用户名: 密码: 验证码:
500MPa级钢筋混凝土受压构件受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构是我国目前应用最广泛的建筑结构形式。但与国外相比,我国混凝土结构用钢筋的强度普遍低1~2个等级,直接造成构件配筋密集,施工困难,钢筋用量过大,相应能源和资源消耗偏高,与我国目前提倡的“可持续发展战略”背道而驰。
     近年来,我国冶金行业通过添加钒等微合金元素,新开发出了强度标准值为500MPa的热轧HRB500级钢筋,并又通过控温控轧技术,开发出不添加或少添加微量元素的500MPa级超细晶粒钢筋。其中HRB500级钢筋已列入我国《混凝土结构用钢筋标准》(GB1499-1998),但由于缺乏全面系统的科研工作,尤其基础性试验研究严重不足,《混凝土结构设计规范》(GB50010-2002)尚未列入500MPa级钢筋,直接影响了500MPa级钢筋在实际工程中的推广应用。
     本文针对500MPa级钢筋在受压构件中的应用,共进行了32个轴心受压和9个偏心受压500MPa级钢筋混凝土柱受力性能的试验研究,根据试验结果进行了轴压柱的混凝土应力应变曲线分析和偏压柱的数值模拟,提出了500MPa级钢筋用于混凝土结构受压构件的设计建议,并依据上述建议进行了HRB500级钢筋的试点工程应用分析。主要内容如下:
     1.通过500MPa级钢筋混凝土轴压柱试验,分析了混凝土强度、纵向钢筋配筋率、配箍情况和纵筋强度对轴压受力变形性能的影响,探讨了混凝土强度和纵筋配筋率与混凝土受压峰值应变和峰值应力的变化规律,研究表明:
     ①随着混凝土强度、纵筋配筋率和箍筋体积配箍率的提高,轴压柱的混凝土峰值应变均有明显增大并可超过0.002,在常用的受压构件纵筋配筋率范围内以及规范构造配箍条件下,混凝土峰值压应变在0.0022~0.0026之间,500MPa级钢筋在受压构件中能充分发挥其抗压强度;
     ②当钢筋和混凝土强度分别取实测平均值(f_y约为524MPa)和标准值时,根据现行规范公式对轴压承载力进行了计算分析,试验值与计算值之比分别为1.08和1.24,计算结果偏于安全,具有一定的安全储备。
     2.根据对轴压柱混凝土应力应变曲线的试验结果,通过对曲线特征点的分析和对规范附录C混凝土受压应力应变曲线的改进,提出了综合考虑纵筋和配箍影响的混凝土峰值压应力和峰值压应变的计算公式和应力应变曲线方程,计算结果与试验结果符合较好,可作为混凝土结构和构件非线性分析的参考。
     3.通过500MPa级钢筋混凝土偏压柱试验,分析了偏心距和纵筋配筋率对偏压柱侧向挠度、受压边缘混凝土应变和纵向钢筋应变的影响,其受力性能与普通钢筋混凝土偏压柱一致,当钢筋和混凝土强度取实测平均值(f_y约为516MPa)时,按我国现行规范公式计算偏压柱承载力,试验值与计算值之比为1.18,计算结果偏于安全,具有一定的安全储备。
     4.在偏压柱试验研究的基础上,编写了基于Matlab的偏压柱非线性分析程序,进行了纵筋分别采用500MPa级和HRB335级钢筋的偏压柱数值模拟试验,分析了偏心距、长细比、混凝土强度和纵筋配筋率对二阶效应影响,并与中国、美国和欧洲规范公式计算结果进行了对比分析,研究表明:500MPa级钢筋混凝土偏压柱的二阶效应变化规律与普通钢筋混凝土柱相同,中国、美国和欧洲规范的二阶效应公式计算结果与模拟试验结果基本一致,500MPa级钢筋混凝土偏压柱二阶效应可采用我国现行规范公式进行计算,且与采用HRB335级钢筋的偏压柱具有大致相同的安全度。
     5.基于上述试验研究和分析,提出了500MPa级钢筋用于受压构件的设计强度取值(f_y=f_yk/r_s=500/1.1≈450MPa)和设计建议,进行了国内首个采用HRB500钢筋的试点工程的设计,并与采用HRB335和HRB400钢筋的用量进行了对比分析,研究表明:
     ①采用500MPa级高强钢筋替代传统钢筋在一定条件下可明显减少钢筋用量,可改善目前框架结构中梁、柱节点和框架柱中钢筋拥挤的现象,提高工程质量,取得较好的社会经济效益;
     ②在工程结构中要更为有效地推广应用500MPa级钢筋,还应改进和完善现行规范裂缝宽度和最小配筋率的计算方法或规定,为500MPa级高强钢筋列入我国《混凝土结构设计规范》提供了工程依据。
     本文的研究得到了国家自然科学基金(项目批准号:50578148)和国家863计划(项目编号:2004AA33G050)的资助。
Concrete structure is the most widespread structural style at present in our country. But strength grade of steel bar applied in concrete structure in our country is universally 1-2 grades lower than that in overseas.This directly causees crowded reinforcing bars in concrete members,construction difficulty,oversized steel bar amount,and the high energy and resources consumption,which run counter to "the sustainable development" policy our goverment advocates at present.
     In recent years in our metallurgical industry,HRB500 steel bar was developed by rare elements(such as vanadium et) addition,and 500MPa level ultra-fine crystal grain steel bar was newly exploited out through temperature and rolling conformity technology,which has no or fewer rare element.HRB500 steel bar has been included in " Hot rolled ribbed steel bars for the reinforcement of concrete "(GB1499-1998), but because the lack of comprehensive and systematic scientific effort,especially seriously insufficiency of fundamental experiment study,500MPa grade steel bar has not been included in the "Concrete structure Design Code"(GB50010-2002),which immediately influence the application of 500MPa grade steel bar in actual project.
     In this paper,for the purpose of 500MPa grade steel bar application in concrete compression members,a total of 32 axially compressed and nine eccentrically compressed 500 MPa grade steel bar reinforced concrete column tests were conducted, compression performance study was carried out,axial compression stress-strain curve and numerical simulation of eccentrically compressed column were analyzed according to test results,the design suggestion of 500 MPa grade steel bar used in reinforced concrete compression member was proposed,and the application analysis of HRB500 steel bar pilot project was completed in accordance with the above proposal.The main content is as follows:
     1.Through test of axially compressed concrete column reinforced with 500 MPa grade steel bar,the influence of concrete strength,longitudinal reinforcement ratio, transverse stirrup and longitudinal steel strength on axially compressive performance was analyzed,the relationship between concrete peak strain,concrete peak stress and concrete strength,longitudinal reinforcement ratio was discussed,the result shows that:
     ①With the increase of concrete strength,longitudinal reinforcement ratio and volume ratio of stirrup hoop,concrete peak strain of axially compressed column is significantly increased,and can be reached above 0.002.Within the longitudinal reinforcement ratio scope commonly used in concrete compression member and stirrup situation ruled by code,the concrete compressive peak strain is at the range of 0.0022 to 0.0026,and the compressive strength of 500MPa grade steel bar can be fully developed.
     ②The specimen bearing capacity was calculated and analyzed in accordance with the formula of axially compressed column in Chinese existing code,the average ratio of test value to calculation value are 1.08(strength of concrete and steel bar is taken as the mean value of test) and 1.24(strength of concrete and steel bar is taken as the characteristic value) respectively,which indicates that calculated formula is in a certain of security.
     2.According to concrete stress-strain curves of axially compressed column obtained in tests,through the analysis of curve characteristic point and modification of concrete stress-strain curve in Appendix C(Chinese Code),a concrete stress-strain curve equation in consideration of longitudinal reinforcement and transverse stirrup was derived,of which calculation results are in good agreement with test results,and can be used as reference of nonlinear analysis of concrete structure and members.
     3.Through test of eccentrically compressed concrete column reinforced with 500 MPa grade steel bar,the influences of eccentricity and longitudinal steel ratio on the specimen lateral deflection,concrete strain at compression edge and longitudinal reinforcement strainwere analyzed,result shows consistent performance with common eccentrically compressed reinforced concrete column.The specimen bearing capacity were calculated according to Chinese existing code,the average ratio of test value to calculated value is 1.18,which indicates that calculated formula is in a certain security.
     4.On the basis of experimental study of eccentrically compressed concrete column reinforced with 500 MPa grade steel bar,a nonlinear analysis procedure based on Matlab about eccentrically compressed column was worked out,numerical simulation tests of eccentrically compressed concrete column reinforced with 500 MPa and HRB335 grade steel bar respectively were conducted,the impact on second-order effects of eccentricity,slenderness ratio,concrete strength and longitudinal steel ratio were comparatively analyzed,results show that the law of second-order effects of concrete column reinforced with 500 MPa grade steel bar is basically the same with that reinforced with ordinary steel bar.Second-order effects of simulation test specimen were calculated in accordance with Chinese,American and European codes, the calculation results primarily agree with each other,and it can be induced that second-order effects calculation of eccentrically compressed concrete column reinforced with 500 MPa grade steel bar can be designed according to the existing Chinese code provision,and of essentially the same security degree with that reinforced with HRB335 grade steel bar.
     5.Through the above experiment study and analysis,the design value of compressive strength(f'_y=f_(yk)/γ_s=500/1.1≈450MPa) and design suggestion for use of 500 MPa grade steel bar in reinforced concrete compression member was proposed,according to above proposal,HRB500 grade steel bar pilot project was designed,a comparative analysis of steel consumption was conducted with that use HRB335 and HRB400 grade steel bar,the results indicate that:
     ①By replacing HRB335 and HRB400 grade steel bar with HRB500 grade steel bar, the reinforcement amount can be reduced under certain conditions,the steel bar crowded phenomenon can be improved in node,beam and column etc.of frame structure,the project quality can be reformed,and better social economy progress can be received.
     ②In order to more effectively promote the use of 500 MPa grade steel in project structure,the calculating method or provisions of crack width and the minimum reinforcement in existing code need to be improved and perfected,and a project basis was provided for 500 MPa grade high strength steel bar in Chinese "concrete structure design code".
     This article research obtained the State Natural Sciences Foundation(the project authorization number:50578148) and national 863 plans(project number: 2004AA33G050) subsidization.
引文
[1]徐有邻.我国混凝土结构用钢筋的现状及发展[J].土木工程学报,1999,32(5):3-9
    [2]徐有邻,谢志峰.混凝土结构用钢筋优化的建议[J].工业建筑,1999,29(10):15-21
    [3]徐有邻.钢筋产品换代设计面临选择[J].混凝土,2000,(5):7-9
    [4]王厚昕,李正邦.我国热轧钢筋的发展和现状[J].材料与冶金学报,2006,5(2):141-145
    [5]吴之乃,郑念中.我国混凝土工程技术的现状及发展[J].混凝土:2000,(11):3-7
    [6]廉慧珍,路新瀛.我国混凝土工程发展中的几个问题[J].建筑技术,2000,31(1):10-14
    [7]叶青,曾志兴.高混凝土强度的技术经济分析[J].华侨大学学报(自然科学版),2002.,23(1):6-59
    [8]覃维祖.高性能混凝土的回顾与展望[J].建筑技术,2004,35(1):12-16
    [9]叶列平,林旭川,冯鹏.高强混凝土梁受弯承载力安全储备与经济性分析[J].建筑结构,2006,36(增刊):5-72-5-75
    [10]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1992:4-20
    [11]徐有邻.采用高强材料提高结构可靠度的建议[J].建筑科学,1999,15(5):56-58
    [12]谢仕柜.应加速推广我国高强钢筋的发展[J].轧钢,2000,17(3):9-14
    [13]王铁宏.亟需推广应用高强钢筋和高性能混凝土[J].建设科技,2005,(6):28-29
    [14]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985
    [15]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [16]R.Park T.Paulay.Reinforced Concrete Structures[M].New York:JohnWiley& Sons,1975
    [17]Leonard Spiegel,George F.Limbrunner Reinforced Concrete Design(Fourth Edition)[M].北京:清华大学出版社,2005
    [18]Edward G.Nawy Reinforced Concrete-A Fundamental Approach(Fourth Edition)[M].New Jersey:Prentice Hall,Upper Saddle Ricer,2000
    [19]A.H.尼尔逊著.过镇海,方鄂华,庄崖屏等译.混凝土结构设计(第 12 版)[M].北京:中 国建筑工业出版社,2003
    [20]康清梁.钢筋混凝土有限元分析[M].北京:中国水利水电出版社,1996
    [21]R.Park,M.J.N.;Priestley,W.D.Gill.Ductility of Square-confined Concrete Columns.[J].ASCE,1982,(4):929-951
    [22]J.B.Mander,M.J.N.Priestley R.Park.Theoretical Stress-strain Model for Confined Concrete [J].ASCE,1988,(8):1804-1826
    [23]过镇海,张秀琴.混凝土的应力-应变全曲线的试验研究[J].建筑结构学报,1982,(1):14-18
    [24]Paultre,P.;Legeron,F.Analytical model for confined concrete columns.Proceedings,Annual Conference - Canadian Society for Civil Engineering,v 4,Second Symposium on Applied Mechanics Structures:Seismic Engineering,1997:379-388
    [25]Razvi,Salim;Saatcioglu,Murat Confinement model for high-strength concrete[J].Journal of Structural Engineering,1999,125(3):281-288
    [26]Bing,Li;Park,R.;Tanaka,H.Stress-strain behavior of high-strength concrete confined by ultra-high- and normal-strength transverse reinforcements[J].ACI Structural Journal,2001,98(3):395-406
    [27]Hong,K.-N.;Akiyama,M.;Yi,S.-T.;Suzuki,M.Stress - Strain behaviour of high-strength concrete columns confined by low-volumetric ratio rectangular ties[J].Magazine of Concrete Research,2006,58(2):101-115
    [28]Taylor,R.USE FOR VERY HIGH STRENGTH STEELS IN REINFORCED CONCRETE[J].Concrete(London),1975,9(7):35-36
    [29]Watanabe,Fumio;Lee,J.Y.;Nishiyama,Minehiro Structural performance of reinforced concrete columns with different grade longitudinal bars[J].ACI Materials Journal,1995,92(4):412-418
    [30]Watanabe,Fumio;Nishiyama,Minehiro Controlled yield sequence of reinforcement in concrete members[J].High Performance Materials in Bridges,2003:87-96
    [31]Park,Robert.Design and behavior of RC columns incorporating high-strength materials[J].Concrete International,1998,20(11):55-62
    [32]Stephen Pessiki,Benjamin Graybeal and Michael Mudlock Design of high strength spiral reinforcement in concrete compression members[A].Proceedings of the International Conference on Advances in Building Technology[C].4-6 December 2002,Hong Kong,China 2002:431-438
    [33]Pessiki,Stephen;Graybeal,Benjamin A.Axial load tests of concrete compression members with high strength spiral reinforcement[J].PCI Journal,2000,45(2):64-80
    [34]Lloyd,Natalie Anne;Rangan,B.Vijaya Studies on high-strength concrete columns under eccentric compression[J].ACI Structural Journal,1996,93(6):631-638
    [35]Legeron,Frederic;Mongeau,Daniel;Paultre,Patrick Behaviour of high-strength concrete columns under combined flexure and axial loads[A].Proceedings,Annual Conference Canadian Society for Civil Engineering,v 7,Structures - Design,Concrete and Reinforced Concrete Structures,Bridges[C],1997:163-172
    [36]Okamoto,Masaru;Sato,Tsutomu;Tanimura,Yukihiro;Kuroiwa,Toshiyuki,Experimental study on seismic performance verification method for RC members using high-strength materials[J].Journal of Advanced Concrete Technology,2004,2(2):223-231
    [37]Hwang,S.-K.;Yun,H.-D.;Park,W.-S.;Han,B.-C.Seismic performance of high-strength concrete columns[J].Magazine of Concrete Research,2005,57(5):247-260
    [38]Park,Bob Some controversial aspects of the seismic design of reinforced concrete building structures[J].Bulletin of the New Zealand Society for Earthquake Engineering,2003,36(3):165-188
    [39]Cusson,Daniel;Paultre,Patrick High-strength concrete columns confined by rectangular ties[J].Journal of Structural Engineering,1994,120(3):783-804
    [40]Razvi,Salim;Saatcioglu,Murat Confinement model for high-strength concrete[J].Journal of Structural Engineering,1999,125(3):281-288
    [41]Saatcioglu,Murat;Razvi,Salim R.High-strength concrete columns with square sections under concentric compression[J].Journal of Structural Engineering,1998,124(12):1438-1447
    [42]Thomsen,John H.IV;Wallace,John W.Lateral load behavior of reinforced concrete columns constructed using high-strength materials[J].ACI Materials Journal,1994,91(5):605-615
    [43]Paultre,P.;Legeron,F.Analytical model for confined concrete columns[A].Proceedings,Annual Conference - Canadian Society for Civil Engineering,v 4,Second Symposium on Applied Mechanics Structures:Seismic Engineering[C],1997:379-388
    [44]Paultre,Patrick;Legeron,Frederic;Mongeau,Daniel Influence of concrete strength and transverse reinforcement yield strength on behavior of high-strength concrete columns[J].ACI Structural Journal,2001,98(4):490-501
    [45]Bing,Li;Park,R.;Tanaka,H.Stress-strain behavior of high-strength concrete confined by ultra-high- and normal-strength transverse reinforcements[J].ACI Structural Journal,2001,98(3):395-406
    [46]薛伟辰.高性能(高强)混凝土构件受力性能研究[J].四川建筑科学研究,2004,30(1):90-93
    [47]卢建峰,蒋永生,梁书亭.高强钢筋高强混凝士梁刚度的试验研究[J].东南大学学报, 1996,26(6):109-114
    [48]蒋永生,梁书亭,陈德文等.高强钢筋高强混凝土受弯构件的变形性能试验研究[J].建筑结构学报,1998(2):37-43
    [49]李美云.HRB400 级钢筋混凝土构件受力性能的试验研究[D].郑州:郑州大学硕士学位论文,2003
    [50]李美云,刘立新.HRB400 级钢筋混凝土构件裂缝宽度的试验分析[J].南昌大学学报工科版,2004,26(3):72-75
    [51]戎贤.高强钢筋混凝土构件裂缝控制试验研究及有限元分析[D].天津:天津大学博士学位论文,2005
    [52]谭品峰,王铁成,戎贤,田爱勇.HRB400 高强钢筋在混凝土构件中的应用研究[J].河北工业大学学报,2004(2):41-43
    [53]谭品峰.集中荷载作用下高强钢筋混凝土梁抗剪性能研究[D].天津:天津大学硕士学位论文,2003
    [54]金琰,苏幼坡,康谷贻.集中荷载作用高强钢筋混凝土梁斜裂缝的出现与发展[J].建筑结构,2003(1):15-16
    [55]同济大学课题组.配 400MPa 细晶粒钢筋的混凝土梁受弯性能试验报告[R].2006
    [56]陈建国,孟建伟,王海龙.高强钢筋混凝土梁在疲劳荷载作用下的裂缝宽度计算[J].石家庄铁道学院学报,2004,17(3):31-34
    [57]龚志国,戴国亮,蒋永生,梁书亭.高强混凝土在长期荷载作用下的变形[J].工业建筑,2002,32(3):45-47
    [58]张国军,白国良,刘伯权.高强混凝土框架柱的研究与进展[J].西安建筑科技大学学报(自然科学版),2002,24(1):53-56
    [59]李立仁,支运芳,陈永庆,张学民.高强约束混凝土框架柱抗震性能的研究[J].重庆建筑大学学报,2002,24(5):38-45
    [60]同济大学课题组.配 400MPa 新型碳素钢筋的混凝土柱抗震性能试验报告[R].2006
    [61]阎石,肖潇,张日果,阚立新.高强钢筋约束混凝土矩形柱的抗震性能试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(1):7-10
    [62]肖潇.配有高强钢筋的高强混凝土柱的抗震性能研究[D].沈阳:沈阳建筑大学,2004
    [63]阎石,肖潇,阚立新等.高强钢筋高强混凝土柱的恢复力模型[J].沈阳建筑大学学报(自然科学版),2005,(2):81-85
    [64]阎石,肖潇,张日果等.高强钢筋约束混凝土矩形截面柱的抗震性能试验研究[J].沈阳建筑大学学报(自然科学版),2006(1):7-10
    [65]张日果.高强钢筋高强混凝土圆柱抗震性能研究[D].沈阳:沈阳建筑大学,2005
    [66]叶列平,Asad U Q,马千里,陆新征.高强钢筋对框架结构抗震破坏机制和性能控制的 研究[J].工程抗震与加固改造,2006,28(1):18-24
    [67]张艇.HRB500 级钢筋混凝土构件受力性能的试验研究[D].郑州:郑州大学硕士学位论文,2004
    [68]刘立新,张艇,毛达岭.HRB500 级钢筋混凝土受弯及受剪构件受力性能的试验研究[A].第八届全国混凝土结构基本理论及工程应用学术会议论文集[C],重庆:重庆大学出版社,2004
    [69]天津大学建筑工程学院.使用 500MPa 钢筋的混凝土梁基本性能试验研究报告[R].2006
    [70]毛达岭,刘立新,范丽.HRB500 级钢筋粘结锚固性能的试验研究[J].工业建筑,2004,34(12):67-69
    [71]欧阳煜,赖校君.高强钢筋高强混凝土粘结性能的试验与分析[J].工业建筑,2007,37(5):77-81
    [72]郑州大学.首钢 HRB500 级钢筋混凝土构件受力性能试验研究(研究报告)[R].2003
    [1]中华人民共和国建设部 混凝土结构设计规范(GB50010-2002),北京:中国建筑工业出版社。2002
    [2]Building Code Requirements for Reinforced Concrete and Commentary(ACI 318-02/ACI 318R-02)(American Concrete Institute,Detroit,2002).
    [3]European Committee for Standardization Eurocode 2:Design of concrete structures prEN 1992-1(January 2001)
    [4]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985
    [5]过镇海.混凝土的强度与变形-试验基础和本构关系[M].北京:清华人学出版社,1997
    [6]中国建筑科学研究院.混凝土结构设计[M].北京:中国建筑工业出版社,2003
    [7]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [8]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J].清华大学学报(自然科学版),2002,42(10):1369-1373
    [9]Saatcioglu M,Razvi R.Strength and ductility of confined concrete[J].ASCE Journal of Structure Engineering,1992,118(6):1590-1607.
    [10]Murat Saatcioglu,Salim R.Razvi.High-Strength Concrete Columns with Square Sections under Concentric Compression[J].ASCE Journal of Structure Engineering,1998,124(12):1438-1447.
    [11]胡海涛,叶知满.复合箍筋约束高强混凝土应力应变性能[J].工业建筑,1997,27(10):23-28
    [12]门进杰,刘继明,张华东.矩形箍筋对钢筋混凝土短柱承载力提高的分析[J].青岛建筑 工程学院学报,2004,25(2):21-23
    [13]CAO Xinming,XI Xiaoyun.Influence of longitudinal steel on ductility of square columns under axial load[J].贵州工业大学学报(自然科学版),2002,31(5):68-74
    [14]Minehiro Nishiyama,lzuru Fukushima,Fumio Watanabe.Axial loading tests on high strength concrete prisms confined by ordinary and high strength steel[C].Norwegian Concrete Association.High Strength Concrete Proceedings.Norway:1993,322-329.
    [15]Daniel Cusson,Patrick Paultre.High strength concrete columns confined by rectangular ties[J].ASCE Journal of Structural Engineering,1994,120(3):783-804.
    [16]Park R,Priestley M J N,Gill W D.Ductility of square-confined concrete columns[J].Proceedings,ASCE,1982,108(4):929-950.
    [17]曹新明,熊岚,郭献忠.约束高强混凝土轴心受压柱的延性[J].贵州工业大学学报(自然科学版),2002,31(6):29-35
    [18]Salim R.Razvi,Murat Sactcioglu.Strength and Deformability of confined High-Strength Concrete Columns[J].ACI Structral,1994,91(6):60-68
    [19]Carrasquillo,R.L.,Nilson,A.H.,and Slate,F.O..Properties of high-strength concrete subjected to short term loads[J].ACIJ.,1981,78(3):171-178
    [20]李惠,周文松,王震宇等.约束及无约束泵送高性能与超高性能混凝土力学性能试验研究[J].建筑结构学报,2003,24(5):58-71
    [21]陈宇彤,樊江.加强箍筋约束对提高钢筋混凝土柱延性的探讨[J].四川建筑,25(5):67-68
    [22]周文峰,李晓明.箍筋对约束混凝土力学性能的影响[J].四川建筑,2006,26(5):86-87
    [23]胡海涛,叶知满.复合方箍约束混凝土轴心受压短柱承载力计算[J].建筑结构,2002,(4):12-13
    [24]蔡绍怀.套箍混凝土轴心受压构件的强度计算[J].建筑结构,1980,(4):23-29
    [1]过镇海等.单调荷载下混凝土应力应变全曲线的试验研究.钢筋混凝土结构的抗震性能科学报告集(第3集)[R],1991
    [2]过镇海,张秀琴等.混凝土应力-应变全曲线的试验研究[J].建筑结构学报,1982,(1):1-12
    [3]李东陆.约束高强混凝土应力-应变关系及高强混凝土柱配箍率的试验研究[D].大连:大连理工大学,1990
    [4]徐超,赵成文.受约束高强度混凝土应力-应变关系的探讨[J].沈阳建筑工程学院学报,2002,1(4):258-260
    [5]关萍,赵国藩.高强约束混凝土应力应变本构关系的试验研究[J].工业建筑,1997,27(11):6-29
    [6]叶列平,叶燕华.箍筋约束高强混凝土应力-应变全曲线的试验研究[J].南京建筑工程学院学报,1994,(4):67-72
    [7]关萍,王清湘,赵国藩.高强约束混凝土应力-应变本构关系的试验研究[J].工业建筑,1997,27(11):26-29
    [8]孙飞飞,沈祖炎 箍筋约束混凝土模型比较研究[J].结构工程师,2005,21(1):27-29
    [9]周文峰,黄宗明,白绍良.约束混凝土几种有代表性应力-应变模型及其比较[J].重庆建筑大学学报,2003,25(4):121-127
    [10]郭献忠.区域约束高强混凝土轴心受压短柱的非线性分析研究[D].贵阳:贵州大学,2006
    [11]聂建国,柏宇,李盛勇.横向多重配箍约束混凝土的计算方法[J].工业建筑,2005,35(12).43-46
    [12]Mander J B,Priestley M J N,Park R.Theoretical Stress Strain Behavior of Concrete[J].Journal of Structural Engineering,ASCE,1988,114(8):1245-1249
    [13]王振宇,丁建彤,郭玉顺.结构轻骨料混凝土的应力-应变全曲线[J].混凝土,2005:39-41
    [14]王双剑,王元丰.轴心受压 FRP 约束混凝土柱应力-应变关系曲线计算[J].特种结构,2004,21(2):66-68
    [15]Sheikh S A,Uzumefi S M.Analytical model for concrete confinement in tied columns[J].ASCE J Structural Division,1982,108(ST102):2703-2722.
    [16]朱玉普.钢筋混凝土有限元分析中的力学模型研究[D].大连:大连理工大学,1988
    [17]Cusson,D.,and Paultre,P.High-strength concrete columns confined by rectangular ties[J].J.Struct.Engrg.,ASCE,1994,120(3):783-804
    [18]Cusson,D.,and Paultre,P.Stress-strain model for confined high-strength concrete[J].J.Struct.Engrg.,ASCE,1995,121(3):468-477
    [19]Razvi,S.Confinement of normal and high-strength concrete columns[D].University of Ottawa,Ottawa,ON,Canada,416.1995
    [20]Muguruma,H.,Nishiyama,M.,and Watanabe,F.Stress-strain curve for concrete with a wide range of compressive strength[A].Proc.,Syrup.on High-Strength Concrete[C],1993,314-321
    [1]王传志,腾智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985
    [2]姚振纲,刘振华.建筑结构试验[M].上海:同济大学出版社,1996
    [3]谢怀欣,庄崖屏,石裕翔.高强混凝土偏心受压柱全过程同步量测试验研究[J].烟台大学学报(自然科学与工程版),1993,(1):49-56
    [4]贾金青,赵国藩.高强混凝土框架短柱力学性能的试验研究[J].建筑结构学报,2001,22(3):
    [5]王清湘,赵国藩,林立岩.高强混凝土柱延性的试验研究[J].建筑结构学报,1995,16(4):
    [6]叶列平.劲性钢筋混凝土偏心受压中长柱的试验研究[J].建筑结构学报,1995,16(6):45-52.
    [7]张素梅,郭兰慧,王玉银等.方钢管高强混凝土偏压构件的试验研究与理论分析[J].建筑结构学报,2004,25(1):17-24
    [8]Li B.Strength and ductility of reinforced Concrete and frames constructed using high-strength concrete[D].Christchurch,Univ.of Canterbury,New Zealand,1994.
    [9]马传政,李小梅,王连广等.钢骨高强混凝土偏压柱受力分析[J].沈阳建筑大学学报(自然科学版),2006,22(3):388-392
    [10]潘景龙,王威,金熙男等.偏心荷载作用下FRP约束钢筋混凝土短柱的特性研究[J].土木工程学报,2005,38(2):46-50
    [11]王清湘,赵国藩.高强混凝土柱延性的试验研究[J].建筑结构学报,1995,16(4):22-31
    [12]CHUANG P H,KONG S K.Strength of reinforced concrete columns[J].Journal of Structural Engineering 1998,124(9):992-998
    [13]叶列平.高强混凝土构件正截面承载力计算方法[J].土木工程学报,2000,33(6):70-74
    [14]李平先,毕苏萍.对称配筋小偏心受压构件的截面设计[J].四川建筑科学研究,2004,30(2):7-9
    [15]黄治宇.新配筋模式高强混凝土柱受力性能研究[D].大连:大连理工大学,2002:53-58
    [16]程海根,董明,李睿.约束混凝土压弯构件曲率延性分析[J].昆明理工大学学报,2001,26(6):89-93
    [17]田广宇,叶列平,曲哲.对称配筋混凝土正截面承载力计算的叠加法[J].建筑结构,2006,36(增刊):5-60-5-65
    [18]叶列平,赵树红,方鄂华.钢骨混凝土构件正截面承载力计算[J].工程力学,1999,6(2):29.36
    [19]Saatcioglu M.,Salamat,A.H.,and Razvi,S.R..Confined columnsunder eccentric loading[J]."J.Struct.Engrg.,ASCE,1995,121(11):1547-1556
    [20]Lloyd,Natalie Anne;Rangan,B.Vijaya Studies on high-strength concrete columns under eccentric compression[J].ACI Structural Journal,1996,93(6):631-638
    [21]Foster,Stephen J.;Attard,Mario M.Experimental tests on eccentrically loaded high-strength concrete columns[J].ACI Structural Journal,1997,94(3):295-303
    [1]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994
    [2]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985.
    [3]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论及应用[M].上海:同济大学出版社,2002
    [4]吴波,王维俊,王帆.碳纤维布加固钢筋混凝土柱的弯矩-曲率关系分析[J].华南理工大学学报(自然科学版),2005,33(1):10-15
    [5]吴可训.钢筋混凝土非线性全过程分析的研究与实践[D].合肥:合肥工业大学。2004
    [6]杨大伟,黄侨,李威.混凝土构件正截面承载力计算的数值算法[J].沈阳建筑大学学报(自然科学版),2005,21(5):482-485
    [7]张娟霞,唐春安,王述红等.偏心加载钢筋混凝土结构破坏过程的数值模拟[J].建筑材料学报,2006,9(1):105-110
    [8]Lam W F,Morley C T.Arc-length method for passing limit points in structural calculation[J].Journal of Structural Engineering,1992,118(1):169-185
    [9]WANG G G,HSU C T T.Nonlinear analysis of reinforced concrete columns by cubic-spline function[J].Journal of Engineering Mechanics,1998,127(4):803-810
    [10]刘毅,魏巍,王志军,白绍良.采用截面分层及弧长法的钢筋混凝土杆系结构非线性分析[J].重庆建筑大学学报,2000,22(增刊):152-157
    [11]刘南科,周基岳,肖允徽.钢筋混凝土框架的非线性全过程分析[J].土木工程学报,1990,23(4):2-14
    [12]卢林枫,解琦,曾珂.MATLAB 与建筑结构分析[J].建筑技术开发,2003.30(2):1-3
    [13]郑建岚,郑作樵.高强钢筋混凝土细长柱试验研究[J].福州大学学报(自然科学版),1994,22(2):71-74
    [14]王志军.构件混凝土铰支柱和框架柱二阶效应及稳定问题研究[D].重庆:重庆建筑大学,1996
    [15]曾铁梁.钢筋混凝土铰支柱与框架柱二阶效应研究[D].长沙:湖南大学,2002
    [16]魏巍.考虑非弹性及二阶效应特征的钢筋混凝土框架柱的强度问题和稳定问题[D].重庆:重庆大学,2004
    [17]Ibrahim H H H,MacGregor J G.Tests of Eccentrically Loaded High-strength Concrete Columns[J].ACI Structural Journal,1996,93(5):585-594
    [18]Mendis P A.Behavior of Slender High-strength Concrete Columns[J].ACI Structural Journal,2000,97(6):895-901.
    [19]王萍,崔熙光.长细比对钢筋混凝土长柱受力性能的影响[J].沈阳建筑工程学院学报,1995.11(1):
    [20]谢怀欣,庄崖屏,曹平周.高强混凝土偏压长柱的受力性能[J].烟台大学学报(自然科学与工程版),1993,(4):42-49
    [21]王萍,崔熙光.长细比对钢筋混凝土长柱受力性能的影响[J].沈阳建筑工程学院学报,1995,11(1):66-70
    [22]张浩,邓海,齐永顺.钢筋混凝土长柱偏心距增大系数计算分析[J].四川建筑,2001,21(3):42-43
    [23]魏巍,刘毅,白绍良 对钢筋混凝土小偏心受压截面极限曲率修正系数的讨论[J].建筑科学,2003,19(1):26-32
    [1]首钢总公司,郑州大学,中国建筑科学院结构所,河南省第一建筑工程公司.HRB500级钢筋混凝土构件受弯性能试验研究(评估资料),2004.12
    [2]中国土木工程学会高强混凝土委员会.高强混凝土结构设计与施工指南[M].北京:中国建筑工业出版社,1994
    [3]陈肇元等.高强混凝土结构技术规程(CECS104:99)介绍(一)-规程内容简介[J].建筑结构,2001,31(1):63-66
    [4]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华人学出版社,1993
    [5]彭在萍,张玉强.钢筋砼轴心受压构件在长期荷载作用下的应力变化[J].重庆交通学院学报,2006,25(5):130-131
    [6]黄达海,张开臣,杜彦凯.考虑混凝土徐变后轴心受压柱的最大配筋率[J].建筑科学,2006,22(1):6-9
    [7]河南省建设厅文件,“河南省建设厅关于推荐在工程试点中应用 HRB500 级钢筋的通知”(豫建科外[2005]21号),2005.07
    [8]刘立新,谢丽丽,于秋波.500MPa 级钢筋混凝土构件受力性能与工程应用[J].建筑结构,2006,36(增刊):5-66-5-68
    [9]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002
    [10]刘立新,张艇,毛达岭等.HRB500 级钢筋混凝土受弯及受剪构件受力性能的试验研究[C].第八届全国混凝土结构基本理论及工程应用学术会议论文集,重庆大学出版社,2004
    [11]郑州大学.首钢 HRB500 级钢筋混凝土构件受力性能试验研究(研究报告).2003
    [12]中华人民共和国建设部.建筑抗震设计规范(GBS0011-2001)[S].北京:中国建筑工业出版社。2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700