基于石墨烯材料的黄曲霉毒素液相色谱检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄曲霉毒素是一类由真菌(主要为黄曲霉菌和寄生曲霉菌)产生的高毒次生代谢产物,以高毒性和强致癌性著称,早在1993年黄曲霉毒素B1就被世界卫生组织(World Health Organization,WHO)的癌症研究机构认定为1类致癌物。自然界中,黄曲霉毒素的产毒菌株分布广泛,因此,黄曲霉毒素广泛存在于玉米、花生、大米、植物油脂等农产品中,严重威胁农产品消费安全。近年来,世界各国设置了严格的限量标准来保障农产品质量安全,对黄曲霉毒素检测方法的要求也越来越高。因此,新型快速的黄曲霉毒素检测方法研究就变得尤为重要。
     在众多黄曲霉毒素的分析方法中,样品前处理仍然被认为是整个分析过程里,一个非常重要且需要重点研究的环节,尤其是对于复杂样品,它甚至成为制约整个分析过程的决定性因素。农产品中黄曲霉毒素的含量极低,加之很多农产品含油量高,基质复杂,这些都进一步增加了前处理的难度。
     本研究针对以上迫切需要解决的样品前处理难题,将新型纳米材料——石墨烯及其衍生物应用于黄曲霉毒素的检测研究中,并建立了基于新材料萃取的黄曲霉毒素液相色谱检测方法,为农产品中黄曲霉毒素污染监测提供了技术支撑。本论文的主要研究内容和创新点如下:
     1.成功研制出三种石墨烯纳米材料,并对其形貌和结构进行分析。以石墨粉为原料,经化学氧化制备出氧化石墨烯,合成的氧化石墨烯呈绸缎状,厚度在0.8~1.1nm之间,片层大小在0.1~2μm之间。进一步通过两种合成方式,制备出氧化石墨烯-二氧化硅复合材料,SEM分析表明,氧化石墨烯被成功包覆在二氧化硅纳米颗粒上,并将小颗粒的二氧化硅颗粒聚集,一定程度上起到粘合剂作用。通过在氧化石墨烯的分散溶液中引入铁基前驱物,采用溶剂热法一步还原,制备出有磁性的石墨烯-四氧化三铁复合材料。XRD和SEM的结果表明,直径在100nm的四氧化三铁磁珠被均匀附着在了石墨烯的片层上。
     2.研究探明了氧化石墨烯对黄曲霉毒素B1的吸附性能,并建立了利用氧化石墨烯作为吸附剂的食用植物油中黄曲霉毒素B1脱除方法。研究发现,黄曲霉毒素B1在氧化石墨烯上的吸附平衡时间为4h,最大吸附容量为62.5ng/mg。氧化石墨烯不仅可以吸附黄曲霉毒素B1,还可以吸附黄曲霉毒素B2。氧化石墨烯对植物油脂样品中黄曲霉毒素的实际吸附率在97.8~98.8%之间,说明其可以用于实际植物油样品中黄曲霉毒素的脱除。
     3.通过优选氧化石墨烯,建立了基于氧化石墨烯萃取花生中黄曲霉毒素HPLC检测方法。新方法评价结果表明,四种黄曲霉毒素的检出限在0.08~0.65μg/kg之间,定量限在0.25~2.0μg/kg之间,在检测范围内表现出良好的线性相关性,相关系数在0.99217~0.99995之间,花生样品中四种黄曲霉毒素的加标回收率在85.1~100.8%之间,相对标准偏差在2.1~7.9%之间,证明本方法适用花生实际样品检测。
     4.创建了氧化石墨烯-二氧化硅复合材料的黄曲霉毒素SPE前处理技术,研究建立了与之配套的黄曲霉毒素HPLC检测方法,并成功用于大米和玉米粮油产品黄曲霉毒素检测中。新方法检测的四种黄曲霉毒素在0.5~50μg/kg的范围内均具有良好的线性,其相关系数在0.99956~0.99994之间,检出限在0.05~0.5μg/kg之间,定量限在0.2~2.0μg/kg之间。
     5.针对植物油基质粘性大,萃取材料固液相难分离的缺陷,成功建立了以石墨烯-四氧化三铁复合材料作为萃取材料的植物油中黄曲霉毒素MSPE的前处理方法与配套HPLC检测方法。该方法黄曲霉毒素B1的检测范围在0.85~51μg/kg之间,检出限为0.85μg/kg;黄曲霉毒素B2的检测范围相对较大,在0.22~66.99μg/kg之间,检出限为0.22μg/kg。方法中黄曲霉毒素B1和B2的定量限分别为2.64μg/kg和0.66μg/kg。
Aflatoxins are a group of mycotoxins produced as highly toxic secondary metabolites by manyspecies of Aspergillus, a fungus, the most notable ones being Aspergillus flavus and Aspergillusparasiticus. Aflatoxins are highly toxic and carcinogenic. Especially, aflatoxin B1is classified as aGroup1carcinogen by the World Health Organisation (WHO) in1993. The aflatoxin-producing fungiare widespread in nature, which leads to contamination of aflatoxins in a variety of agro products, suchas corn, peanuts, rice, vegetable oils and so on. Thus, it is a huge threat to comsuption safety of agroproducts. In recent years, strict standards and control measurements have been established to ensureagro-products quality and safety in different countries successively, which means that the requirementfor the methods for the detection of aflatoxins is getting higher the higher. Therefore, the researches onnovel methods for rapid detection of aflatoxins become more and more important.
     In many methods for detection and quantification of aflatoxins, sample pretreatment is stillconsidered as an important part in whole analytical procedure, which needs to pay much attention.Especially for complex samples, it may even become a bottleneck point in the whole analysis process.Many agro products with low content of aflatoxins have a high oil content and complex matrix, whichfurther increases the difficulty of aflatoxins analysis.
     For solving such problems, in this study, new nanomaterials--graphene and its derivatives areused as adsorbents for aflatoxins coupled with HPLC to establish new methods for detecting aflatoxins.The new methods can be the technical support for monitoring studies of aflatoxins in agro products. Themain research contents and innovative points are as follows:
     1. Three kinds of nanomaterials were successfully synthesized. And their morphology and structurewere also studied. Graphene oxide (GO) was synthesized by chemical oxidation of graphite powder.Silk-like GO sheets showed a thickness of0.8~1.1nm, with a layer size of0.1~2μm. A series ofGO-SiO2nanocomposites were prepared by two ways. The SEM results proved that GO wassuccessfully grafted on the silica nanoparticles. The results also indicated that GO acted as inorganicglue to bind the small silica nanoparticles together. A magnetic graphene material with a one-stepsolvothermal method was synthesized by introducing a ferrous precursor in GO solution. The XRD andSEM results showed that the Fe3O4magnetic beads with a diameter of100nm are uniformly attachedon the graphene sheets.
     2. The tests were performed to evaluate the ability of graphene oxide (GO) as the adsorbent toadsorb aflatoxins B1. And the GO was successfully applied in detoxifying of aflatoxins in ediblevegetable oils. The research also found that it took4hours for GO to adsorb aflatoxin B1to achieveadsorption equilibrium. The maximum adsorption capacity for GO is62.5ng/mg. The GO can notonly adsorb aflatoxin B1but also a certain content of aflatoxin B2. The recoveries of the GO adsorptionof aflatoxin B1in actual oil samples ranged from97.8to98.8%, indicating that GO was suitable for removing aflatoxins in edible vegetable oils.
     3. Graphene oxide was synthesized and selected to be applied as an effective adsorbent fordetermination and quantification of aflatoxins in peanuts by HPLC. The limit of detection of thismethod ranges from0.08to0.65μg/kg. The limit of quantification of this method ranges from0.25to2.0μg/kg. Good linear relationships have been obtained with the correlation coefficient (r) ranging from0.99217to0.99995. The recoveries of the four aflatoxins in peanut samples are in the range from85.1%to100.8%with the relative standard deviations between2.1%and7.9%, indicating that this method wassuitable for real sample analysis.
     4. A method for detection aflatoxins in rice and corn has been developed by using GO-SiO2nanocomposites as the extraction material in SPE. In this method, four aflatoxins can be detected with agood linear in the range of0.5~50μg/kg. The values of the correlation coefficient between0.99956~0.99994have been achieved. The limits of detection of this method for four aflatoxins are inthe range of0.05~0.5μg/kg with the limits of quantitation in the range of0.2~2.0μg/kg.
     5. The vegetable oils were extremely viscous. Therefore, the solid materials for extraction aredifficult to separate from the liquid sample solution. A MSPE method was optimized to successfullyextract two aflatoxins in vegetable oils. In this method, for aflatoxin B1, a linear detection range of0.85~51μg/kg was found with a detection limit of0.85μg/kg. For aflatoxin B2, the new detectionmethod has a larger linear detection ranging from0.22~66.99μg/kg with a detection limit of0.22μg/kg.The limits of quantitation for aflatoxin B1and B2were2.64and0.66μg/kg respectively.
引文
1.蔡燕,新型离子液体电化学性能及在生物传感器中的应用研究[硕士学位论文].无锡市:江南大学,2011
    2.柴晓森,应用于免疫检测的电化学传感器研究[硕士学位论文].上海市:复旦大学,2011
    3.程金生,功能化石墨烯纳米材料的合成与应用[博士学位论文].合肥:中国科技大学2011
    4.丁小霞,中国产后花生黄曲霉毒素污染与风险评估方法研究[博士学位论文].北京:中国农业科学院2011
    5.邓省亮,赖卫华,许杨,胶体金免疫层析法快速检测黄曲霉毒素B1的研究.食品科学,2007.28(2):232-235.
    6.管笛,黄曲霉毒素M1单克隆抗体及检测技术研究[博士学位论文].北京:中国农业科学院2011
    7.龚珊,任正东,潘静,刘旭,李尧, HPLC测定玉米中黄曲霉毒素B_1前处理提取方法的探讨.河南工业大学学报(自然科学版),2012.1:57-58.
    8.韩红岩,汪军,玉米中黄曲霉毒素提取方法的评价.山东农业大学学报,1999.3:241-244.
    9.胡竹行,沈才洪,敖宗华,王松涛,周军,曾娜,丁海龙,张强,大曲中黄曲霉毒素B1提取方法的研究.酿酒科技,2014.2.
    10.靳学敏,车振明,蚕豆中黄曲霉毒素B1提取方法的研究.西华大学学报(自然科学版),2011.1:23-27.
    11.靳学敏,车振明,汪颖,响应面法优化成曲蚕豆瓣子中黄曲霉毒素B_1的提取.食品科技,2011.1:200-204.
    12.孔祥虹,高军刚,何强,何芳,超高效液相色谱-串联质谱法测定植物提取物中的4种黄曲霉毒素.食品科技,2013.4:325-329.
    13.黎远冬,陶立新,刘宗河,杨寅中,涂文升,黎丹戎,快速提取花生油中黄曲霉毒素B_1的新方法.广西医学院学报,1992.4:97-100.
    14.刘昭,基于亲生作用色谱和串联质谱联用的细胞分裂素分析方法研究[博士学位论文].武汉:武汉大学2011
    15.廖继承,侯志芳,邱启东,李锦清,黄秋研,乙醇水体系提取花生油中黄曲霉毒素B1的方法研究.广东化工,2013.16:32-33.
    16.马良,张宇吴,李培武, LIF-HPCE法检测食品中的黄曲霉毒素B1.食品科学,2009.30(10):135-139.
    17.彭顺金,食油及油料作物种子中黄曲霉毒素的提取及反相HPLC法测定.湖北大学学报(自然科学版),1990.1:62-66.
    18.孙秀兰,赵晓联,汤坚,大米中黄曲霉毒素B_1的提取方法优化.食品科学,2004.7:128-131.
    19.孙秀兰,张银志,应用超声波法提取大米中黄曲霉毒素B_1.中国卫生检验杂志,2007.5:828-829.
    20.滕南雁,宋宁宁,刘涛,广西地区市售食用植物油和大米中黄曲霉毒素B1的采样调查和分析.中国卫生检验杂志,2011.21(6):1531-1532.
    21. R.G.Helman,黄志宏,罗薇,霉菌毒素污染的对策.西南民族学院学报(自然科学版),1992.1:119-124.
    22.张道宏,黄曲霉毒素杂交瘤细胞株的选育及免疫层析检测技术研究[博士学位论文].北京:中国农业科学院2011
    23. Acharya, D. and T.K. Dhar, A novel broad-specific noncompetitive immunoassay and itsapplication in the determination of total aflatoxins.Anal ChimActa,2008.630(1):82-90.
    24. Alcaide-Molina, M., et al., High through-put aflatoxin determination in plant material byautomated solid-phase extraction on-line coupled to laser-induced fluorescence screening anddetermination by liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr A,2009.1216(7):1115-25.
    25. Ambrosi, A., et al., Chemically reduced graphene contains inherent metallic impurities presentin parent natural and synthetic graphite. Proc Natl Acad Sci U S A,2012.109(32):12899-904.
    26. Anfossi, L., et al., Development and application of solvent-free extraction for the detection ofaflatoxin M1in dairy products by enzyme immunoassay. J Agric Food Chem,2008.56(6):1852-7.
    27. Asai, T., et al., Aflatoxin contamination of red chili pepper from Bolivia and Peru, countrieswith high gallbladder cancer incidence rates.Asian Pac J Cancer Prev,2012.13(10):5167-70.
    28. Asao, T., et al., The Structures of Aflatoxins B and G1. Journal of the American ChemicalSociety,1965.87(4):882-886.
    29. Ayres, J.L., et al., Aflatoxin structure and hepatocarcinogenicity in rainbow trout (Salmogairdneri). J Natl Cancer Inst,1971.46(3):561-4.
    30. Beliatis, M.J., et al., Hybrid Graphene-Metal Oxide Solution Processed Electron TransportLayers for Large Area High-Performance Organic Photovoltaics.Adv Mater,2014.
    31. Bengtson Nash, S.M., et al., The combined SPE:ToxY-PAM phytotoxicity assay; applicationand appraisal of a novel biomonitoring tool for the aquatic environment. Biosens Bioelectron,2005.20(7):1443-51.
    32. Bhattacharya, D., R. Bhattacharya, and T.K. Dhar, A novel signal amplification technology forELISA based on catalyzed reporter deposition. Demonstration of its applicability for measuringaflatoxin B(1). J Immunol Methods,1999.230(1-2):71-86.
    33. Bian, X., et al., A facile one-pot hydrothermal method to produce SnS2/reduced graphene oxidewith flake-on-sheet structures and their application in the removal of dyes from aqueoussolution. J Colloid Interface Sci,2013.406:37-43.
    34. Blesa, J., et al., Determination of aflatoxins in peanuts by matrix solid-phase dispersion andliquid chromatography. Journal of Chromatography A,2003.1011(1-2):49-54.
    35. Brera, C., et al., Immunoaffinity column cleanup with liquid chromatography for determinationof aflatoxin B1in corn samples: interlaboratory study. JAOAC Int,2007.90(3):765-72.
    36. Brumfiel, G., Graphene gets ready for the big time. Nature,2009.458(7237):390-1.
    37. Cavaliere, C., et al., Aflatoxin M1determination in cheese by liquid chromatography-tandemmass spectrometry. J Chromatogr A,2006.1135(2):135-41.
    38. Cavaliere, C., et al., Determination of aflatoxins in olive oil by liquid chromatography-tandemmass spectrometry.Anal Chim Acta,2007.596(1):141-8.
    39. Cervino, C., et al., Use of isotope-labeled aflatoxins for LC-MS/MS stable isotope dilutionanalysis of foods. JAgric Food Chem,2008.56(6):1873-9.
    40. Chandra, V., et al., Water-Dispersible Magnetite-Reduced Graphene Oxide Composites forArsenic Removal. Acs Nano,2010.4(7):3979-3986.
    41. Chang, Q., et al., Application of graphene as a sorbent for preconcentration and determinationof trace amounts of chromium(III) in water samples by flame atomic absorption spectrometry.Analytical Methods,2012.4(4):1110-1116.
    42. Chen, C.Y., W.J. Li, and K.Y. Peng, Determination of aflatoxin M1in milk and milk powderusing high-flow solid-phase extraction and liquid chromatography-tandem mass spectrometry. JAgric Food Chem,2005.53(22):8474-80.
    43. Chen, J., et al., Preparation and evaluation of graphene-coated solid-phase microextraction fiber.Analytica Chimica Acta,2010.678(1):44-49.
    44. Chen, J.L., et al., Graphene oxide based photoinduced charge transfer label-free near-infraredfluorescent biosensor for dopamine.Anal Chem,2011.83(22):8787-93.
    45. Chen, L., et al., Application of graphene-based solid-phase extraction for ultra-fastdetermination of malachite green and its metabolite in fish tissues. Food Chem,2013.141(2):1383-9.
    46. Chen, L., et al., Simultaneous determination of human Enterovirus71and Coxsackievirus B3by dual-color quantum dots and homogeneous immunoassay.Anal Chem,2012.84(7):3200-7.
    47. Chen, R., et al., Effect of ozone on aflatoxins detoxification and nutritional quality of peanuts.Food Chem,2014.146:284-8.
    48. Chen, W., et al., Composites of Aminodextran-Coated Fe3O4Nanoparticles and GrapheneOxide for Cellular Magnetic Resonance Imaging. ACS Appl Mater Interfaces,2011.3(10):4085-4091.
    49. Chen, W.L., T.F. Hsu, and C.Y. Chen, Measurement of aflatoxin M1in milk byultra-high-performance liquid chromatography/tandem mass spectrometry. J AOAC Int,2011.94(3):872-7.
    50. Chi, Y., et al., Comprehensive study of mesoporous carbon functionalized with carboxylategroups and magnetic nanoparticles as a promising adsorbent. J Colloid Interface Sci,2012.369(1):366-72.
    51. Cote, L.J., F. Kim, and J. Huang, Langmuir Blodgett Assembly of Graphite Oxide SingleLayers. Journal of theAmerican Chemical Society,2008.131(3):1043-1049.
    52. Creppy, E.E., Update of survey, regulation and toxic effects of mycotoxins in Europe. ToxicolLett,2002.127(1-3):19-28.
    53. Czerwiecki, L.,[Determination of selected mycotoxins in food. I. Selection of optimalconditions for the determination of aflatoxin M1in milk using high-performance liquidchromatography methods]. Rocz Panstw Zakl Hig,1998.49(1):1-11.
    54. Daly, S.J., et al., Development of surface plasmon resonance-based immunoassay for aflatoxinB(1). J Agric Food Chem,2000.48(11):5097-104.
    55. Delmulle, B.S., et al., Development of an immunoassay-based lateral flow dipstick for the rapiddetection of aflatoxin B1in pig feed. JAgric Food Chem,2005.53(9):3364-8.
    56. Deng, X., et al., The adsorption properties of Pb(II) and Cd(II) on functionalized grapheneprepared by electrolysis method. J Hazard Mater,2010.183(1-3):923-30.
    57. Ding, J., et al., Magnetic solid-phase extraction based on magnetic carbon nanotube for thedetermination of estrogens in milk. Journal of Separation Science,2011.34(18):2498-2504.
    58. Dong, X., et al., Graphene as a Novel Matrix for the Analysis of Small Molecules byMALDI-TOF MS.Anal Chem,2010.82(14):6208-6214.
    59. Dong, Y., et al., Thermal evaporation-induced anhydrous synthesis of Fe3O4-graphenecomposite with enhanced rate performance and cyclic stability for lithium ion batteries. PhysChem Chem Phys,2013.15(19):7174-81.
    60. Dreyer, D.R., et al., The chemistry of graphene oxide. Chemical Society Reviews,2010.39(1):228-240.
    61. Edinboro, L.E. and H.T. Karnes, Determination of aflatoxin B1in sidestream cigarette smokeby immunoaffinity column extraction coupled with liquid chromatography/mass spectrometry. JChromatogr A,2005.1083(1-2):127-32.
    62. Engvall, E. and P. Perlmann, Enzyme-linked immunosorbent assay, Elisa.3. Quantitation ofspecific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol,1972.109(1):129-35.
    63. Es’haghi, Z., et al., Fabrication of a novel nanocomposite based on sol–gel process for hollowfiber-solid phase microextraction of aflatoxins: B1and B2, in cereals combined with highperformane liquid chromatography–diode array detection. Journal of Chromatography B,2011.879(28):3034-3040.
    64. Fan, J., et al., Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement.Nanoscale,2012.4(22):7046-55.
    65. Fan, L., et al., Fabrication of novel magnetic chitosan grafted with graphene oxide to enhanceadsorption properties for methyl blue. J Hazard Mater,2012.215–216(0):272-279.
    66. Fan, L., et al., Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbentand its application in dye adsorption and removal. Colloids and Surfaces B: Biointerfaces,2013.103(0):601-607.
    67. Fan, X., et al., Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: AGreen Route to Graphene Preparation.Advanced Materials,2008.20(23):4490-4493.
    68. Farjam, A., et al., Determination of aflatoxin M1using a dialysis-based immunoaffinity samplepretreatment system coupled on-line to liquid chromatography. Reusable immunoaffinitycolumns. J Chromatogr,1992.589(1-2):141-9.
    69. Feng, R., et al., Ultrasensitive non-enzymatic and non-mediator electrochemical biosensorusing nitrogen-doped graphene sheets for signal amplification and nanoporous alloy as carrier.Electrochimica Acta,2013.97:105-111.
    70. Feng, R., et al., Nanoporous PtCo-based ultrasensitive enzyme-free immunosensor forzeranoldetection. Biosensors and Bioelectronics,2013.42(0):367-372.
    71. Fu, X., et al., Label-free colorimetric sensor for ultrasensitive detection of heparin based oncolor quenching of gold nanorods by graphene oxide. Biosens Bioelectron,2012.34(1):227-31.
    72. Fua, Z.H., X.X. Huang, and S.G. Min, Rapid determination of aflatoxins in corn and peanuts.Journal of Chromatography A,2008.1209(1-2):271-274.
    73. Gómez-Navarro, C., et al., Electronic Transport Properties of Individual Chemically ReducedGraphene Oxide Sheets. Nano Letters,2007.7(11):3499-3503.
    74. Gan, N., et al., An ultrasensitive electrochemiluminescent immunoassay for aflatoxin M1inmilk, based on extraction by magnetic graphene and detection by antibody-labeled CdTequantumn dots-carbon nanotubes nanocomposite. Toxins (Basel),2013.5(5):865-83.
    75. Gao, E., et al., Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6composite. Phys Chem Chem Phys,2011.13(7):2887-93.
    76. Gao, Y., et al., Adsorption and removal of tetracycline antibiotics from aqueous solution bygraphene oxide. J Colloid Interface Sci,2012.368:540-546.
    77. Garon, D., et al., Mycoflora and multimycotoxin detection in corn silage: experimental study. JAgric Food Chem,2006.54(9):3479-84.
    78. Geim,A.K. and K.S. Novoselov, The rise of graphene. Nat Mater,2007.6(3):183-91.
    79. Giakisikli, G. and A.N. Anthemidis, Magnetic materials as sorbents for metal/metalloidpreconcentration and/or separation.Areview.Anal ChimActa,2013.789:1-16.
    80. Giovanni, M., et al., Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids forelectrocatalysis. Nanoscale,2012.4(16):5002-8.
    81. Gomez-Catalan, J., et al., Determination of aflatoxins in medicinal herbs by HPLC. An efficientmethod for routine analysis. PhytochemAnal,2005.16(3):196-204.
    82. Gong, J.M., et al., Facile synthesis of zirconia nanoparticles-decorated graphene hybridnanosheets for an enzymeless methyl parathion sensor. Sensors and Actuators B-Chemical,2012.162(1):341-347.
    83. Gong, J.M., et al., An enzymeless organophosphate pesticide sensor using Aunanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta,2011.85(3):1344-1349.
    84. Guan, D., et al., A competitive immunoassay with a surrogate calibrator curve for aflatoxin M1in milk. Anal ChimActa,2011.703(1):64-9.
    85. Guan, W., et al., Amine modified graphene as reversed-dispersive solid phase extractionmaterials combined with liquid chromatography-tandem mass spectrometry for pesticidemulti-residue analysis in oil crops. J Chromatogr A,2013.1286:1-8.
    86. Gulbakan, B., et al., A Dual Platform for Selective Analyte Enrichment and Ionization in MassSpectrometry Using Aptamer-Conjugated Graphene Oxide. J Am Chem Soc,2010.132(49):17408-17410.
    87. Guo, L., et al., Preparation of millimetre-sized mesoporous carbon spheres as an effectivebilirubin adsorbent and their blood compatibility. Chem Commun (Camb),2010.46(38):7127-9.
    88. Guo, Z., et al., Single-walled carbon nanotubes based quenching of free FAM-aptamer forselective determination of ochratoxin A. Talanta,2011.85(5):2517-2521.
    89. Han, P., et al., Structure, thermal stability and electrical properties of reducedgraphene/poly(vinylidene fluoride) nanocomposite films. J Nanosci Nanotechnol,2012.12(9):7290-5.
    90. Han, Q., et al., Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites andtheir application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbonsfrom environmental water samples. Talanta,2012.101:388-95.
    91. He, F., et al., The attachment of Fe3O4nanoparticles to graphene oxide by covalent bonding.Carbon,2010.48(11):3139-3144.
    92. Hernandez-Hierro, J.M., R.J. Garcia-Villanova, and I. Gonzalez-Martin, Potential of nearinfrared spectroscopy for the analysis of mycotoxins applied to naturally contaminated redpaprika found in the Spanish market.Anal Chim Acta,2008.622(1-2):189-94.
    93. Hou, M., et al., The use of silica-coated magnetic graphene microspheres as the adsorbent forthe extraction of pyrethroid pesticides from orange and lettuce samples followed by GC-MSanalysis. J Sep Sci,2013.36(19):3242-8.
    94. Hu, A., et al., A facile method to synthesize Fe3O4/graphene composites in normal pressurewith high rate capacity and cycling stability. Materials Letters,2013.91(0):315-318.
    95. Hu, H., et al., Layer-by-layer assembled smectite-polymer nanocomposite film for rapidfluorometric detection of aflatoxin B1. Sensors and Actuators B: Chemical,2012.166–167(0):205-211.
    96. Huang, B., et al., Dual-label time-resolved fluoroimmunoassay for simultaneous detection ofaflatoxin B1and ochratoxin A.Arch Toxicol,2009.83(6):619-24.
    97. Huang, B., et al.,[Simultaneous detection of aflatoxin B1and ochratoxin A by the dual-labeltime-resolved fluoroimmunoassay]. Wei Sheng Yan Jiu,2009.38(4):385-8.
    98. Huang, K.J., et al., Spectrofluorimetric determination of glutathione in human plasma bysolid-phase extraction using graphene as adsorbent. Spectrochimica Acta Part a-Molecular andBiomolecular Spectroscopy,2011.79(5):1860-1865.
    99. Huang, K.J., et al., Extraction of neurotransmitters from rat brain using graphene as asolid-phase sorbent, and their fluorescent detection by HPLC. Microchimica Acta,2012.176(3-4):327-335.
    100. Huang, X., et al., Graphene-based composites. Chem Soc Rev,2012.41(2):666-86.
    101. Huang, Z. and H.K. Lee, Materials-based approaches to minimizing solvent usage in analyticalsample preparation. TrAC Trends in Analytical Chemistry,2012.39(0):228-244.
    102. Hummers, W.S.O.R.E., Preparation of Graphitic Oxide. J.Am. Chem. Soc.,1958(80):1339.
    103. Jeong, H.-K., et al., Evidence of Graphitic AB Stacking Order of Graphite Oxides. Journal oftheAmerican Chemical Society,2008.130(4):1362-1366.
    104. Ji, L., et al., Adsorption of Sulfonamide Antibiotics to Multiwalled Carbon Nanotubes.Langmuir,2009.25(19):11608-11613.
    105. Jin, X., et al., Piezoelectric immunosensor with gold nanoparticles enhanced competitiveimmunoreaction technique for quantification of aflatoxin B1. Biosens Bioelectron,2009.24(8):2580-5.
    106. Jodlbauer, J., N.M. Maier, and W. Lindner, Towards ochratoxin A selective molecularlyimprinted polymers for solid-phase extraction. Journal of Chromatography A,2002.945(1–2):45-63.
    107. Karamani, A.A., A.P. Douvalis, and C.D. Stalikas, Zero-valent iron/ironoxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinatedbiphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography–massspectrometry. Journal of Chromatography A,2013.1271(1):1-9.
    108. Karthika, P., N. Rajalakshmi, and K.S. Dhathathreyan, Phosphorus-doped exfoliated graphenefor supercapacitor electrodes. J Nanosci Nanotechnol,2013.13(3):1746-51.
    109. Kawasaki, H., et al., Functionalized Graphene-Coated Cobalt Nanoparticles for HighlyEfficient Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Analysis. AnalChem,2012.84(21):9268-9275.
    110. Kesting, J.R., J. Huang, and D. Sorensen, Identification of adulterants in a Chinese herbalmedicine by LC-HRMS and LC-MS-SPE/NMR and comparative in vivo study with standardsin a hypertensive rat model. J Pharm Biomed Anal,2010.51(3):705-11.
    111. Khayoon, W.S., et al., High performance liquid chromatographic determination of aflatoxins inchilli, peanut and rice using silica based monolithic column. Food Chemistry,2012.133(2):489-496.
    112. Kolosova, A.Y., et al., Direct competitive ELISA based on a monoclonal antibody for detectionof aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. AnalBioanal Chem,2006.384(1):286-94.
    113. Kong, L., et al., A highly sensitive protocol (FRET/SIMNSEF) for the determination ofmercury ions: a unity of fluorescence quenching of graphene and enhancement of nanogold.Chem Commun (Camb),2011.47(37):10389-91.
    114. Korde, A., et al., Development of a radioimmunoassay procedure for aflatoxin B1measurement.JAgric Food Chem,2003.51(4):843-6.
    115. Krska, R., et al., Mycotoxin analysis: an update. Food Addit Contam Part A Chem Anal ControlExpo Risk Assess,2008.25(2):152-63.
    116. Lattanzio, V.M., et al., Simultaneous determination of aflatoxins, ochratoxin A and Fusariumtoxins in maize by liquid chromatography/tandem mass spectrometry after multitoxinimmunoaffinity cleanup. Rapid Commun Mass Spectrom,2007.21(20):3253-61.
    117. Li, P., Q. Zhang, and W. Zhang, Immunoassays for aflatoxins. TrAC Trends in AnalyticalChemistry,2009.28(9):1115-1126.
    118. Li, W., et al., Sol-gel design strategy for ultradispersed TiO2nanoparticles on graphene forhigh-performance lithium ion batteries. JAm Chem Soc,2013.135(49):18300-3.
    119. Li, X.S., et al., A magnetite/oxidized carbon nanotube composite used as an adsorbent and amatrix of MALDI-TOF-MS for the determination of benzo a pyrene. ChemicalCommunications,2011.47(35):9816-9818.
    120. Li, Y., et al., Adsorption of fluoride from aqueous solution by graphene. J Colloid Interface Sci,2011.363(1):348-54.
    121. Li, Z., et al., Extraction of imide fungicides in water and juice samples using magneticgraphene nanoparticles as adsorbent followed by their determination with gas chromatographyand electron capture detection.Anal Sci,2013.29(3):325-31.
    122. Liang, J., et al., Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and EffectiveReinforcement of their Nanocomposites. Advanced Functional Materials,2009.19(14):2297-2302.
    123. Liang, X.X. and Y.N. Wu,[Building the Chinese system for food safety based on the frame ofrisk assessment]. Zhonghua Yu Fang Yi Xue Za Zhi,2013.47(6):487-90.
    124. Lillehoj, E.B., D.I. Fennell, and W.F. Kwolek, Aspergilus flavus and aflatoxin in Iowa cornbefore harvest. Science,1976.193(4252):495-6.
    125. Linting, Z., et al., An immunosensor for ultrasensitive detection of aflatoxin B1with anenhanced electrochemical performance based on graphene/conducting polymer/goldnanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition.Sensors and Actuators B: Chemical,2012.174(0):359-365.
    126. Liu, F., et al., Folded structured graphene paper for high performance electrode materials. AdvMater,2012.24(8):1089-94.
    127. Liu, H.Y., et al., Microfluidic chip-based nano-liquid chromatography tandem massspectrometry for quantification of aflatoxins in peanut products. Talanta,2013.113:76-81.
    128. Liu, J., et al., Toward a universal "adhesive nanosheet" for the assembly of multiplenanoparticles based on a protein-induced reduction/decoration of graphene oxide. J Am ChemSoc,2010.132(21):7279-81.
    129. Liu, L., et al., Adsorption of Au(III), Pd(II), and Pt(IV) from Aqueous Solution onto GrapheneOxide. Journal of Chemical and Engineering Data,2013.58(2):209-216.
    130. Liu, M., et al., Colloidal Graphene as a Transducer in Homogeneous Fluorescence-BasedImmunosensor for Rapid and Sensitive Analysis of Microcystin-LR. Environmental Science&Technology,2012.46(22):12567-12574.
    131. Liu, Q., et al., Preparation of graphene-encapsulated magnetic microspheres for protein/peptideenrichment and MALDI-TOF MS analysis. Chemical Communications,2012.48(13):1874-1876.
    132. Liu, Q., J. Shi, and G. Jiang, Application of graphene in analytical sample preparation. TrACTrends in Analytical Chemistry,2012.37(0):1-11.
    133. Liu, Q., et al., Graphene and graphene oxide sheets supported on silica as versatile andhigh-performance adsorbents for solid-phase extraction. Angew Chem Int Ed Engl,2011.50(26):5913-7.
    134. Liu, Q., et al., Graphene-assisted matrix solid-phase dispersion for extraction ofpolybrominated diphenyl ethers and their methoxylated and hydroxylated analogs fromenvironmental samples. Anal ChimActa,2011.708(1-2):61-8.
    135. Liu, Q., et al., Hemimicelles/admicelles supported on magnetic graphene sheets for enhancedmagnetic solid-phase extraction. J Chromatogr A,2012.1257:1-8.
    136. Liu, Q., et al., Evaluation of graphene as an advantageous adsorbent for solid-phase extractionwith chlorophenols as model analytes. Journal of Chromatography A,2011.1218(2):197-204.
    137. Liu, R., et al., Photodegradation kinetics and byproducts identification of the Aflatoxin B1inaqueous medium by ultra-performance liquid chromatography-quadrupole time-of-flight massspectrometry. J Mass Spectrom,2010.45(5):553-9.
    138. Liu, W.W., J.N. Wang, and X.X. Wang, Charging of unfunctionalized graphene in organicsolvents. Nanoscale,2012.4(2):425-428.
    139. Liu, Y., X. Dong, and P. Chen, Biological and chemical sensors based on graphene materials.Chem Soc Rev,2012.41(6):2283-307.
    140. Liu, Y., et al., Graphene and graphene oxide: two ideal choices for the enrichment andionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrixinterference. Rapid Communications in Mass Spectrometry,2011.25(21):3223-3234.
    141. Liu, Y., S. Yang, and W. Niu, Simple, rapid and green one-step strategy to synthesis ofgraphene/carbon nanotubes/chitosan hybrid as solid-phase extraction for square-wavevoltammetric detection of methyl parathion. Colloids Surf B Biointerfaces,2013.108:266-70.
    142. Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. NatChem,2010.2(12):1015-24.
    143. Lu, C.H., et al., General approach for monitoring peptide-protein interactions based ongraphene-peptide complex.Anal Chem,2011.83(19):7276-82.
    144. Lu, C.H., et al., A graphene platform for sensing biomolecules. Angew Chem Int Ed Engl,2009.48(26):4785-7.
    145. Lu, G., L.E. Ocola, and J. Chen, Reduced graphene oxide for room-temperature gas sensors.Nanotechnology,2009.20(44):445502.
    146. Lu, K., G.X. Zhao, and X.K. Wang, A brief review of graphene-based material synthesis and itsapplication in environmental pollution management. Chinese Science Bulletin,2012.57(11):1223-1234.
    147. Luo, Y.-B., et al., Graphene-polymer composite: extraction of polycyclic aromatichydrocarbons from water samples by stir rod sorptive extraction. Analytical Methods,2011.3(1):92-98.
    148. Luo, Y.B., et al., Magnetic retrieval of graphene: Extraction of sulfonamide antibiotics fromenvironmental water samples. Journal of Chromatography A,2011.1218(10):1353-1358.
    149. Luo, Y.B., et al., Facile fabrication of reduced graphene oxide-encapsulated silica: a sorbent forsolid-phase extraction. J Chromatogr A,2013.1299:10-7.
    150. Magliulo, M., et al., Development and validation of an ultrasensitive chemiluminescent enzymeimmunoassay for aflatoxin M1in milk. JAgric Food Chem,2005.53(9):3300-5.
    151. Maliyekkal, S.M., et al., Graphene: a reusable substrate for unprecedented adsorption ofpesticides. Small,2013.9(2):273-83.
    152. Manetta, A.C., et al., High-performance liquid chromatography with post-column derivatisationand fluorescence detection for sensitive determination of aflatoxin M1in milk and cheese.Journal of Chromatography A,2005.1083(1–2):219-222.
    153. Mao, C., Y. Zhu, and W. Jiang, Design of electrical conductive composites: tuning themorphology to improve the electrical properties of graphene filled immiscible polymer blends.ACS Appl Mater Interfaces,2012.4(10):5281-6.
    154. Marcano, D.C., et al., Improved Synthesis of Graphene Oxide. ACS Nano,2010.4(8):4806-4814.
    155. Marroquín-Cardona, A., et al., Characterization and safety of uniform particle size NovaSil clayas a potential aflatoxin enterosorbent.Applied Clay Science,2011.54(3–4):248-257.
    156. Martin, C.R. and D.T. Mitchell, Peer Reviewed: Nanomaterials in Analytical Chemistry.Analytical Chemistry,1998.70(9):322A-327A.
    157. Meng, F.-L., et al., Parts per billion-level detection of benzene using SnO2/graphenenanocomposite composed of sub-6nm SnO2nanoparticles. Anal Chim Acta,2012.736:100-107.
    158. Muscarella, M., et al., Validation according to European Commission Decision2002/657/EC ofa confirmatory method for aflatoxin M1in milk based on immunoaffinity columns and highperformance liquid chromatography with fluorescence detection. Anal Chim Acta,2007.594(2):257-64.
    159. Nasir, M.S. and M.E. Jolley, Development of a fluorescence polarization assay for thedetermination of aflatoxins in grains. J Agric Food Chem,2002.50(11):3116-21.
    160. Neppolian, B., C. Wang, and M. Ashokkumar, Sonochemically synthesized mono andbimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalyticactivity. Ultrason Sonochem,2014.
    161. Nesbitt, B.F., et al., Aspergillus flavus and turkey X disease. Toxic metabolites of Aspergillusflavus. Nature,1962.195:1062-3.
    162. Norouzi, P., B. Larijani, and M.R. Ganjali, Ochratoxin A Sensor Based on NanocompositeHybrid Film of Ionic Liquid-Graphene Nano-Sheets Using Coulometric FFT CyclicVoltammetry. International Journal of Electrochemical Science,2012.7(8):7313-7324.
    163. Novoselov, K.S., et al.,Aroadmap for graphene. Nature,2012.490(7419):192-200.
    164. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005.438(7065):197-200.
    165. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science,2004.306(5696):666-9.
    166. Owino, J.H., et al., Modelling of the impedimetric responses of an aflatoxin B(1)immunosensor prepared on an electrosynthetic polyaniline platform. Anal Bioanal Chem,2007.388(5-6):1069-74.
    167. Paredes, J.I., et al., Graphene Oxide Dispersions in Organic Solvents. Langmuir,2008.24(19):10560-10564.
    168. Parker, C.O. and I.E. Tothill, Development of an electrochemical immunosensor for aflatoxinM1in milk with focus on matrix interference. Biosens Bioelectron,2009.24(8):2452-7.
    169. Piermarini, S., et al., Electrochemical immunosensor array using a96-well screen-printedmicroplate for aflatoxin B1detection. Biosens Bioelectron,2007.22(7):1434-40.
    170. Ponnusamy, V.K. and J.F. Jen, A novel graphene nanosheets coated stainless steel fiber formicrowave assisted headspace solid phase microextraction of organochlorine pesticides inaqueous samples followed by gas chromatography with electron capture detection. JChromatogr A,2011.1218(39):6861-8.
    171. Qin, Y., et al., In situ growth of Au nanocrystals on graphene oxide sheets. Nanoscale,2014.6(3): p.1281-5.
    172. Qu, D., et al., Highly luminescent S, N co-doped graphene quantum dots with broad visibleabsorption bands for visible light photocatalysts. Nanoscale,2013.5(24):12272-7.
    173. Ramesha, G.K., et al., Graphene and graphene oxide as effective adsorbents toward anionic andcationic dyes. J Colloid Interface Sci,2011.361(1):270-277.
    174. Reddy, S.V., et al., Aflatoxins B1in different grades of chillies (Capsicum annum L.) in India asdetermined by indirect competitive-ELISA. Food Addit Contam,2001.18(6):553-8.
    175. Ren, L., et al., One-step preparation of hierarchical superparamagnetic iron oxide/graphenecomposites via hydrothermal method.Applied Surface Science,2011.258(3):1132-1138.
    176. Schniepp, H.C., et al., Functionalized Single Graphene Sheets Derived from Splitting GraphiteOxide. The Journal of Physical Chemistry B,2006.110(17):8535-8539.
    177. Shen, J., et al., Synthesis of amphiphilic graphene nanoplatelets. Small,2009.5(1):82-5.
    178. Shen, W., et al., A graphene-based composite material noncovalently functionalized with achemiluminescence reagent: synthesis and intrinsic chemiluminescence activity. ChemicalCommunications,2012.48(23):2894-2896.
    179. Sheng, L., et al., PVP-coated graphene oxide for selective determination of ochratoxin A viaquenching fluorescence of free aptamer. Biosens Bioelectron,2011.26(8):3494-3499.
    180. Shim, W.B., et al., Development of immunochromatography strip-test using nanocolloidalgold-antibody probe for the rapid detection of aflatoxin B1in grain and feed samples. JMicrobiol Biotechnol,2007.17(10):1629-37.
    181. Sobolev, V.S. and J.W. Dorner, Cleanup procedure for determination of aflatoxins in majoragricultural commodities by liquid chromatography. JAOAC Int,2002.85(3):642-5.
    182. Solfrizzo, M., et al., Simultaneous LC-MS/MS determination of aflatoxin M1, ochratoxin A,deoxynivalenol, de-epoxydeoxynivalenol, alpha and beta-zearalenols and fumonisin B1in urineas a multi-biomarker method to assess exposure to mycotoxins. Anal Bioanal Chem,2011.401(9):2831-41.
    183. Song, W., C. Li, and B. Moezzi, Simultaneous determination of bisphenol A, aflatoxin B1,ochratoxin A, and patulin in food matrices by liquid chromatography/mass spectrometry. RapidCommun Mass Spectrom,2013.27(6):671-80.
    184. Song, Y., et al., Architecture of Fe3O4–graphene oxide nanocomposite and its application as aplatform for amino acid biosensing. Electrochimica Acta,2012.71(0):58-65.
    185. Spanjer, M.C., P.M. Rensen, and J.M. Scholten, LC-MS/MS multi-method for mycotoxins aftersingle extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisinsand figs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2008.25(4):472-89.
    186. Srivastava, S., et al., Electrophoretically deposited reduced graphene oxide platform for foodtoxin detection. Nanoscale,2013.5(7):3043-3051.
    187. Stubblefield, R.D. and G.M. Shannon, Aflatoxin M1: analysis in dairy products and distributionin dairy foods made from artificially contaminated milk. J Assoc Off Anal Chem,1974.57(4):847-51.
    188. Su, S., et al., Determination of trace/ultratrace rare earth elements in environmental samples byICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline-graphene oxidecomposite. Talanta,2014.119:458-66.
    189. Sun, L., H. Yu, and B. Fugetsu, Graphene oxide adsorption enhanced by in situ reduction withsodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater,2012.203–204(0):101-110.
    190. Sun, M., et al., Graphene grafted silica-coated Fe3O4nanocomposite as absorbent forenrichment of carbamates from cucumbers and pears prior to HPLC. J Sep Sci,2013.36(8):1478-85.
    191. Tabani, H., et al., Combination of graphene oxide-based solid phase extraction and electromembrane extraction for the preconcentration of chlorophenoxy acid herbicides inenvironmental samples. J Chromatogr A,2013.1300:227-35.
    192. Tang, L.A., J. Wang, and K.P. Loh, Graphene-based SELDI probe with ultrahigh extraction andsensitivity for DNA oligomer. J Am Chem Soc,2010.132(32):10976-7.
    193. Tang, Z., et al., Constraint of DNA on functionalized graphene improves its biostability andspecificity. Small,2010.6(11):1205-9.
    194. Thirumala-Devi, K., et al., Development and application of an indirect competitiveenzyme-linked immunoassay for aflatoxin m(1) in milk and milk-based confectionery. J AgricFood Chem,2002.50(4):933-7.
    195. Tong, S., et al., Preparation of porous polymer monolithic column incorporated with graphenenanosheets for solid phase microextraction and enrichment of glucocorticoids. J Chromatogr A,2012.1253:22-31.
    196. Trucksess, M.W., et al., Determination of aflatoxins B1, B2, G1, and G2and ochratoxin A inginseng and ginger by multitoxin immunoaffinity column cleanup and liquid chromatographicquantitation: collaborative study. JAOAC Int,2008.91(3):511-23.
    197. Urraca, J.L., et al., Molecularly imprinted polymers with a streamlined mimic for zearalenoneanalysis. Journal of Chromatography A,2006.1116(1–2):127-134.
    198. Vallant, R.M., et al., Development and application of C60-fullerene bound silica for solid-phaseextraction of biomolecules.Analytical Chemistry,2007.79(21):8144-8153.
    199. Ventura, M., et al., Ultra-performance liquid chromatography/tandem mass spectrometry for thesimultaneous analysis of aflatoxins B1, G1, B2, G2and ochratoxin A in beer. Rapid CommunMass Spectrom,2006.20(21):3199-204.
    200. Wan, Y., X. Cui, and Z. Wen, Ordered mesoporous carbon coating on cordierite: synthesis andapplication as an efficient adsorbent. J Hazard Mater,2011.198:216-23.
    201. Wang, C., et al., Preparation of a graphene-based magnetic nanocomposite for the removal ofan organic dye from aqueous solution. Chemical Engineering Journal,2011.173(1):92-97.
    202. Wang, J., et al., Reduced Graphene Oxide/ZnO Composite: Reusable Adsorbent for PollutantManagement.ACS Appl Mater Interfaces,2012.4(6):3084-90.
    203. Wang, W., et al., Magnetic microsphere-confined graphene for the extraction of polycyclicaromatic hydrocarbons from environmental water samples coupled with high performanceliquid chromatography-fluorescence analysis. J Chromatogr A,2013.1293:20-7.
    204. Wang, W., et al., The use of graphene-based magnetic nanoparticles as adsorbent for theextraction of triazole fungicides from environmental water. J Sep Sci,2012.35(17):2266-72.
    205. Wang, W.N., et al., Extraction of neonicotinoid insecticides from environmental water sampleswith magnetic graphene nanoparticles as adsorbent followed by determination with HPLC.Analytical Methods,2012.4(3):766-772.
    206. Wang, Y.-K., et al., Application of Graphene as a Sorbent for Simultaneous Preconcentrationand Determination of Trace Amounts of Cobalt and Nickel in Environmental Water andVegetable Samples. Journal of the Chinese Chemical Society,2012.59(11):1468-1477.
    207. Wang, Y., et al., Application of Graphene as a Sorbent for Preconcentration and Determinationof Trace Amounts of Cadmium. Chemistry Letters,2013.42(2):153-155.
    208. Wang, Y.K., et al., Graphene-based solid-phase extraction combined with flame atomicabsorption spectrometry for a sensitive determination of trace amounts of lead in environmentalwater and vegetable samples.Analytica Chimica Acta,2012.716:112-118.
    209. Wang, Z., et al., Graphene-based solid-phase extraction disk for fast separation andpreconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples.J Sep Sci,2013.36(11):1834-42.
    210. Weiss, R., et al., Improving methods of analysis for mycotoxins: molecularly imprintedpolymers for deoxynivalenol and zearalenone. Food Additives&Contaminants,2003.20(4):386-395.
    211. Wen, Y., et al., A graphene-based fluorescent nanoprobe for silver(I) ions detection by usinggraphene oxide and a silver-specific oligonucleotide. Chem Commun (Camb),2010.46(15):2596-8.
    212. Wiese, S., et al., Coupling HPLC-SPE-NMR with a microplate-based high-resolutionantioxidant assay for efficient analysis of antioxidants in food--validation and proof-of-conceptstudy with caper buds. Food Chem,2013.141(4):4010-8.
    213. William S. Hummers,Jr., D., Mich.,, preparation of graphitic acid, in US Patent1957: UnitedStates.
    214. Williams, J.H., et al., Human aflatoxicosis in developing countries: a review of toxicology,exposure, potential health consequences, and interventions. Am J Clin Nutr,2004.80(5):1106-22.
    215. Wu, Q., et al., A facile one-pot solvothermal method to produce superparamagneticgraphene–Fe3O4nanocomposite and its application in the removal of dye from aqueoussolution. Colloids and Surfaces B: Biointerfaces,2013.101(0):210-214.
    216. Wu, Q., et al., Preparation of a graphene-based magnetic nanocomposite for the extraction ofcarbamate pesticides from environmental water samples. J Chromatogr A,2011.1218(44):7936-42.
    217. Wu, Q.H., et al., Graphene-coated fiber for solid-phase microextraction of triazine herbicides inwater samples. Journal of Separation Science,2012.35(2):193-199.
    218. Wu, S., et al., Multiplexed Fluorescence Resonance Energy Transfer Aptasensor betweenUpconversion Nanoparticles and Graphene Oxide for the Simultaneous Determination ofMycotoxins.Analytical Chemistry,2012.84(14):6263-6270.
    219. Wu, S., et al., Application of graphene for preconcentration and highly sensitive strippingvoltammetric analysis of organophosphate pesticide. Analytica Chimica Acta,2011.699(2):170-176.
    220. Wu, T., et al., Adsorption characteristics of acrylonitrile, p-toluenesulfonic acid,1-naphthalenesulfonic acid and methyl blue on graphene in aqueous solutions. ChemicalEngineering Journal,2011.173(1):144-149.
    221. Wu, X., et al., Graphene-dispersive solid-phase extraction of phthalate acid esters fromenvironmental water. Sci Total Environ,2013.444:224-30.
    222. Wu, Z.-S., et al.,3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4Nanoparticles asEfficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the AmericanChemical Society,2012.134(22):9082-9085.
    223. Xiao, F.X., J. Miao, and B. Liu, Layer-by-Layer Self-Assembly of CdS QuantumDots/Graphene Nanosheets Hybrid Films for Photoelectrochemical and PhotocatalyticApplications. JAm Chem Soc,2014.136(4):1559-69.
    224. Xu, L., et al., Graphene oxide bonded fused-silica fiber for solid-phase microextraction-gaschromatography of polycyclic aromatic hydrocarbons in water. Journal of Separation Science,2012.35(1):93-100.
    225. Xu, P., et al., Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficientelectrocatalysts for oxygen reduction. J Colloid Interface Sci,2014.421:160-4.
    226. Yang, S., et al., Direct synthesis of graphene–chitosan composite and its application as anenzymeless methyl parathion sensor. Colloids and Surfaces B: Biointerfaces,2012.96(0):75-79.
    227. Yang, S.T., et al., Removal of methylene blue from aqueous solution by graphene oxide. JColloid Interface Sci,2011.359(1):24-29.
    228. Ye, Y., et al., Rapid detection of aflatoxin B(1) on membrane by dot-immunogold filtrationassay. Talanta,2010.81(3):792-8.
    229. Yin, Z., et al., Electrochemical deposition of ZnO nanorods on transparent reduced grapheneoxide electrodes for hybrid solar cells. Small,2010.6(2):307-12.
    230. Yong, R.K. and M.A. Cousin, Detection of moulds producing aflatoxins in maize and peanutsby an immunoassay. Int J Food Microbiol,2001.65(1-2):27-38.
    231. Zeng, H.J., et al., Pharmacokinetic study of six flavones in rat plasma and tissues after oraladministration of 'JiangYaBiFeng' using SPE-HPLC-DAD. J Pharm Biomed Anal,2011.56(4):815-9.
    232. Zeng, S., et al., Enrichment of polychlorinated biphenyl28from aqueous solutions usingFe3O4grafted graphene oxide. Chemical Engineering Journal,2013.218(0):108-115.
    233. Zeng, X., et al., Quantum dots sensitized titanium dioxide decorated reduced graphene oxidefor visible light excited photoelectrochemical biosensing at a low potential. BiosensBioelectron,2014.54:331-8.
    234. Zhang, D., et al., A high selective immunochromatographic assay for rapid detection ofaflatoxin B(1). Talanta,2011.85(1):736-42.
    235. Zhang, D., et al., Ultrasensitive nanogold probe-based immunochromatographic assay forsimultaneous detection of total aflatoxins in peanuts. Biosens Bioelectron,2011.26(6):2877-82.
    236. Zhang, D., et al., Production of ultrasensitive generic monoclonal antibodies against majoraflatoxins using a modified two-step screening procedure.Anal Chim Acta,2009.636(1):63-9.
    237. Zhang, H. and H.K. Lee, Plunger-in-needle solid-phase microextraction with graphene-basedsol–gel coating as sorbent for determination of polybrominated diphenyl ethers. Journal ofChromatographyA,2011.1218(28):4509-4516.
    238. Zhang, H., W.P. Low, and H.K. Lee, Evaluation of sulfonated graphene sheets as sorbent formicro-solid-phase extraction combined with gas chromatography–mass spectrometry. Journalof Chromatography A,2012.1233(0):16-21.
    239. Zhang, H.B., et al., Synthesis of a Novel Composite Imprinted Material Based on MultiwalledCarbon Nanotubes as a Selective Melamine Absorbent. Journal of Agricultural and FoodChemistry,2011.59(4):1063-1071.
    240. Zhang, J., et al., Efficient Analysis of Non-Polar Environmental Contaminants by MALDI-TOFMS with Graphene as Matrix. Journal of the American Society for Mass Spectrometry,2011.22(7):1294-1298.
    241. Zhang, L., et al., Sol-gel autocombustion synthesis of graphene/cobalt magneticnanocomposites. J Nanosci Nanotechnol,2013.13(2):1129-31.
    242. Zhang, S., Z. Du, and G. Li, Layer-by-layer fabrication of chemical-bonded graphene coatingfor solid-phase microextraction.Anal Chem,2011.83(19):7531-41.
    243. Zhang, S., Z. Du, and G. Li, Graphene-supported zinc oxide solid-phase microextractioncoating with enhanced selectivity and sensitivity for the determination of sulfur volatiles inAllium species. Journal of Chromatography A,2012.1260(0):1-8.
    244. Zhang, S., Z. Du, and G. Li, Metal-organic framework-199/graphite oxide hybrid compositescoated solid-phase microextraction fibers coupled with gas chromatography for determinationof organochlorine pesticides from complicated samples. Talanta,2013.115(0):32-39.
    245. Zhang, W., et al., Transition metal oxide and graphene nanocomposites for high-performanceelectrochemical capacitors. Phys Chem Chem Phys,2012.14(47):16331-7.
    246. Zhang, W., et al., Universal Multilayer Assemblies of Graphene in Chemically ResistantMicrotubes for Microextraction.Analytical Chemistry,2013.85(14):6846-6854.
    247. Zhang, Z., et al., Encapsulating pd nanoparticles in double-shelled graphene@carbon hollowspheres for excellent chemical catalytic property. Sci Rep,2014.4:4053.
    248. Zhao, G., et al., Sulfonated graphene for persistent aromatic pollutant management. Adv Mater,2011.23(34):3959-63.
    249. Zhao, G., et al., Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxidenanosheets. Dalton Trans,2011.40(41):10945-52.
    250. Zhao, G., et al., Solid-phase microextraction with a novel graphene-coated fiber coupled withhigh-performance liquid chromatography for the determination of some carbamates in watersamples.Analytical Methods,2011.3(12):2929-2935.
    251. Zhao, G.Y., et al., Determination of triazine herbicides in environmental water samples byhigh-performance liquid chromatography using graphene-coated magnetic nanoparticles asadsorbent.Analytica Chimica Acta,2011.708(1-2):155-159.
    252. Zhou, L.-T., Z.-J. Li, and Y.-J. Fang, Preparation and Application of Graphene/ConductivePolymer/Ionic Liquid Immunosensor for Determination of Aflatoxin B-1. Chinese Journal ofAnalytical Chemistry,2012.40(11):1635-1641.
    253. Zollner, P. and B. Mayer-Helm, Trace mycotoxin analysis in complex biological and foodmatrices by liquid chromatography-atmospheric pressure ionisation mass spectrometry. JChromatogr A,2006.1136(2):123-69.
    254. Zou, J., et al., Polypyrrole/graphene composite-coated fiber for the solid-phase microextractionof phenols. Journal of Separation Science,2011.34(19):2765-2772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700