression and Purification,1995,6:813-820.
    [55]江宏映,李哄钊.一种获取巴斯德毕赤酵母高拷贝重组子的新方法[J].生物技术,2003,13(2):26-29.
    [56]Brierley R A. Secretion of recombinant human insulin-like growth factor I(IGF-1)[J]. Methods of Molecular Biological,1998,103:149-177.
    [57]Romanos M. Advances in the use of Pichia pastoris for high-level gene expression[J]. Current Opinion in Biotechnology,1995,6:527-530.
    [58]Martinez-Ruiz A, Martinez del Pozo A, Lacadena J, et al. Secretion of recombinant pro-and mature fungal alpHa-sarcin ribotoxin by the meth-ylotropHic yeast Pichia pastoris:the Lys-Arg motif is required for matu-ration[J]. Protein Expression and Purification,1998,12 (3):315-322.
    [59]王燕,梁镇和,张友尚,等.人胰岛素在甲醇酵母Pichia pastoris中的分泌表达[J].生物化学与生物物理学报,1999,31(5):154-160.
    [60]Bushell M E, Rowe M, Avignone-Rossa C A, et al. Cyclic fed-batch culture for production of human serum albumin in Pichia pastoris[J]. Biotechnology and Bioengineering,2003,82(6):678-683.
    [61]赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报,2003,16(3):308-311.
    [62]彭毅,杨希才.康良仪.影响甲醇酵母中外源蛋白表达的因素[J].生物技术通报,2000,144(4):33-36.
    [63]White C E, Hunter M J, Meininger D P, et al. Large-scale expression, purification and charaterization of small fragments of thrombomodulin:the roles of the sixth domain and of methionine 388[J]. Protein Engineering,1995,8:1177-1187.
    [64]Montesino R, Garcia R, Quintero O, et al. Variation in N-linked oligoseccharide structures on hetemLogous proteins secreted by the methylotropHic yeast Pichia pastoris[J]. Protein Exprress and Purification,1998,14(2):197-207.
    [65]Joseph Sambrook.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    [66]许奕阳,张添元,罗进贤.汉森酵母表达载体的构建和人血管生成抑制素基因的表达[J].微生物学报,2002,42(5):582-586.
    [67]杨晟,黄鹤,章如安,等.重组人血清白蛋白在Pichia pastoris中分泌表达影响因素的研究[J].生物工程学报,2000,1:675-678.
    [68]Chen X, Zhu F, Cao Y H, et al. Novel expression vector for secretion of Cecropin AD in Bacillus subtilis with enhanced antimicrobial activity[J]. Antimicrobial Agents and Chemotheray,2009,53: 3683-3689.
    [69]房师松,刘涛,邓平建.等.抗菌肽D基因在毕赤酵母中的表达及鉴定[J].卫生研究,2004.33(1):82-86.
    [70]赵亚华,徐伟,蔡家伟,等.改造后的抗菌肽AD基因在毕赤酵母中表达效价研究[J].中国生物工程杂志,2003,23(8):77-82.
    [71]Cregg J M, Vedvick T S, Raschke W C. Recent advances in the expression of foreign genes in Pichia pastoris[J]. Biotechnology,1993,11(8):905-910.
    [72]Meilhoc E, Masson J M, Teissie J. High efficiency transformation of intact yeast cells by electric field pulses[J]. Biotechnology,1990,8(3):223-227.
    [73]Cregg J M, Cereghino J L, Shi J, et al. Recombinant protein expression in Pichia pastoris[J]. Molecular Biotechnology,2000,16(1):23-52.
    [74]Sarramegna V, Demange P, Milon A, et al. Optimizing functional versus total expression of the human mu-opioid receptor in Pichia pastoris[J]. Protein Expression and Purification,2002,24(2):212-220
    [75]Vassileva A, Chugh D A, Swaminathan S, et al. Expression of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris using the GAP promoter[J]. Journal of Biotechnology.2001, 88(1):21-35.
    [76]段明瑞.重组类人胶原蛋白基因工程菌发酵及动力学研究[D].西安:西北大学,2002.
    [77]周祥山,范卫民,张元兴.不同甲醇流加策略对重组毕赤酵母高密度发酵生产水蛭素的影响[J].生物工程学报,2002,18(3):348-351.
    [78]李洪淼,王红宁,许钦坤.毕赤酵母高密度发酵研究进展[J].生物技术通讯,2005,16(2):210-212.
    [79]Zhang W H, Plantz B A, Smith L A, et al. Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A[J]. Biotechnology and Bioengineering,2000,70(1):1-8.
    [80]陈晓生,温刘发,张辉华,等.饲料中添加抗菌肽对肉鸭生产性能及免疫器官、内脏器官的影响[J].畜禽业,2005,2:12-13.
    [81]黄永彤,黄自然,黄建清,等.抗菌肽与抗生素饲喂肉鸡的效果比较[J].广东饲料,2004,13(2):24-25.
    [82]马卫明,佘锐萍,彭芳珍,等.猪小肠抗菌肽的提取及部分生物学活性研究[J].科学技术与工程.2004,4(3):202-205.
    [83]李传普,陈安国,丁升艳,等.抗菌肽在肉鸡生产中的应用研究[J].饲料研究,2008,3:31-33.
    [84]于会民,王吉峰,陈宝江.新型高效广谱抗菌肽对断奶仔猪的生长性能的影响[J].饲料与畜牧,2008,9:39-41.
    [85]温刘发,张常明,付林,等.抗菌肽制剂代替抗生素在断奶仔猪饲粮中的应用效果[J].中国饲料,2001.18:13-14.
    [86]张熠,刘纬,丁汉凤,等.抗菌肽的研究进展及在农业中的应用[J].安徽农业科学,2006,34(3):433-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700