高性能快速修补混凝土的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以超细粉煤灰为基材,研制并开发出粉煤灰复合超细粉快速
    修补专用掺合料(CUFA Ⅱ)系列产品,等量取代水泥≥30%,配制的
    高性能快速修补砼(HPRRC)在12~48h内达到开放交通的要求,解
    决了破损的水泥砼路面整板翻修后快速开放交通这一问题,并大大降
    低工程成本。该产品是一种新型的环保绿色建材,应用前景十分广阔。
    本文主要研究成果如下:
    1、在系统研究了超细粉煤灰的物理性能、形貌、粉体效应微观机
    理的基础上,采用粉体优化组合、活化激发技术,复配的CUFA Ⅱ产品
    与32.5R及以上的普通硅酸盐水泥配制的HPRRC可达到12~48h开放
    交通所需的最低强度指标要求;该产品己工业化生产并推广应用。以
    粉煤灰为基材的CUFA Ⅱ用于水泥混凝土路面整板快速修补工程中,国
    内外未见报道。
    2、在大量试验研究的基础上,考虑到耐久性对化学成分的要求,
    参照即将出台的《高强高性能砼用矿物外加剂》(报批稿)和国外相
    关标准参加编制了本产品国内第一个超细粉煤灰矿物外加剂的企业
    标准Q/DBAA001—2002。
    3、采用有限元方法,建立数值模型,模拟在标准轴载条件下新
    老砼的受力状态,得出了修补区砼开放交通新老砼界面的临界粘结强
    度。根据我国标准的规定,参考国外的研究成果,提出了修补区砼开
    放交通的控制参数。
    4、采用多元回归分析方法探讨了影响12h、24h、28d高性能快速
    修补砼抗折强度的因素;还对影响HPRRC干缩性能、耐久性能的因素
    进行了分析,确定了HPRRC配合比设计参数。配制出和易性优良(坍
    落度30mm)12~48h能满足开放交通的HPRRC。
    5、HPRRC力学性能、耐久性能试验结果表明:无论早期还是后期,
    其折压比均比普通砼的有所提高,脆性有所降低;新老砼粘结性能优
    良;并具有优异的抗冻性、抗渗性、耐磨性,抗氯离子渗透能力强;
    体积稳定性大为提高,抗裂性好。
    6、通过优化HPRRC的配比,用与老混凝土强度接近的新混凝土
    对老混凝土进行修补后,在普通试验机和MTS试验机上对新老混凝土
    的本构关系进行了试验研究,结果表明:在等应力条件下老砼、HPRRC
    
    博士学位论文.中文摘要
    的应变与新一老硷的相比,应变的比率在普通试验机上为82.4一
    105%,在川、S上为90一121.3%,即三者变形是基本接近的。新一老硅
    及HPRRC应力一应变全曲线建议采用两段式拟合:上升段采用三次抛
    物线方程模拟,下降段采用有理分式模拟,理论值与试验结果吻合较
    好。该研究成果为新老混凝土结合面抗裂能力的提高提供了前期的理
    论基础。
     7、自行研制的混凝土表面粗糙度测定仪,仪器设备简单,测试精
    度高,数据采集自动化,为评价混凝上断裂面的粗糙度提供了一种快
    速有效的测试仪器。线分数维D、灌砂平均深度h与新老硷界面粘结
    强度的试验结果表明:用线分数维来表征老硅表面的粗糙度,预测新
    老混凝土粘结强度结果的精度更高。
     8、硬化浆体的化学结合水量、XRD、SEM试验结果表明:在12一
    24h内,矿物外加剂C、激发剂D的加入,可以促进掺粉煤灰的水泥
    浆体早期的水化速度,密实了水泥基材,改善了水泥石的孔结构;粉
    煤灰水泥石的cH峰值明显降低,AFt的谱峰大幅度增加;粉煤灰活性
    成分的二次水化反应,消耗了cH晶体,晶粒得到细化,并可明显地
    看出粉煤灰颗粒表面被水化硅酸钙凝胶所覆盖,生成了大量的钙矾石
    柱状晶体,到3d龄期可明显看出粉煤灰表面受到了严重的侵蚀。cUFA
    n粉体减水增强效应、火山灰效应和微集料密实填充效应,大大提高
    了硬化水泥石的早期强度。
     9、HPRRC现已推广应用9.34万矿,使用至今未发现有开裂现象,
    耐久性优良,用户反映良好。为用户节约资金8377万元,厂家产生
    直接经济效益647万元,社会效益、环保效益非常显著。
In this paper, a series of ultra-fine fly ash composite powder (CUFA II)products for rapid repair are researched and developed successly with the ultra-fine fly ash as matrix . CUFA II can replace cement equivalently more than 30%. High performance rapid repair concrete(HPRRC) in which CUFA II replaces cement equivalently more than 30% can meet the requirements of opening traffic within 12~48h,which solves the problem of opening traffic as soon as possible after damaged Portland cement concrete pavement are repaired for a whole plate, and the engineering cost is lowered greatly. CUFA II is a kind of new environmental friendly green building material.
    The main achievements in this paper are as following:
    1 Based on the systematical study about physical properties, particle morphologies and micro-mechanism of ultra-fine fly ash, CUFA II products are successly developed by means of optimizing the particle gradation and activation technique. HPRRC composed of CUFA II products and with the strength grade no less than 32.5R ordinary Portland cement can meet the minimum strength index demands. At present , CUFA II has been produced commercially and applied to engineering . The fact that CUFA II based on fly ash is applied to whole plate Portland cement concrete pavement rapid repair engineering has not been reported at home and abroad.
    2 By extensive experiments and research, in consideration of the requirements of durability to chemical composition, referring to "high strength high performance concrete mineral admixture " (draft report) and correlating standards in abroad, the first Technical Specification (Q/DBAA001-2002) of ultra-fine fly ash mineral admixture in china has been put forward.
    3 By finite element method, the stress of New-Old concrete is simulated in condition of standard axis loading .The critical bond strength of new-old concrete interface is obtained. According to Chinese standard and referring to foreign research results, the key parameters for
    
    
    
    repaired concrete to open traffic are put forward.
    4 By means of multiple regression analytical method, the significant correlation factors with the flexural strength at the age of 12hours, 24hours and 28days are analysed. At the same time, the factors affecting dry shrinkage and durability are also analysed .The mix proportion parameters of HPRRC are determined, while HPRRC is good in workability (slump 30mm), and can meet the needs of opening traffic within 12~48h.
    5 . The experiment test results of mechanical properties and durability of HPRRC show: no matter at early age or later age, the ration of flexural strength to the cubic compression strength of HPRRC is higher than ordinary concrete, and the brittleness of HPRRC is reduced ;the bond performance of new-old concrete interface and chloride permeability are good; its resistance to freeze and thaw, permeability are all excellent; its volume stability is improved ,and its cracking resistance is good.
    6 With the optimization of the mix proportion of HPRRC and with the old concrete was repaired with HPRRC whose strength is close with that of the old concrete, the stress-strain curves of new-old concrete is tested on ordinary testing machine and MTS .The results show that under equal stress conditions, the ratios of the strain of old concrete ,HPRRC to new -old concrete are 82.4-105% on ordinary testing machine and 90-121.3% on MTS respectively. These demonstrate that the deformation of three kinds of concrete is basically similar. The stress-strain curve of new-old concrete and HPRRC, are suggested to be modeled by two sections: the ascending section of the stress-strain curve is simulated by cubic parabola equation and the descending section is simulated by rational fraction, where the theoretical value is in good agreement with the test value .The research results also provide a theoretical basis of earlier stage for improving crack resistance of new-old concrete interface.
    7 A fractional dimension testing instrument
引文
[1] 李华等编著.水泥混凝土路面修补技术.北京:人民交通出版社,1999.1~10
    [2] 李宏志,刘朝晖.河南省部分水泥混凝土路面损坏原因分析.公路,2000,8(8):37~40
    [3] 湖南省交通厅,2001年湖南省地方交通统计资料,2002年7月
    [4] Whiting.D.,Naqi, M., Strength and durability of rapid highway repair concretes, concrete International, V16,n9,Sept,1994,P36-41
    [5] 李炜光,陈栓发等.水泥混凝土路面的快速修补公路,2000,2:97~99
    [6] Q. Yang,B.Zhu and X.Wu.Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete, Materials and Structures, vol33,May,1999,P229-234
    [7] 姜洪义,梁波,张联盟.MPB超早强混凝土修补材料的研究.建筑材料学报,2001,4(2):196~198
    [8] 曹瑞军,梅东,原建安.水泥混凝土路面的快速修补材料的研制.西安交通大学学报,1998,32(1):97~99
    [9] 肖鹏,徐敏等.水泥混凝土路面超快速修补材料试验研究.华东公路.1996,103(6):72~76
    [10] 叶文,裘丽敏.HC系列快硬早强混凝土的研制与工程应用.浙江建筑,2000,100(3):40~41
    [11] 吴建等.硫铝酸盐水泥在路面修补中的应用.东北林业大学学报,1999,27(5):74~76
    [12] 谢勇成.水泥混凝土路面超薄层快速修补技术.公路,2000,7:62~65
    [13] 蒋元駉.韩素芳主编.混凝土工程病害与修补加固.北京:海洋出版社,1996年,778~826
    [14] 徐敏,肖鹏.硅粉混凝土在水泥混凝土路面快速修补中的应用.混凝土与水泥制品,1996,4:23~25
    [15] 黄建,刘增禹.RM复合胶结材料及机场混凝土道面快速修补技术.中国民航学院学报,1999,17(5):40~45
    [16] 孙家瑛.应用F型修补材料修补破损水泥混凝土路面.华东公路,1999,119(4):67~69
    
    
    [17] 项新里,龚泰乐,梁冰.早强外加剂在水泥混凝土路面修补中的试验选择与应用.浙江交通科技,2000,2:13~14
    [18] Seehra, S.S.; Gupta, Saroj; Kumar, Satander, Rapid setting magnesium phosphate cement for quick repair of concrete pavements characterisation and durability aspects, Cement and Concrete Research,v23,n2,Mar,1993,P254-266
    [19] Jean Pera, & Jean Ambroise, Fiber-reinforced Magnesia-phosphate Cement Composites for Rapid Repair, Cement and Concrete~ Composites,20(1998)31-39
    [20] Whiting.D.,Naqi,M., Strength and durability of rapid highway repair concretes, concrete International,V16,n9,Sept,1994,P36-41
    [21] Okamoto, P.A.,Whiting,D., Use of maturity and pulse velocity techniques to predict strength gain of rapid concrete pavement repairs during curing period, Transportation Research Record,n1458,Dec,1994,P85-90
    [22] Balaguru,P., Fiber-reinforced rapid-setting conrete, concrete International:Design and Construction,V14,n2,Feb,1992,P64-67
    [23] D.W.Fowler, Polymers in concrete:a vision for the 21st century, Cement and Concrete Composites,21(1999)449-452
    [24] 王燕等译,张起森审,水泥混凝土公路技术——实践与展望,人民交通出版社,2000年1月.
    [25] Linhua Jiang. The interfacial zone and bond strength between aggregates and cement pastes incorporating high volumes of fly ash. Cement & concrete composites,1999, 21(4):313-316
    [26] Pierre-Claude Aitcin, Carmel Jolicoeur, and James G.MacGregor. Superplasticizers: How They Work and Why They Occasionally Don't. Concrete international, 1994,5:45~52
    [27] 石明霞,谢友均,刘保举.水泥—粉煤灰复合胶凝材料的水化性能研究.建筑材料学报,2002,5(2):114~119
    [28] Berry E E,Hemmings R T, Zhang MinHong, et al. Hydration in high-volume fly ash concrete binders. ACI Material Journal,1994,91(4):382-389
    [29] Berry E E, Hemmings R T. Mechanisms of hydration reactions in high volume fly ash pastes and mortars. Cement and Concrete Composites, 1990, 20(12): 253—261.
    [30] Feldman R F, Carette G G, Malhotra V M. Studies on mechanism of
    
    development of physical and mechanical properties of high volume fly ash pastes. Cement and Concrete Research, 1990,20(12):245-251
    [31] 黄士元,李志华,程吉平.粉煤灰—Ca(OH)_2—H_2O系统中的反应动力学.硅酸盐学报,1986,14(2):191—197.
    [32] Marsh B K, Day R L. Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cement and Concrete Research, 1988, 18(2): 301—310.
    [33] Fraay A L A, Bijen J M, de Haan Y M. Reaction of fly ash in concrete — a critical examination. Cement and Concrete Research, 1989, 19(2): 235—246.
    [34] Xu A, Sarkar S L, Nilsson L O. Effect of fly ash on the microstructure of cement mortar. Materials and Structures, 1993, 26(8/9): 414—424.
    [35] 蒋林华,林宝玉,蔡跃波.高掺量粉煤灰水泥胶凝材料的水化性能研究.硅酸盐学报,1998,26(6):695—701.
    [36] Lam L, Wong Y L, Poon C S. Degree of hydration and gel / space ratio of high—volume fly ash/cement systems. Cement and Concrete Research, 2000, 30(5): 747—756.
    [37] Li Dongxu, Chert Yimin, Shen Jinlin, et al.The influence of alkalinity on activation and mierostructure of fly ash. Cement and Concrete Research, 2000,30(6): 881-886
    [38] Ymaltais, Marehand J. Influence of curing temperature on cement hydration and mechanical strength development of fly ash mortars. Cement and Concrete Research, 1997, 27(7): 1009—1020.
    [39] Zhang M H. Microstructure, crack propagation, and mechanical properties of cement pastes containing high volumes of fly ash. Cement and Concrete Research, 1995, 25(6): 1165—1178.
    [40] 阎培渝,杨文言,崔路,等.低水胶比时水泥—粉煤灰复合胶结材的水化性能.建筑材料学报,1998,1(1):68—71
    [41] Poon C S, Lam L, Wong Y L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cement and Concrete Research, 2000, 30(3): 447—455.
    [42] 张文生,陈益民,欧阳世翕.粉煤灰与水泥熟料共同水化硬化的基础研究进展及评述.硅酸盐学报,2000.28(2):160~164
    [43] Yamei Zhang,Wei Sun,Handong Yan. Hydration of high volume fly ash
    
    cement pastes. Cement and Concrete Composites.2000,22:445—452
    [44]Weiping Ma and Paul W. Brown. Hydrathermal reactions of fly ash with Ca(OH)_2 and CaSO_4· 2H_2O.Cement and Concrete Research,1997,22:1237—1248
    [45]Mehta P K. Influence of fly ash characteristics on the strength of portland—fly ash cement. Cement Concrete Research,1985,15(4):669—674
    [46]Halse Y, Pratt P L, Dalziel J A, et al. Development of microstructure and other properties in fly ash OPC systems. Cement Concrete Research,1984,14(4):491—498
    [47]王培铭,陈志源,Scholz H.粉煤灰与水泥浆体间界面的形貌特征.硅酸盐学报,1997,25(4):475-479
    [48]中华人民共和国交通部.JTJ012-94.公路水泥混凝土路面设计规范.北京:人民交通出版社,1994年
    [49]姚祖康著.水泥混凝土路面设计.合肥:安徽科学技术出版社,1999年.68-104
    [50]周士琼,尹健等.粉煤灰复合超细粉的开发利用研究(国家重点科技项目(攻关)计划,编号(96-920-39-02).长沙,中南大学,2002
    [51]付智.C100混凝土大幅度降低脆性的研究.混凝土,1993,(1):11-16
    [52]徐敏,肖鹏.硅粉混凝土在水泥混凝土路面快速修补中的应用.混凝土与水泥制品,1996,4:23~25
    [53]尹健,周士琼.高性能混凝土轴心抗拉强度与劈裂抗拉强度试验研究.长沙铁道学院学报,2001,19(2):25-29
    [54]David G.Geissert, Shigen(Erie)Li, et al. Splitting Prism Test Method to Evaluate Concrete-to-Concrete Bond Strength. ACI Materials Journal,1999,96(3):359-366
    [55]Shigen(Eric)Li, David G.Geissert, et al. Freeze-Thaw Bond Durability of Rapid-Setting Concrete Repair Materials. ACI Materials Journal,1999,96(2):242-249
    [56]Norbert J. Delatte,M. Scott Williamson, David W.Fowler. Bond Strength Development with Maturity of High-Early-Strength Bonded Concrete Overlays. ACI Materials Journal,2000,97(2):201-207
    [57]A.L.Abu-Tair, S-R-Rigden, and E.Burley. Testing the Bond between Repair Materials and Concrete Substrate. ACI Materials Journal,1996,93(6):553-558
    [58]P.J.Robins and S.A.Austin, A unified failure envelope from the evaluation
    
    of concrete repair bond tests. Magazine of concrete Research,1995,170(47):57-68
    [59]Masao Kuroda, Tomohide Watanabe, Nariaki Terashi,Increase of bond strength at interfacial transition zone by the use of fly ash. Cement Concrete Research,2000,30(2):253—258
    [60]Simon Austin, Peter Robins, Youguang Pan. Shear bond testing of concrete repairs. Cement Concrete Research,1999,29(2):1067—1076
    [61]李庚英,谢慧才,熊光晶.混凝土修补界面的微观结构及与宏观力学性能的关系.混凝土.1999,6:13-18
    [62]田稳苓,赵国藩.新老混凝土的粘结机理.河南理工学院学报.1998,20(2):78—82.
    [63]A.Carles-Gibergues, F.Saucier, J.Grandel & M.Pigeon.NEW-TO-OLD CONCRETE BONDING:INFLUENCE OF SULFATES TYPE OF NEW CONCRETE ON INTERFACE MICROSTRUCTURE. Cement Concrete Research,1993,23(2):431—441
    [64]Guangjing Xiong, Jinwei Liu,Gengying Li, Huicai Xie. A way for improving interfacial transition zone between concrete substrate and repair materials. Cement Concrete Research, 32(2002):1877—1881
    [65]邓聚龙著.灰色系统基本方法.武汉:华中理工大学出版社,1987年.96-162
    [66]张红,龚玉.磨损趋势预测的GM模型应用.机械设计与研究,2001,17(1):69-70
    [67]张仪萍,张土乔,龚晓南.沉降的灰色预测.32业建筑,1999,29(4):45-48
    [68]王海,李清富,赵正印.灰色控制系统在混凝土质量控制中的应用.人民黄河,1999,21(9):32-34
    [69]王向东,朱为玄,徐道远.灰色理论在预测混凝土性能参数长期值中的应用.河海大学学报,1999,27(6):64-67
    [70]Paul P.Kraal.A Proposed test to determine the cracking potential due to drying shrinkage of concrete. Concrete Construction,1985,9:775-778
    [71]Parviz Soroushian,Faiz Mirza,and Abdulrahman Alhozaimy. Plastic Shrinkage Cracking of Polypropylene Fiber Reinforced Concrete. ACI Materials Journal,1995, 92(5):553-560
    [72]冯乃谦编著.高性能混凝土.北京:中国建筑工业出版社,19996年
    
    
    [73] 蔡跃,鲁彩凤.修补材料的物理力学性能研究现状.四川建筑科学研究,1999,(3):40-44
    [74] 过镇海著.混凝土的强度和变形试验基础和本构关系.北京:清华大学出版社,1997,22-36
    [75] 袁志芬.混凝土非线性本构模型的构建.西北农林科技大学学报,2001,29(3):111-114
    [76] 胡海涛,叶知满.掺F矿粉或粉煤灰高强混凝土应力应变全曲线试验研究.青岛建筑工程学院学报,1996,17(1):1-9
    [77] 顾培英,陈迅捷,葛洪.高性能混凝土本构关系研究.水利水运科学研究,1999,(3):241-247
    [78] M.C Nataraja, N.Dhang,A.P.Gupta. Stress-strain for steel-fiber reinforced concrete under compression. Cement and Concrete Composites.1999,21:383—390
    [79] 严少华,钱七虎,孙伟等.钢纤维高强混凝土单轴压缩下应力-应变关系.东南大学学报,2001,31(2):77-80
    [80] Najm H S,Naaman A E.Prediction model for ehstic modulus of high-performance fiber reinforced cement-based composites. ACI Materials Journal,1995,92(3):304-313
    [81] 蒲心诚,王志军,王冲等.超高强高性能混凝土力学性能研究.云南建材,2002,(1):28-33
    [82] 李后强,汪富泉著.分形理论及其在分子科学中的应用.北京:科学出版社,1993,207-223
    [83] 谢和平,薛秀谦编著.分形应用中的数学基础与方法.北京:科学出版社,1997,1-10
    [84] 谢和平,张永平,宋晓秋等.分形几何——数学基础与应用.重庆:重庆大学出版社,1991,179-197
    [85] 易成,沈世钊.分形理论在工程材料疲劳、断裂性能研究中的应用.哈尔滨建筑大学学报,1999,32(5):11-15
    [86] 张国祥,刘保琛,傅鹤林.分形理论及其在膨胀土结构研究中的应用.铁道学报,2000,22(10):72-84
    [87] 吴扣根,马文会,王华等.分形在材料科学中的应用及发展.云南冶金.1997,26(2):49-64
    [88] 汪蔚军,吴昭同,陈历喜等.二维表面粗糙度的分形模拟与分析.机械科
    
    学与技术,1997,16(6):1059-1062
    [89]熊兆贤著.陶瓷材料的分形研究.北京:科学出版社,2000,168-208
    [90]赵志方,于跃海,赵国藩.测量新老混凝土粘结面粗糙度的方法.建筑结构.2000,30(1):26-29
    [91]于跃海,分形及分维数理论在新老混凝土粘结机理研究中的应用:[硕士学位论文].大连:大连理工大学,1998
    [92]葛世荣,Tonder K.粗糙表面的分形特征与分形表达研究.摩擦学学报,1997,17(1):73-80
    [93]吴科如,张东,刘娟育等.混凝土断裂面三维重构.建筑材料学报,1999,2(3):261-265
    [94]赵志方,赵国藩.采用高压水射法处理新老混凝土粘结面的试验研究.大连理工大学学报,1999,39(4):558-561
    [95]袁群,赵志方,赵国藩.新老混凝土粘结强度的影响因素分析.人民黄河,2000,22(4):31-33
    [96]管大庆,陈章洪,石韫珠.界面处理对新老混凝土粘结性能的影响.混凝土.1994,(5):16-22
    [97]F.M.Borodich.Some fractal models of fracture. Phys. Solids. 1997,45(2):239-259
    [98]G.Prokopski, B.Longier. Effect of water/cement ratio and silica fume addition on the fracture toughness and morphology of fractured surfaces of gravel concretes. Cement Concrete Research, 30(2000):1427—1433
    [99]黄亮姿,周士琼,尹健.粗骨料对高性能快速修补混凝土力学性能的影响.湖南轻工业高等专科学校学报.2002,14(4):3-7
    [100]中华人民共和国交通部.JTJ073.1-2001.公路水泥混凝土路面养护技术规范.北京:人民交通出版社,2001年
    [101]Jian Yin, Shiqiong Zhou,Youjun Xie et al.Investigation on compounding and application of C80-C100 high-performance concrete. Cement Concrete Research, 32(2002):173—177
    [102]钱觉时,范英儒,明德华等.粉煤灰活性的激发.重庆建筑大学学报.1995,17(3):111—117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700