药物经皮微透析中回收率的可变性及内标法的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1目的
     微透析技术(Microdialysis, MD)是一种在体(in vivo)、实时(realtime)和在线(online)的取样技术,该技术通过测定透析液的浓度和探针的回收率(recovery)计算组织中药物的浓度。微透析探针的回收率(Recovery)在体内试验过程中会发生变化,故单纯在试验前或试验后测定一次探针回收率(或取两次测定的平均值)无法校正它的变化。回收率测定不准确,使得由回收率计算出来的探针周围的药物真实浓度的可信性受到怀疑。因此非常有必要建立在每个取样点都能测定一次回收率的动态监测方法,从而减少回收率在试验过程中波动对结果的影响。
     本课题以烟碱为模型药物,探索影响微透析探针回收率波动的因素,研究内标法测定微透析探针回收率的可行性,运用上述研究成果对两种烟碱贴剂的体内药动学过程进行探索研究。
     2方法
     本课题研究主要分为以下四大部分:
     2.1样品HPLC分析方法的建立
     运用HPLC法同时检测烟碱及内标物磷酸可待因的含量,对色谱条件进行优化,并进行方法学考察。
     2.2回收率变化特性及影响因素研究
     分别考察生物碱未成盐前的分子量及pKa、灌流液前处理、灌流液流速、媒介浓度、温度等因素对烟碱体外回收率的影响,并考察微透析回收率在体内外的稳定性。考察4根探针体内试验前后体外回收率之间的变化。
     2.3内标法动态监测烟碱微透析回收率研究方法的建立
     通过考察4种生物碱的色谱峰与烟碱色谱峰的分离情况,它们的回收率与烟碱微透析回收率之间的比例P的稳定情况,筛选出合适的内标物。
     在体外研究中,比较三种不同情况下磷酸可待因及烟碱的回收率(或释放率)的比例P值是否一定,并研究烟碱浓度对磷酸可待因释放率的影响,最后通过体外血浆蛋白结合率来验证内标法的可行性。
     在体内研究中,考察在大鼠体内研究单独灌注及混合灌注这两种不同情况下磷酸可待因及烟碱的释放率的比例P值的一致性,并用t检验研究给药前后磷酸可待因的释放率是否改变。
     2.4两种戒烟透皮制剂的体内药动学研究
     采用均匀设计对丙二醇(PG)、氮酮(Azone)和油酸(OA)三种透皮促进剂进行筛选。
     分别把探针植入大鼠的颈静脉和背皮下,灌流液流速为1.0μl·min-1。将市售戒烟贴剂及自制戒烟巴布剂分别贴于已脱毛的大鼠背部皮肤表面(给药部位处于探针半透膜位置的上方),取样时间为16h,用磷酸可待因作为内标物动态测定烟碱的回收率并换算出组织中的烟碱浓度,绘制药时曲线,采用非房室模型计算药动学参数。
     3结果
     3.1建立了样品HPLC分析方法
     根据体内外试验药物浓度不同的特点分别建立体内外两种色谱条件,并对两种色谱条件进行方法学考察。结果表明两种色谱条件下药物色谱峰的分离情况良好,对称性好,线性范围及定量限、检测限符合实验要求。
     3.2回收率变化特性及影响因素研究
     五种生物碱未成盐前的分子量与其释放率呈良好的线性关系,回归方程的相关系数r=0.996。暂未发现pKa与生物碱释放率之间的关系。对灌流液超声、滤过等前处理能提高烟碱的体外回收率;灌流液的流速越大,烟碱的回收率越小;探针周围的烟碱浓度对其回收率无明显影响;烟碱的回收率随着温度的升高而增大。烟碱的体外回收率为(60.5±1.5)%,在24h内较稳定。烟碱的体内释放率为(21±7)%,波动较大。探针在经历体内实验后,体外回收率均有不同程度的下降,最高降幅达46.8%。
     3.3内标法动态监测烟碱微透析回收率研究方法的建立
     在体外测得在透析媒介为林格氏液的情况下烟碱与磷酸可待因的回收率之比P值为1.358~1.414,变化幅度为4%,P值较稳定,且不受探针周围烟碱浓度的影响。内标法及反透析法测得的大鼠体外烟碱血浆蛋白结合率分别为39.15%和39.80%,结果差别不大。在同一动物同一根探针中这两种物质的释放率的比例P相差不大,但在不同动物或不同探针间则相差较大。t检验的结果表明给药对磷酸可待因的释放率改变不大。
     3.4两种戒烟透皮制剂的体内药动学研究
     透皮促进剂的最优组合为PG:AzOne:OA=10%:4.5%:1%.
     药动学分析结果表明两种制剂中烟碱在血液的平均滞留时间(MRT)大于在皮下的MRT,且市售戒烟贴剂的MRT大于自制的戒烟巴布剂的MRT,说明这两种制剂中的烟碱在血液中的停留时间比皮下的要长,市售戒烟贴剂中的烟碱的停留时间比自制巴布剂的长,这说明两种制剂均较符合戒烟制剂的要求;市售戒烟贴在给药量少的情况下作用时间更长,且能长时间维持较低的血药浓度,更符合戒烟制剂的要求。
     经过给药量校正后,自制巴布剂与市售戒烟贴剂的AUC之比在皮下及在血液中分别为0.27和0.12。这表明自制巴布剂在生物利用方面远不如市售戒烟贴剂,自制巴布剂的工艺还需要进一步改进。
     4结论
     4.1五种生物碱未成盐前的分子量与其微透析释放率成反比,但pKa与释放率的关系不明显。
     4.2灌流液前处理、灌流液速度、温度等均对探针回收率有影响,探针周围浓度对探针回收率的影响不大。
     4.3在大鼠体内烟碱的回收率波动较大,不如体外稳定,且进行长时间的体内试验后,探针的回收率呈下降趋势。
     4.4确定磷酸可待因作为动态监测烟碱回收率的内标物。
     4.5磷酸可待因及烟碱两者微透析释放率的比值P在体外及体内试验过程中比较稳定,并不受探针周围药物浓度的影响,给药对内标物的微透析释放率无明显影响,从而确定磷酸可待因可作为测定烟碱微透析回收率的内标物。
     4.6市售戒烟贴剂和自制戒烟巴布剂这两种制剂中的烟碱在血液中的停留时间比皮下的长,市售戒烟贴剂中的烟碱的停留时间比自制巴布剂的长,这说明两种制剂均较符合戒烟制剂的要求;市售戒烟贴在给药量少的情况下作用时间更长,且能长时间维持较低的血药浓度,更符合戒烟制剂的要求。自制巴布剂在生物利用方面远不如市售戒烟贴剂,自制巴布剂的工艺还需要进一步改进。
1 Objective
     Micordialysis is a kind of in vivo, realtime and online sampling method from extracellular fluid (ECF). We can calculate the concentration of the drug organization using the concentration of dialysate collected in the outflow side and the recovery. Microdialysis recovery will change during the test in vivo, so the method used before testing the recovery only once before or after the experiment (or the average of the two) can not correct the changes of recovery. The concentration of the drug surrounding the probe calculated by such changing recovery is suspected. So it is necessary to establish an on line method to determine the recovery at each sampling point.
     The objective of this study is to explore the factors inducing the fluctuation of recovery and to evaluate the feasibility of using internal standard method for the determination of nicotine recovery in microdialysis. Pharmacokinetics of two kind of nicotine patches was study using the research results.
     2 Methods
     This research includes four sections:
     2.1 Establishment of analytical method of samples
     Method of RP-HPLC with ultraviolet detector was applied to detect the content of nicotine and codeine phosphate. The chromatographic conditions were optimized and the methodology was investigated.
     2.2 Study on the fluctuation of recovery and factors inducing the fluctuation
     The factors including the molecular weight and pKa of Alkaloid, pre-processing of the perfusate, perfusion flow rate, media concentration around the probe and temperature on the recovery of nicotine in vitro were investigated. The stability of recovery in vitro and in vivo was also investigated. The recovery of the four probes before and after the in vivo experiment was compared in vitro.
     2.3 Study on evaluation of the feasibility of using internal standard method for the determination of nicotine recovery in microdialysis
     The appropriate internal standard was selected in the four alkaloids by examining the separation of chromatographic peaks of internal standard and nicotine and the stability of the proportion P of the recovery (or delivery) of nicotine to that of internal standard.
     Nicotine and codeine phosphate were dissolved in Ringer's solution. Nicotine, codeine phosphate and the mixture of them were perfused through the probe separately to calculate the proportion of the recovery (or delivery) of nicotine to that of codeine phosphate. And then codeine was perfused through the probe which was immersed in nicotine solution with different concentrations to calculate the proportion, too. In another condition nicotine was dissolved in rat plasma. The rat plasma protein binding rate was determined by using retrodialysis and internal standard method in vitro.
     Nicotine, codeine phosphate and the mixture of them were perfused through the probe separately to calculate the proportion of the recovery (or delivery) of nicotine to that of codeine phosphate in the subcutaneous tissue and plasma of rats. The delivery of codeine phosphate before and after administration of nicotine patches was compared with t test.
     2.4 Study on pharmacokinetic of two kinds of nicotine patches in vivo
     Permeation enhancer was selected by using uniform design. The optimized combination of propylene glycol (PG), Azone and oleic acid (OA) was studied.
     The probe was planted in the jugular vein and skin at the back of the rat. The flow rate of the perfusate was 1.0μl/min. These two kinds of nicotine patches were put on the surface of the back of the rat respectively and the dialysate sampling was collected during 16h. The concentration of nicotine in the tissue was calculated by the recovery of nicotine detected by internal standard method. The drug concentration-time curve was draw to analyse nicotine's pharmacokinetics behavior. The pharmacokinetics parameters were calculated using non-compartment model.
     3 Results
     3.1 Establishment of analytical method of samples
     Two chromatographic conditions were established according to the different drug concentrations in vivo and in vivro. The results showed that the two chromatographic peaks of nicotine and codeine phosphate separate from each other and have good symmetry. There was good linear relation between integral quantity of peak area and sample size. The limit of quantification and the limit of detection for nicotine and codeine phosphate met the requirement.
     3.2 Study on the fluctuation of recovery and factors inducing the fluctuation
     The molecular weight of the five alkaloids and their delivery in vitro microdialysis showed a good linear rerationship with the correlation coefficient r= 0.996. The relationship between delivery and PKa of alkaloids was not found yet. Perfusate on the ultrasound, filtration and other pre-treatment was able to improve recovery of nicotine in vitro (n=4). Recovery of nicotine determined by gain and by loss were almost the same at each flow rate studied in vitro. Recovery decreased as the flow rate increased (n=4). Nicotine recovery was independent of concentration over the concentration range investigated (n=4). Recovery increased as the temperature increased (n=5). The result of stability test indicated that the stability period of the probe is longer than 24h. The result of recovery was (60.5±1.5)%. The recovery of nicotine detected in vivo was (21±7)%. After the experiment in vivo, the recovery in vitro decreased with the maximum decrease of 46.8%.
     3.3 Study on evaluation of the feasibility of using internal standard method for the determination of nicotine recovery in microdialysis
     The proportion of the recovery (or delivery) of nicotine to that of codeine phosphate was 1.358~1.414 when the drugs were dissolved in Ringer's solution, which changed in the range of 4%. The proportion was fairly stable and independent from the concentration of nicotine around the probe. Protein binding rate determined by internal standard method (39.15%) was almost the same as that determined by retrodialysis (39.80%). The P-values calculated in the same animal through the same probe were almost the same, but changed in different animals or different probes. The result of t test showed that there was no significant difference between the delivery of codeine phosphate determined before and after administration.
     3.4 Study on pharmacokinetic of two kinds of nicotine patches in vivo
     The optimal combination was PG:Azone:OA=10%:4.5%:1%.
     Pharmacokinetic analysis showed that MRT of nicotine after the administration of the two kinds of nicotine patches determined in the blood was higher than that determined in the skin, and MRT of nicotine determined after the administration of the saled nicotine patches was higher than that determined after the administration of self-made nicotine cataplasm. It suggested that the retention time of nicotine in the blood is longer than that in the skin after the administration of the two kinds of nicotine patches. The retention time of nicotine determined after the administration of saled nicotine patches was longer than that determined after the administration of self-made nicotine cataplasm. It indicated that the two kinds of nicotine patches met the requirements of smoking cessation. The saled nicotine patches can long maintain a lower blood concentration in a little dose which met the requirements of smoking cessation.
     4 Conclusions
     1. The molecular weight of the five alkaloids was in inverse proportion to their delivery in vitro microdialysis. The relationship between delivery and PKa of alkaloids was not found yet.
     2. Pre-treatment of perfusate, velocity of the perfusate and temperature would influence recovery. Nicotine recovery was independent of concentration over the concentration range investigated.
     3. Recovery of nicotine was fluctuated in rats, which was more stable in vitro. After the experiment in vivo, the recovery in vitro decreased.
     4. Codeine phosphate can be used as the internal standard in determining the recovery of nicotine.
     5. The proportion of the recovery (or delivery) of nicotine to that of codeine phosphate was fairly stable in vitro and in vivo and independent from the concentration of nicotine around the probe. The delivery of codeine phosphate was not affected by the administration. The internal standard method is an effective way in the determination of nicotine recovery.
     6. The retention time of nicotine in the blood is longer than that in the skin after the administration of the two kinds of nicotine patches. The retention time of nicotine determined after the administration of saled nicotine patches was longer than that determined after the administration of self-made nicotine cataplasm. It indicated that the two kinds of nicotine patches met the requirements of smoking cessation. The saled nicotine patches can long maintain a lower blood concentration in a little dose which met the requirements of smoking cessation.
引文
[1]Davies MI, Lunte CE. Microdialysis sampling for hepatic metabolism studies:Impact of microdialysis probe design and implantation technique on liver tissue[J]. Drug Metab Dispos,1995,23(10):1072-1079.
    [2]Poling J, Rees W, Klaus S, et al. Functional Recovery of Chronic Ischemic Myocardium after Surgical Revascularization Correlates with Magnitude of Oxidative Metabolism[J]. Cardiology, 2007,110(3):174-181.
    [3]Hocht C, Opezzo JAW, Taira CA. Validation of a new intraarterial microdialysis shunt probe for the estimation of pharmacokinetic parameters[J]. J Pharm Biomed Anal,2003,31:1109-1117.
    [4]Verbeeck RK. Blood microdialysis in pharmacokinetic and drug metabolism studies[J]. Adv Drug Deliv Rev,2000,45:217-228.
    [5]Shah JP, Danoff JV, Desai MJ, et al. Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points[J]. Arch Phys Med Rehabil,2008,89(1):157-159.
    [6]Ciechanowska A, Ladyzynski P, Wojcicki JM, et al. Microdialysis technique as a monitoring system for acute complications of diabetes[J]. Artif Organs,2008,32(l):45-51.
    [7]Bizzarri A, Koehler H, Cajlakovic M, et al. Continuous oxygen monitoring in subcutaneous adipose tissue using microdialysis[J]. Anal Chim Acta,2006,28;573-574.
    [8]Jensen SM, Hansen HS, Johansen T et al. In vivo and in vitro microdialysis sampling of free fatty acids[J]. J Pharm Biomed Anal,2007,43(5):1751-1756.
    [9]Langberg H, Skovgaard D, Karamouzis M, et al. Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis[J]. J Physiol,1999,515:919-927.
    [10]Gillispie A, Rooyackers O, Wernerman J, Nowak G.Effect of extended cold ischemia time on glucose metabolism in liver grafts:experimental study in pigs[J]. J Hepatobiliary Pancreat Surg, 2007,14(2):183-188.
    [11]Walwyn WM, Ta Haung J, Ackerson L, et al. Extracellular glutamate in the dorsal horn of the lumbar spinal cord in the freely moving rat during hindlimb stepping[J]. Pharmacol Biochem Behav,1999,63(4):581-588.
    [12]Bahlmann L, Misfeld M, Klaus S, et al. Myocardial redox state during coronary artery bypass grafting assessed with microdialysis[J]. Intensive Care Med,2004,30:889.
    [13]Tassoa L, Bettonia CC, Oliveirab LK, et al. Evaluation of gatifloxacin penetration into skeletal muscle and lung by microdialysis in rats[J]. International Journal of Pharmaceutics,2008,358: 96-101.
    [14]Grubb BR, Jones JH, Boucher RC. Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice[J]. Am J Physiol Lung Cel 1 Mol Physiol,2004;286:588.
    [15]Davies MI, Lunte CE. Simultaneous microdialysis sampling from multiple sites in the liver for the study of phenol metabolism[J]. Life Sciences,1996,59(12):1001-1013.
    [16]Tsai TH, Wu JW. Regulation of hepatobiliary excretion of sinomenine by P-glycoprotein in Sprague-Dawley rats[J]. Life Sciences,2003,72:2413-2426.
    [17]Baranowski, Robert L, ChristofW. Estimation of renal interstitial adenosine and purine metabolites by microdialysis[J]. Am J Physiol,1994,267:174-182.
    [18]Robinson JE. Microdialysis:a novel tool for research in the reproductive system[J]. Biol Reprod, 1995,52(2):237-245.
    [19]Konety BR, Somogyi G, Atan A, et al. Evaluation of intraprostatic metabolism of 1,25-dihydroxyvitamin d3 (calcitriol) using a microdialysis technique[J]. Urology,2002,59 (6):947-952.
    [20]Bina S, Muldoon S, Bunger R. Effects of ryanodine on skeletal muscle lactate and pyruvate in malignant hyperthermia-susceptible and normal swine as assessed by microdialysis[J]. Eur J Anaesthesiol,2008,25(1):48-57.
    [21]Fang JY, Leu YL, Hwang TL, et al. Essential oils from sweet basil (Ocimum basilicum) as novel enhancers to accelerate transdermal drug delivery[J]. Biol Pharm Bull,2004,27(11):1819-1825.
    [22]Fulzele SV, Babu RJ, Ahaghotu E, et al. Estimation of proinflammatory biomarkers of skin irritation by dermal microdialysis following exposure with irritant chemicals[J]. Toxicology, 2007,237:77-88.
    [23]Wei H, Chen Y, Xu L,et al. Percutaneous penetration kinetics of lidocaine and prilocaine in two local anesthetic formulations assessed by in vivo microdialysis in pigs[J]. Biol Pharm Bull, 2007,30(4):830-834.
    [24]Klede M, Schmitz H, Goen T, et al. Transcutaneous penetration of toluene in rat skin a microdialysis study[J]. Exp Dermatol,2005,14(2):103-8.
    [25]Kreilgaard M. Dermal Pharmacokinetics of Microemulsion Formulations Determined by In Vivo Microdialysis[J]. Pharm. Res,2001,18(3):367-373.
    [26]Benfeldt E, Serup J. Effect of barrier perturbation on cutaneous penetration of salicylic acid in hairless rats:in vivo pharmacokinetics using microdialysis and non-invasive quantification of barrier function[J]. Arch. Dermatol Res,1999,291:517-526.
    [27]Korinth G, Jakasa I, Wellner T, et al. Percutaneous absorption and metabolism of 2-butoxyethanol in human volunteers:a microdialysis study[J]. Toxicol Lett,2007,170(2):97-103.
    [28]Sjogren F, Svensson C, Anderson C. Technical prerequisites for in vivo microdialysis determination of interleukin-6 in human dermis[J]. Br J Dermatol,2002,146(3):375-382.
    [29]Kreilgaard M, Kemme MJB, Burggraaf J. Influence of a Microemulsion Vehicleon Cutaneous Bioequivalence of a Lipophilic Model Drug Assessed by Microdialysis and Pharmacodynamics [J]. Pharm Res,2001,18(5):593-599.
    [30]Benfeldt E, Hansen SH, Volund A, et al. Bioequi valance of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermatopharmacokinetic method[J]. J Invest Dermatol,2007,127(1):170-178.
    [31]Brunner M, Stabeta H, Moiler JG, et al. Target site concentrations of ciprofloxacin after single intravenous and oral doses[J]. Antimicrob Agents Chemother,2002,46:3724-3730.
    [32]Bur A, Joukhadar C, Klein N, et al. Effect of exercise on transdermal nicotine release in healthy habitual smokers[J].1nt J Clin Pharmacol Ther,2005,43(5):239-243.
    [33]Schnetz E, Fartasch M. Microdialysis for the evaluation of penetration through the human skin barrier-a promising tool for future research[J]. Eur J Pharm Sci,2001,12:165—174.
    [34]Kreilgaard M.. Assessment of cutaneous drug delivery using microdialysis[J]. Adv Drug Deliv Rev,
    2002,54(1):99-121.
    [35]李健,陈劲草.脑微透析法监测动脉瘤术中临时阻断对脑局部兴奋性氨基酸水平的影响[J].实用医学杂志,2006,22(8):885-887.
    [36]只达石,黄慧玲.颅脑创伤患者颅内生化代谢的动态监测—临床颅内微透析技术的研究[J].中华神经医学杂志,2003,2(1):8-11.
    [37]王胜,陈劲草,吴晓辉,等.脑动脉瘤术中临时阻断载瘤动脉前后脑生化代谢的微透析研究[J].中华神经外科疾病研究杂志,2006,5(6):490-492.
    [38]王丽,章竹君,杨维平,等.毛细管电泳法检测微透析液中的头孢唑林钠[J].陕西师范大学学报:自然科学版.2004,32(4):70-73.
    [39]陈丁龙,章竹君,罗教华,等.微透析-毛细管电泳联用研究盐酸雷尼替丁在家兔血液中的代谢过程[J].西南师范大学学报(自然科学版),2005,30(3):505-509.
    [40]左代英,吴英良,曹悦.微透析结合HPLC-ECD测定头孢他啶在大鼠血中含量及其药动学研究[J].中国药学杂志,2005,40(12):931-933.
    [41]凌家俊,王岩,谢波,等.利用血液微透析技术进行青藤碱的药动学研究[J].广州中医药大学学报,2005,22(5):405-407.
    [42]郭明,孔亮.微透析取样法研究金属离子与蛋白质的竞争结合作用[J].中国科学(B辑),2001,31(6):499-503.
    [43]郭明,郑学仿,由业诚,等.微透析法研究金属离子镉与人血清蛋白的相互作用[J].大连大学学报,2001,22(6):7-12,26.
    [44]王畅,章竹君,微透析采样荧光法研究6—硫鸟嘌呤与蛋白结合作用[J].化学学报,2002,60(9):1672-1676.
    [45]张英丰,周莉玲,李锐.微透析法测定青藤碱大鼠体外血浆蛋白结合率[J].药学学报,2006,41(9):909-912.
    [46]叶勇.芎冰脂质体及其脑靶向性的探讨[D].广州,广州中医药大学,2009.
    [47]隗慧林,陈沄,徐兰芳,等.反向透析法用于体内经皮吸收微透析探针回收率的测定[J].中国新药杂志.2007,16(13):1024-1027.
    [48]杨柳,Kissi P微透析液中葡萄糖的液相色谱—电化学测定[J].分析化学,1995,23(10):1122-1125.
    [49]丁平田,徐晖,卞生杰,等.以经皮微渗析技术研究奥旦西酮的大鼠在体经皮吸收[J].药学学报,2000,35(4):305~308.
    [50]王丹,石力夫,胡晋红.微透析联用反相高效液相色谱对大鼠皮肤葛根素的药代动力学研究[J].分析化学研究简报,2008,36(10):1391-1395.
    [51]辛亮,邵青,王俏,等.自制微透析探针性能评价[J].分析化学.2007,35(7):1083-1086.
    [52]付以同,张金松,黄金祥,等.大鼠脑微透析实验方法的建立[J].卫生研究,1993,22(2):75-77。
    [53]郭明,孔亮.微透析探针的制备及其在Ni(Ⅱ)与人血清白蛋白的相互作用研究中的应用[J].色谱,2003,21(2):147-150.
    [54]凌家俊,谢波,周莉玲.微透析探针的重复利用性及自制线性探针的可行性研究[J].广州中医药大学学报,2008,25(3):263-266.
    [55]凌家俊,谢波,王岩,周莉玲.利用微透析取样技术实现皮肤局部青藤碱含量的动态测定[J].中药
    材,2008,31(7):1062-1065.
    [56]凌家俊,王岩,谢波.利用微透析技术进行青藤碱贴剂的生物等效性研究[J].中国中药杂志,2008,33(21):2482-2485.
    [57]何海冰,唐星,崔福德.血液微渗析技术研究酮洛芬在大鼠体内的药代动力学[J].药学学报,2006,41(5):452-456.
    [58]Grabb MC, Sciotti VM, Gidday JM, et al. Neurochemical and morphological responses to acutely and chronically implanted brain microdialysis probes [J]. J Neurosci Methods,1998,82 (1):25-34.
    [59]Jensen SM, Hansen HS, Johansen T, et al. In vivo and in vitro microdialysis sampling of free fatty acidsfJ]. J Pharm Biomed Anal,2007,43(5):1751-1756.
    [60]张科平,张恒义,郑筱祥.微透析探针在体透析时间对氨基酸回收率的影响[J].浙江大学学报(医学版),2006,35(6):642-647.
    [61]Yang H, Wang Q, Elmquist WF. The design and validation of a novel intravenous microdialysis probe:application to fluconazole pharmacokinetics in the freely-moving rat model[J]. Pharm Res. 1997Oct;14(10):1455-1460.
    [62]Fang JY, Leu YL, Hwang TL, et al. Essential oils from sweet basil (Ocimum basilicum) as novel enhancers to accelerate transdermal drug delivery[J]. Biol Pharm Bull,2004,27(11):1819-1825.
    [63]Zheng H, Shi LF, Hu JH. Assessment of in vitro and in vivo recovery of sinomenine using microdialysis[J]. Skin Res Technol,2007,13(3):323-329.
    [64]丁平田,魏刚,李虹,等.浓差法用于微渗析回收率的测定[J].中国药学杂志,2001,36(10):690-694.
    [65]叶勇,周莉玲,晏亦林,等.磷酸川芎嗪微透析体内回收率的研究[J].时珍国医国药,2009,20(10):2401-2403.
    [66]Sasongko L, Williams KM, Ramzan 1, et al. Assessment of in vitro and in vivo recovery of gallamine using microdialysis[J]. J Pharmacol Toxicol Methods,2000,44(3):519-525.
    [67]Henze D, Kothe L, Scharf A, et al. Reliability of the microdialysis pump CMA 107 under hyperbaric conditions[J]. J Neurosci Methods,2007,164(2):312-319.
    [68]Larsson C. I. The use of an "internal standard" for control of the recovery in microdialysis[J]. Life Sci,1991,49:73-78.
    [69]Wang Y., Wong S. L., and Sawchuk R. J.. Microdialysis calibration using retrodialysis and zero-net flux:Application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus[J]. Pharm. Res,1993,10:1411-1419.
    [70]Sjoberg P., Olofsson I. M., and Lundqvis t T.. Validation of different microdialysis methods for the determination of unbound steady-state concentration of theophylline in blood and brain tissue[J]. Pharm. Res,1992,9:1592-1598.
    [71]Sauernheimer C, Williams K. M., Brune K., et al. Application of microdialysis to the pharmacokinetics of analgesics:Problems with reduction of dialysis efficiency in vivo[J]. J.Pharmacol. Toxicol. Methods,1994,32:149-154.
    [72]韩冬,班春林,崔黎丽,等.微透析技术及在药学中的应用进展[J].药学实践杂志,2005,23(3):139-143.
    [73]罗汀,郭义,王秀云.微透析校正的相关问题和方法[J].生物技术通讯,2004,15(2):182-185.
    [74]樊官伟,高秀梅.微透析技术及其应用进展[J].珍国医国药,2006,17(9):1781-1872.
    [75]Tassoa L, Bettonia CC, Oliveirab LK, et al. Evaluation of gatifloxacin penetration into skeletal muscle and lung by microdialysis in rats[J]. International Journal of Pharmaceutics,2008,358:
    96-101.
    [76]凌家俊,李锐,周莉玲.青藤碱微透析回收率测定方法的体外模拟实验[J].广州中医药大学学报,2005,22(1):56-59.
    [77]张英丰,周莉玲,汪小根,等.青藤碱微透析体外回收率的测定及影响因素的研究[J].中药材,2005,28(12):1064-1067.
    [78]晏亦林,叶勇,周莉玲.磷酸川芎嗪微透析体外回收率的研究[J].中药新药与临床药理,2008,19(2):117-119.
    [79]张英丰,周莉玲.温度及灌流液改性剂对青藤碱微透析探针体外物质转移系数的影响[J].广州中医药大学学报,2006,23(4):332-335.
    [80]Plock N, Buerger C, Kloft C. Successful management of discovered pH dependence in vancomycin recovery studies:novel HPLC method for microdialysis and plasma samples[J]. Biomed Chromatogr,2005,19(3):237-244.
    [81]Araujo BV, Silva CF, Haas SE, et al. Microdialysis as a tool to determine free kidney levels of voriconazole in rodent:A model to study the technique feasibility for a moderately lipophilic drug[J]. J Pharm Biomed Anal.2008,47(4-5):876-881.
    [82]Ross HA, van Gurp PJ, Willemsen JJ, et al. Transport within the interstitial space, rather than membrane permeability, determines norepinephrine recovery in microdialysis[J]. J Pharmacol Exp Ther,2006,319(2):840-846.
    [83]Lanckmans K, Clinckers R, Van Eeckhaut A, et al. Use of microbore LC-MS/MS for the quantification of oxcarbazepine and its active metabolite in rat brain microdialysis samples[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2006,831(1-2):205-212.
    [84]Mou X, Stenken J A.Microdialysis sampling extraction efficiency of 2-deoxyglucose:role of macrophages in vitro and in vivo[J]. Anal Chem,2006,78(22):7778-7784.
    [85]Bengtsson J, Bostrom E, Hammarlund-Udenaes M. The use of a deuterated calibrator for in vivo recovery estimations in microdialysis studies[J]. J Pharm Sci,2008,97(8):3433-3441.
    [86]Xie R, Hammarlund-Udenaes M, de Boer AG, et al. The role of P-glycoprotein in blood-brain barrier transport of morphine:transcortical microdialysis studies in mdrla (-/-) and mdrla (+/+) mice[J]. Br J Pharmacol,1999,128(3):563-568.
    [87]丁宗庆,李固.非水滴定法测定香烟中烟碱[J].郧阳师范高等专科学校学报,2003,23(6):44-46.
    [88]蔡凌霜,陈茂,张振国,等.非水滴定测定烟叶中烟碱含量实验的微型化[J].分析科学学报.2005,21(3).-310-312.
    [89]谢笑天,何斌,郑萍,等.薄层扫描法测定卷烟中烟碱的含量[J].云南化工,2004,31(1):22-24.
    [90]李凤菊,王水婷,冶保献.示波极谱法烟丝中烟碱含量测定及电极反应机理[J].化学研究,2003,14(2):59-62.
    [91]刘泽春,赖伟玲.气相色谱法测定卷烟烟气中烟碱的影响因素[J].福建分析测试,2005,14(4):2282-2284.
    [92]谷素英,黎源倩,刘驰青,等.毛细管气相色谱法测定头发中烟碱及其代谢产物可的宁[J].四川大学学报(医学版),2008(1):133-136.
    [93]史宏志,凌爱芬,刘国顺,等.白肋烟烟碱转化对烟叶中性和碱性香气成分含量的影响[J].华北农学报,2007,22(5):43-46.
    [94]丁敏,小林裕太,福岛正充.气相色谱-质谱法测定小鼠血浆的烟碱和可替宁[J].西南大学学报(自 然科学版),2007,29(11):75-77.
    [95]杨新磊,罗明标,丁健桦.液相微萃取-高效液相色谱法快速测定唾液中烟碱含量[J].分析化学,2007,35(2):171-175.
    [96]王胤,王成军,杜一民.RP-HPLC法测定烟碱含片中烟碱的含量[J].大理学院学报(综合版),2007,6(8):10-11,22.
    [97]刘维,罗明标,李伯平,等.纳米磁流体用于三相中空纤维液相微萃取/HPLC法对尿液中烟碱的快速测定[J].分析测试学报,2008,27(2):165-169.
    [98]Ferrer I,Thurman EM,Zwelgenbaum J.液相飞行时间质谱(LC/MSDTOF)和液相色谱/离子阱质谱(LC/MSDTrap)测定色拉蔬菜中的氯烟碱类杀虫剂[J].环境化学,2005,24(3):349-354.
    [99]黄翼飞,沈光林,温东奇,等.液相色谱-电喷雾离子阱串联质谱分析烟草水提取物中的烟碱[J].分析化学,2007,35(2):293-296.
    [100]Sobue S, Sekiguchi K, Kikkawa H, et al. Effect of Application Sites and Multiple Doses on Nicotine Pharmacokinetics in Healthy Male Japanese Smokers Following Application of the Transdermal Nicotine Patch[J]. J Clin Pharmacol,2005,45:1391-1399.
    [101]Eliasson B., Smith U, Lonnroth P. No acute effects of smoking and nicotine nasal spray on lipolysis measured by subcutaneous microdialysis[J].Eur J Clin Invest,1997.27(6):503-509.
    [102]Hegemann L, Forstinger C, Partsch B, et al. Microdialysis in cutaneous pharmacology:kinetic analysis of transdermally delivered nicotine[J]. J Invest Dermatol,1995,104:839-843.
    [103]Yuh-Lih Chang a, Pi-Lo Tsaib, Yueh-Ching Chou a,et al. Simultaneous determination of nicotine and its metabolite, cotinine,in rat blood and brain tissue using microdialysis coupled with liquid chromatography:Pharmacokinetic application. J. Chromatogr.2005,1088(1-2):152-157.
    [104]尹宁宁,习超鹏.HPLC法测定枇杷止咳含片中磷酸可待因的含量[J].山东中医杂志,2007,26(7):483-484.
    [105]金阳.RP-HPLC法测定强力枇杷露中磷酸可待因的含量[J].现代中药研究与实践,2007,21(4):40-42.
    [106]罗顺德,雷嘉川,余建清.小儿镇咳合剂中磷酸可待因的HPLC测定[J].中国医药工业杂志,1997;28(8):371-372.
    [107]魏敏.黄杨宁经皮给药系统的研究[D].广州,广州中医药大学,2005。
    [108]夏爱晓,冯健,李范珠.微透析技术及其在经皮给药系统中的应用[J].中国医药工业杂志,2008,39(5):378-382.
    [109]Muller M, Schmid R, Georgopoulos A, et al. Application of microdialysis to clinical pharmacokinetics in humans[J]. Clin Pharmacol Ther,1995,57(4):371-380.
    [110]Muller M, Schmid R, Wagner O., et al. In vivo characterization of transdermal drug transport by microdialysis[J]. J. Control. Release,1995,37:49-57.
    [111]Muller M, Mascher H, Kikuta C, et al. Diclofenac concentrations in defined tissue layers after topical administration[J]. Clin Pharmacol Ther,1997,62(3):293-299.
    [112]Lonnroth P. and. Strindberg L. Validation of the'internal reference technique'for calibrating microdialysis catheters in situ[J]. Acta Physiol. Scand,1995,153:375-380.
    [113]Krogstad A. L., Jansson P. A., Gisslen P., et al. Microdialysis methodology for the measurement of dermal interstitial fluid in humans[J]. Br. J. Dermatol.,1996,134:6-12.
    [114]凌家俊.微透析技术在青藤碱经皮给药系统药动学研究中的应用.广州,广州中医药大学.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700