黄芪中黄芪皂苷成分的提取分离与纯化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中药黄芪为原料,主要考察了微波辅助提取法对黄芪中黄芪皂苷成分提取率的影响,以黄芪皂苷Ⅰ-Ⅳ提取率为考察指标,筛选出最佳提取工艺条件,并通过大孔吸附树脂、皂苷衍生物水解转化、硅胶柱层析、低温析晶和重结晶等技术手段对黄芪皂苷成分进行分离与纯化研究,最终建立了一整套黄芪中黄芪皂苷成分提取分离与纯化的最佳工艺,同时确定了黄芪皂苷成分的LC-ESI/MS分析方法,为合理有效的利用黄芪资源提供了科学依据。
     1.确定了LC-ESI/MS检测方法同时测定黄芪中黄芪皂苷Ⅰ-Ⅳ的条件:
     色谱条件:液相:Agilent 1100高效液相色谱仪;色谱柱:Agilent Eclipse XDB C18柱(150 mm×4.6mm i.d.,5μm);柱温:30℃;流动相:0.05%甲酸水溶液(A)-乙腈(B);梯度洗脱:0-6 min 66%(A),6-8 min 66-55%(A),8-13 min 55%(A),13-14min 55-66%(A),14-17 min 66%(A);流速:0.7 mL/min;进样量:10μL。
     质谱条件:质谱仪:API3000三重四级杆质谱仪;电喷雾电离正离子源(ESI+);多重反应监测模式(MRM);喷雾气(NEG):12 a.u.;气帘气(CUG):10 a.u.;碰撞气(COG):6 a.u.;温度(TEM):250℃;碰雾电压:5500V。
     2.考察了微波辅助提取法对黄芪中黄芪皂苷Ⅰ-Ⅳ提取率的影响,确定了最佳的提取工艺参数。
     微波辅助提取黄芪皂苷Ⅰ-Ⅳ工艺参数为:提取溶剂:80%乙醇溶液固液比:1:25提取时间:5min提取温度:70℃微波功率:700W提取次数:3次
     在上述优化的条件下,微波辅助提取黄芪皂苷Ⅰ-Ⅳ的提取率分别为0.788mg/g,0.351mg/g,0.206 mg/g和0.278 mg/g,收率分别为91.415%,89.086%,86.193%和94.600%。
     3。通过大孔吸附树脂对黄芪中黄芪皂苷Ⅰ-Ⅳ进行了富集和分离,确定了SA-3型大孔吸附树脂富集和分离黄芪皂苷Ⅰ-Ⅳ工艺。
     大孔吸附树脂吸附与解吸最佳条件:树脂类型:SA-3型上样浓度:黄芪皂苷Ⅰ为0.483 mg/mL,黄芪皂苷Ⅱ为0.460 mg/mL,黄芪皂苷Ⅲ为0.168 mg/mL,黄芪皂苷Ⅳ为0.320 mg/mL上样体积:30 BV(180mL)上样流速:1 BV/h样品溶液pH值:4解吸溶液:50%乙醇溶液解吸溶液体积:9BV(54mL)解吸流速:1 BV/h
     在上述优化的条件下,经过SA-3型大孔吸附树脂处理,黄芪皂苷Ⅰ的含量从0.559%增加到4.908%,提高了8.78倍;黄芪皂苷Ⅱ的含量从0.532%增加到6.173%,提高了11.60倍;黄芪皂苷Ⅲ的含量从0.194%增加到2.043%,提高了10.52倍;黄芪皂苷Ⅳ的含量从0.371%增加到4.181%,提高了11.28倍,收率分别为65.883%,90.920%,84.249%和94.167%。
     4.通过皂苷衍生物水解转化技术,将SA-3型大孔吸附树脂处理后的样品溶液中其他类型的黄芪皂苷乙酰化水解为黄芪甲苷(即黄芪皂苷Ⅳ),可以提高黄芪甲苷的含量,该过程的收率为189.861%。再采用硅胶柱层析、低温析晶和重结晶技术对黄芪甲苷进行纯化,最终得到黄芪甲苷晶体,其中,柱层析收率为57.935%,重结晶收率为69.854%。
     5.经过微波辅助提取、大孔吸附树脂富集、黄芪皂苷衍生物水解转化、硅胶柱层析纯化、低温析晶和重结晶技术等处理后,黄芪甲苷的纯度达到93%,总收率为68.448%,黄芪甲苷总得率为0.201 mg/g。与传统的方法相比,该方法生产周期短、操作简单、环境污染较小,且所得产品纯度高、得率高,为黄芪甲苷的工业化生产提供了科学参考。
In the present study, the effect of microwave-assisted extraction of astragalosides in Radix Astragali was investigated. Extraction yields of AstragalosidesⅠ-Ⅳ(AGsⅠ-Ⅳ) were used as index, the conditions for extraction of astragalosides were optimized. Preparative separation and purification of astragalosides from Radix Astragali extracts was carried out by macroporous resins, hydrolysis transformation of astragaloside derivatives, silica gel column chromatography, low temperature crystallization and re-crystallization. The optimum process of extraction, separation and purification of astragalosides was established and the LC-ESI/MS method for determination and quantification of astragalosides was developed, which provides the scientific basis for the rational and efficient use of Radix Astragali resources.
     1. LC-ESI/MS method for determination and quantification of AGs I-IV was developed as follows:
     Chromatographic conditions:Agilent 1100 series HPLC system; column:Agilent Eclipse XDB-C18 column (150 mm×4.6 mm i.d.,5μm); column temperature:30℃; mobile phase: 0.05% formic acid aqueous solution (A)-acetonitrile (B); gradient elution:0-6 min 66% (A),6-8 min 66-55%(A),8-13 min 55% (A),13-14 min 55-66%(A),14-17 min 66%(A); flow rate:0.7 mL/min; injection volume:10μL.
     MS conditions:An API3000 triple tandem quadrupole mass spectrometry; electrospray ionization in positive ion mode (ESI+); multiple reaction monitoring mode (MRM); The nebulizing gas (NEB), curtain gas (CUR) and collision gas (COL) were set at 12,10 and 6 a.u., respectively. The ion source was operated at temperature of 250℃. The ion spray voltage was 5500 V.
     2. Microwave-assisted extraction method was investigated on the extraction yields of AGs I-IV, the optimum parameters of the extraction process were as follows:
     Extraction solvent:ethanol-water (80:20, v/v) solution Ratio of solid/liquid:1:25 Extraction time:5 min Extraction temperatures:70℃Microwave power:700 W Extraction cycles:3 times
     Under the above optimum conditions, the extraction yields of AGs I-IV were 0.788 mg/g, 0.351 mg/g,0.206 mg/g and 0.278 mg/g, respectively. The recoveries of AGs I-IV were 91.415%, 89.086%,86.193% and 94.600%, respectively.
     3. Enrichment and separation of AGsⅠ-Ⅳby macroporous adsorption resins was studied and the optimum parameters of adsorption and desorption on the optimal SA-3 resin were obtained. Macroporous resin adsorption and desorption of the best conditions as follows: Resin type:SA-3 resin Sample concentration:AGⅠ0.483 mg/mL, AGⅡ0.460 mg/mL, AGⅢ0.168 mg/mL, AG IV 0.320 mg/mL Processing volume:30 BV (180 mL) Adsorption flow rate:1 BV/h pH value of sample solution:4 Desorption solution:ethanol-water (50:50, v/v) solution Desorption solution volume:9 BV (54 mL) Desorption flow rate:1 BV/h
     After treated by SA-3 resin under the above optimum conditions, the contents of AGs I-IV in the processing increased from 0.559%,0.532%,0.194% and 0.371% to 4.908%,6.173%,2.043% and 4.181%, which were 8.78-fold,11.60-fold,10.52-fold and 11.28-fold increased, respectively. The recoveries of AGs I-IV were 65.883%,90.920%,84.249% and 94.167%, respectively.
     4. By hydrolysis conversion technology, other types of acetylated astragalosides in sample solution after enrichment and separation by SA-3 resin were hydrolyzed into AGⅣ, which improved the content of AG IV, the recovery was 189.861%. Using column chromatography, low temperature crystallization and re-crystallization, the crystal of AG IV was obtained with the recovery of column chromatography 57.935% and the recovery of re-crystallization 69.854%.
     5. After microwave-assisted extraction, macroporous adsorption resin, hydrolysis transformation of astragaloside derivatives, column chromatography, low temperature crystallization and re-crystallization, the purity of AGⅣwas 93%, the the total recovery of AGⅣwas 68.448% and the total extraction yield of AG IV was 0.201 mg/g. Compared with traditional methods, this method is short, simple, less environmental pollution, and the product was high purity and high yield. It provides a scientific reference for the industrial production of AG IV.
引文
[1]杨凤华.黄芪及其有效成分的研究概况[J].现代中西医结合杂志,2003,12(10):1112-1114.
    [2]冷祥康,陈蓉.黄芪的药物研究及临床应用[J].中华实用医学,2003,5(7):108-109.
    [3]尤丽芬.黄芪的免疫及抗病毒作用[J].中草药,1993,24(4):211-214.
    [4]康永,李先荣.黄芪口服液药理作用的研究[J].中草药,1989,20(11):21-23.
    [5]王惠康,何侃,凌罗庆.内蒙黄芪化学成分的研究(Ⅱ)[J].中草药,1989,20(5):6-8.
    [6]卞云云,管佳,毕志明,宋越,李萍.蒙古黄芪的化学成分研究[J].中国药学杂志,2006,41(8):1217-1221.
    [7]何侃,王惠康.近年来黄芪及其同属近缘植物的化学成分研究进展[J].药学学报,1988,23(11):873-880.
    [8]齐炼文,李萍,盛亮洪.透析-高效液相色谱法在当归补血汤药效物质基础研究中的应用[J].分析化学,2006,34(2):196-199.
    [9]王铎,盛龙生,宋越,李萍.HPLC-MS法测定步长脑心通中多种黄芪皂苷类成分[J].中国天然药物,2006,4(4):287-290.
    [10]马晓丰,田晓明,陈英杰,屠鹏飞.蒙古黄芪中黄酮类成分的研究[J].中草药,2005,36(9):1293-1296.
    [11]Kitagawa I, Wang HK, Takagi A, Fuchida M, Miura I, Yoshikama M. Chemieal constituents of Astragali Rdaix, the root of Astrgalus membraneaceus Burige.(1). Cyeloastragenol the 9,19-cyclolanostan-type aglycone of Astragalosides, and the artifact adtragenol. Chemical & Pharmaceutical Bulletin,1983,31:689-697.
    [12]高建,徐先祥,徐先俊,倪受东.黄芪总皂苷抗血栓形成作用实验研究[J].中成药,2002,24(2):116-118.
    [13]查益中.黄芪对血压的双相调节作用[J].中医杂志,2000,41(6):329.
    [14]郝嘉,肖颖彬,钟前进,陈林,王学锋.黄芪对氧自由基致肺损伤的保护作用[J].现代中西医结合杂志,2004,13(5):578-579.
    [15]李智军,魏连波,贺丰,谭晓梅,马志刚,吕瑞和.黄芪多糖治疗大鼠系膜细胞增生性肾炎的实验研究[J].中国中西医结合肾病杂志,2000,1(4):206--208.
    [16]侯世荣,林厚基,刘海肃.黄芪口服液治疗慢性肝炎的疗效观察[J].中草药,2000,31(10):766-768.
    [17]祁忠华,林善镁,黄宇峰,等.黄芪改善糖尿病肾病早期血流动力学异常的研究[J].中国糖尿病杂志,1999,7(3):147-149.
    [18]李志荣,董彦敏,程林忠,王亚萍.黄芪多糖冲剂治疗Ⅱ型糖尿病的临床研究[J].山西中医,1995,11(1):16-17.
    [19]黄萍,吴清和,徐鸿华,陈文良,荣向路,邓响潮,韩坚.复方灵芝降糖胶囊治疗糖尿病 的实验研究[J].广州中医药大学学报,2000,17(2):158-162.
    [20]Lin LZ, He XG, Michael L, Gary N, Yang J. Liquid chromatogphy-electrospry ionization mass spectrometry study of the flavonoids of the roots Astragalus monoholicus and A. membranaceus [J]. Journal of Chromatography A,2000,876 (1-2):87-95.
    [21]张英,李铁兵.参芪合剂抗疲劳作用的基础与临床研究[J].中医药学报,1998,(4):35.
    [22]马占好,张春艳,刘旭,李殿俊,赵强,张万峰,王日芝,韩丽珍.黄芪多糖对小鼠体内六种细胞系瘤株抑瘤作用的实验研究[J].中医药学报,1996,(4):55.
    [23]潘海敏,唐丽华,游本刚,黄荣华.大孔吸附树脂纯化珍珠菜总皂苷的研究[J].苏州大学学报(医学版),2009,29(1):91-93.
    [24]李跃辉,李超,杨永华,蔡光先.大孔吸附树脂纯化甘草总皂苷[J].中国医院药学杂志,2008,28(24):2097-2100.
    [25]陶锋,李向荣,占洁.大孔吸附树脂分离纯化金钱草总黄酮工艺研究[J].2009,28(5):636-638
    [26]程冰洁,周迎春,黄海军,鄢文,陈宝田,刘强.FL-1大孔树脂分离纯化番石榴叶总黄酮工艺研究[J].2008,15(6):56-57.
    [27]Wang D, Song Y, Li SL, Bian YY, Guan J, Li P. Simultaneous analysis of seven astragalosides in Radix Astragali and related preparations by liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry [J]. Journal of Seperation Science,2006,29(13): 2012-2022.
    [28]蒲清荣,赵剑,颜章龙.优选胃炎颗粒中黄芪甲苷薄层色谱展开剂[J].西部医学,2008,20(4):847-848.
    [29]Ma XQ, Shi Q, Duan JA, Dong TTX, Tsim KWK. Chemical Analysis of Radix Astragali (Huangqi) in China:A Comparison with Its Adulterants and Seasonal Variations [J]. Journal of Agricultural and Food Chemistry,2002,50(17):4861-4866.
    [30]胡芳弟,封士兰,赵健雄,张勇,陈立仁.HPLC法测定黄芪中黄酮类成分和黄芪甲苷的含量[J].分析测试技术与仪器,2003,9(3):173-177.
    [31]Song JZ, Mo SF, Yip YK, Qiao CF, Han QB, Xu HX. Development of microwave assisted extraction for the simultaneous determination of isoflavonoids and saponins in Radix Astragali by high performance liquid chromatography [J]. Journal of Seperation Science,2007,30(6): 819-824.
    [32]Song JZ, Yiu HHW, Qiao CF, Han QB, Xu HX. Chemical comparison and classification of Radix Astragali by determination of isoflavonoids and astragalosides [J]. Journal of Pharmaceutical and Biomedical Analysis,2008,47(2):399-406.
    [33]Yu QT, Qi LW, Li P, Yi L, Zhao J, Bi ZM. Determination of seventeen main flavonoids and saponins in the medicinal plant Huang-qi (Radix Astragali) by HPLC-DAD-ELSD [J]. Journal of Seperation Science,2007,30(9):1292-1299.
    [34]Qi LW, Yu QT, Yi L, Ren MT, Wen XD, Wang YX, Li P. Simultaneous determination of 15 marker constituents in various Radix Astragali preparations by solid-phase extraction and high-performance liquid chromatography [J]. Journal of Seperation Science,2008,31(1):97-106.
    [35]Kim MR, Kim WC, Lee DY, Kim CW. Recovery of narirutin by adsorption on a non-ionic polar resin from a water-extract of Citrus unshiu peels [J]. Journal of Food Engineering,2007, 78(1):27-32.
    [36]Schieber A, Hilt P, Streker P, Endrep HU, Rentschler C, Carle R. A new process for the combined recovery of pectin and phenolic compounds from apple pomace [J]. Innovative Food Science & Emerging Technologies,2003,4(1):99-107.
    [37]Fu YJ, Zu YQ Liu W, Hou CL, Chen LY, Li SM, Shi XG, Tong MH. Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins [J]. Journal of Chromatography A,2007,1139(2):206-213.
    [38]Fu YJ, Zu YQ Liu W, Efferth T, Zhang NJ, Liu XN, Kong Y. Optimization of luteolin separation from pigeonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins [J]. Journal of Chromatography A,2006.1137(2):145-152.
    [39]Fu YJ, Zu YG, Li SM, Sun R., Efferth T, Liu W, Jiang SG, Luo H, Wang Y. Separation of 7-xylosyl-10-deacetyl paclitaxel and 10-deacetylbaccatin III from the remainder extracts free of paclitaxel using macroporous resins [J]. Journal of Chromatography A,2008,1177(1):77-86.
    [40]Mauro AD, Arena E, Fallico B, Passerini A. Maccarone, E. Recovery of anthocyanins from pulp wash of pigmented oranges by concentration on resins [J]. Journal of Agricultural and Food Chemistry,2002,50(21):5968-5974.
    [41]Scordino M, Mauro AD, Passerini A, Maccarone E. Adsorption of flavonoids on resins: Hesperidin [J]. Journal of Agricultural and Food Chemistry,2003,51(24):6998-7004.
    [42]Fu BQ, Liu J, Li H, Li L, Lee FSC, Wang XR. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid [J]. Journal of Chromatography A,2005, 1089(1-2):18-24.
    [43]Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe [J]. K. Sven. Vetenskapsakad.Handl.1898,24:1-39.
    [44]Ho YS, McKay G Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999,34(5):451-465.
    [45]Scordino M, Mauro AD, Passerini A, Maccarone E. Adsorption of flavonoids on resins: Cyanidin 3-Glucoside [J]. Journal of Agricultural and Food Chemistry,2004,52(7):1965-1972.
    [46]Qiu NX, Guo SQ Chang YH. Study upon kinetic process of apple juice adsorption de-coloration by using adsorbent resin [J]. Journal of Food Engineering,2007,81(1):243-249.
    [47]Du XL, Yuan QP, Zhao JS, Li Y. Comparison of general rate model with a new model— artificial neural network model in describing chromatographic kinetics of solanesol adsorption in packed column by macroporous resins [J]. Journal of Chromatography A,2007,1145(1-2): 165-174.
    [48]Silva EM, Pompeu DR, Larondelle Y, Rogez H. Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology [J]. Separation and Purification Technology,2007,53(3):274-280.
    [49]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [50]Freundlich H. Uber die adsorption in Losungen [J]. Z. Phys. Chem.1907,57:385-470.
    [51]Jung MW, Ahn KH, Lee YH, Kim KP, Paeng IR, Rhee JS, Park JT, Paeng KJ. Evaluation on the adsorption capabilities of new chemically modified polymeric adsorbents with protoporphyrin Ⅸ [J]. Journal of Chromatography A,2001,917(1-2):87-93.
    [52]Traybal RE. Mass Transfer Operation [M], Singapore:Mocraw Hill Book Co,1981:590.
    [53]王宝琹,苏健,鲁静.黄芪甲甙的检测在中药质控中的应用[J].中国中药杂志,1996,21(3):161-164.
    [54]李莉,谭蔚,马雪松.微波辅助提取黄芪甲苷的研究[J].中草药,2007,30(2):234-236.
    [55]刘景利,王何,付绍平,金凤燮,鱼红闪.大孔吸附树脂纯化黄芪皂苷生物转化物质的研究[J].大连轻工业学院学报,2007,26(2):128-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700