基于TGF-β1/Smads和ERK通路cross-talk研究新风胶囊改善AA大鼠肺功能的机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1目的
     在中医“肺脾相关”理论指导下,以“肺痹”为切入点,分析、总结类风湿关节炎(RA)肺功能损伤的中医学病机,从动物实验角度系统观察佐剂关节炎(AA)大鼠足跖肿胀度、关节炎指数(AI)动态变化和肺功能变化特点,检测AA大鼠滑膜、肺组织TGF-β1/Smads、ERK信号通路及细胞因子变化,评价中药新风胶囊(XFC)对其影响,探讨XFC改善AA大鼠肺功能的作用机制。
     2方法
     2.1理论研究
     系统搜集和整理RA肺病变相关文献,筛选和总结引起RA肺病变发病机制的国内外研究现状,评价和分析转化生长因子β1(TGF-β1)诱导Smads、 ERK通路激活途径,从理论角度研究RA肺功能降低与TGF-β1/Smads、ERK信号通路cross-talk的关系。依从中医基础理论阐述中医“肺”与“脾”之间关系,从生理病理及病因病机角度探讨“肺脾”的联系,探寻健脾化湿通络法治疗RA肺功能降低的机制。
     2.2实验研究
     将大鼠随机分为正常对照(NC)组,模型对照(MC)组,甲氨喋呤(MTX)组,雷公藤多苷片(TPT)组和XFC组,每组10只。除NC组外,其余大鼠右后足跖皮内注射弗氏完全佐剂(CFA)0.1ml致炎造模,第15d在尾根部注射CFA0.05ml加强免疫,第19d给药。各组的给药量如下:XFC组0.034g/1ml/100g,TPT组0.57mg/1ml/100g,MTX组0.095mg/1ml/100g,NC、MC组予生理盐水9mg/1ml/100g;XFC、TPT、NC、MC组一天一次,MTX组一周一次,各组连续用药30d。观察各组大鼠体质量、足跖肿胀度、关节炎指数(AI)和肺功能变化,光镜、电镜观察滑膜、肺组织形态学变化,酶联免疫吸附法检测细胞因子TGF-β1、白介素(IL)-1β、IL-4、IL-10、γ干扰素(IFN-γ)、结缔组织生长因子(CTGF)、成纤维细胞生长因子(FGF)表达,PCR、免疫组化、免疫印迹法检测滑膜、肺组织Smads/ERK通路的变化。
     3结果
     3.1理论研究结果
     3.1.1TGF-β1/Smads通路的激活促使RA肺功能降低:TGF-β1首先与其受体TβRⅡ、TβRI结合形成三聚体复合物,进一步磷酸化Smad2/3,p-Smad2/3与TβRI受体分离,即与Smad4结合形成复合体,携带信号从胞浆进入胞核激活转录,促进肺病变;而Smads7是抑制分子,Smad7抑制能力降低,不能抑制Smads信号的转录,失去对RA肺部病变的抑制作用,导致肺功能降低。
     3.1.2ERK信号通路诱导RA肺功能降低:ERK通路激活后可介导细胞生长、分化、增殖,促进成纤维细胞分泌和细胞外基质(ECM)在肺间质和肺泡中过度积聚,使得肺泡距离增加形成间质肺,肺毛细血管床和血流量的减少,血液流变学改变,出现肺弥散功能降低,氧和二氧化碳的交换作用减弱,同时ERK通路激活能调节炎症相关基因表达增加,导致肺功能降低。
     3.1.3Smads和ERK通路cross-talk是RA肺功能下降的重要因素:TGF-β1/Smad信号通路的激活过程也受ERK通路的调控,Smad2/3含有ERK磷酸化的位点,可被ERK磷酸化,促进p-Smad2/3与Smad4的结合并转录。同时,ERK通路受Smads通路调控,Smad4可调控ERK通路相关细胞因子或激酶的转录,从而激活ERK信号传导通路,Smads和ERK通路cross-talk共同导致肺功能降低。
     3.1.4“脾虚”是RA肺功能降低的发病基础:脾虚致气血亏虚,脾土不能生养肺金,日久导致肺气失养,肺宣肃功能失调,出现咳嗽、自汗、气短等;脾虚运化功能失常,水液停滞,湿停中焦,痰湿内生,聚而生痰成饮,上干于肺,肺失治节,可见痰多,胸满憋闷,喉中痰鸣有声、胸背痛,迁延不愈,甚而喘促;脾虚致痰瘀互结,肺络阻滞,多见肺纹理紊乱、结节、间质纤维增生等。
     3.1.5“健脾化湿通络法”能改善RA肺功能水平:根据RA肺功能降低的中医病机呈现“脾胃虚弱、气血不足、湿浊内生、痰瘀互结”和“虚实夹杂”的特点,临床上拟用“扶正祛邪”治则,采用“健脾化湿通络”治法,应用XFC治疗RA及肺功能损伤,取得了良好效果,XFC通过改善关节和全身症状体征,从而进一步改善肺部症状体征,提高弥散功能和通气功能。
     3.2实验研究结果
     3.2.1AA大鼠肺功能变化及XFC对其影响
     与NC组比较,MC组大鼠肺功能FEV1、FEF50、FEF75、MMF、PEF降低(P <0.01)。
     与MC组比较,XFC组FEV1、FEF50、FEF75、MMF、PEF升高(P<0.05或P <0.01)。
     与MTX组比较,XFC组FEF50、FEF75、MMF升高(P <0.05);与TPT组比较,XFC组肺功能参数FEF75、MMF升高(P <0.05或P <0.01)。
     3.2.2AA大鼠足趾肿胀度、AI、体质量变化及XFC对其影响
     相关分析显示:AA大鼠肺功能FEF75与足跖肿胀度呈负相关,FEF50、FEF75与AI呈负相关(P <0.01或P <0.05)。
     给药前1d,与NC组相比,MC组大鼠体质量降低,足跖肿胀度、AI显著升高(P <0.01)。
     给药后30d,与NC组比较,MC组大鼠足趾肿胀度、AI升高;与MC组比较,各治疗组大鼠足跖肿胀度、AI降低;与MTX组比较,XFC组足趾肿胀度差值降低(P <0.01或P <0.05)。
     3.2.3AA大鼠关节形态学变化及XFC对其影响
     光镜观察:与NC组比较,MC组大鼠滑膜及其附属组织可见大量炎性细胞浸润,血管增多,滑膜分层增多,呈绒毛状突起嵌入关节腔内,关节软骨表面剥脱或缺如。电镜观察:MC组滑膜细胞变形,线粒体肿胀,粗面内质网减少、破坏,核膜不完整,染色质分布不均,嵴突排列不规整或部分消失;
     XFC治疗后,大鼠滑膜可见少量中性粒细胞等炎细胞浸润,部分滑膜嵌入关节腔内,关节面较规整;滑膜细胞线粒体少量变形、肿胀,核膜边界较清楚,染色质较均匀,大部分嵴突排列完整。与MTX组比较,XFC组滑膜细胞线粒体肿胀减轻;XFC组TPT组比较无明显差异。
     3.2.4AA大鼠肺组织形态学变化及XFC对其影响
     光镜观察显示:与NC组比较,MC组大鼠肺泡结构不规整,肺泡腔萎缩或消失,部分呈肺实质性改变,肺间隔增宽,间质中可见大量炎细胞浸润,肺泡上皮细胞增生;电镜观察Ⅱ型肺泡上皮细胞数量减少,胞膜结构不完整,线粒体肿胀、变性,板层小体减少呈排空状态,肺间质内成纤维细胞增生。
     XFC治疗组大鼠肺泡结构较规整,部分肺泡腔萎缩、变形,间质中可见少量中性粒细胞等炎细胞浸润;Ⅱ型肺泡上皮细胞结构基本完整,粗面内质网较丰富,线粒体大部分完好,偶见板层小体排空现象;与MTX组比较,XFC组肺组织炎细胞浸润和肺泡上皮细胞减少;与TPT组比较无显著差异。
     3.2.5AA大鼠血清细胞因子的变化及XFC对其影响
     相关分析显示:AA大鼠肺功能FEV1、FEF75与IL-1β、IL-4呈负相关,FEF25、FEF50、FEF75、MMF与TGF-β1、CTGF、FGF呈负相关;PEF与IL-10呈正相关,FEV1、FEF50与Th1/Th2呈正相关,FEF50、FEF75与IFN-γ呈正相关(P <0.01或P <0.05)。
     与NC组比较,MC组血清细胞因子IL-1β、IL-4、TGF-β1、CTGF升高,IFN-γ、IL-10、Th1/Th2细胞、FGF降低(P <0.01或P <0.05)。
     与MC组比较,XFC组IL-1β、IL-4、TGF-β1、CTGF降低,IFN-γ、IL-10、Th1/Th2、FGF表达升高(P <0.01或P <0.05)。
     与MTX组比较,XFC组CTGF降低,IFN-γ、IL-10、Th1/Th2表达量升高(P <0.05);与TPT组比较,XFC组TGF-β1降低(P <0.05)。
     3.2.6AA大鼠滑膜、肺组织Smads通路变化及XFC对其影响
     相关分析显示:AA大鼠肺功能FEV1与TGF-β1mRNA、蛋白呈负相关,FEF25与Smad4蛋白呈负相关,FEF50与TβRⅡ蛋白表达呈负相关,FEF75与TGF-β1、Smad3mRNA、p-Smad2/3蛋白呈负相关,PEF与TGF-β1蛋白呈负相关(P <0.05);FEF50、MMF与Smad7mRNA呈正相关(P<0.05)。
     与NC组比较,MC组大鼠滑膜、肺组织TGF-β1、Smad2/3/4mRNA和TGF-β1、TβRI、TβRⅡ、Smad2/3、p-Smad2/3、Smad4蛋白表达升高,Smad7mRNA、蛋白表达降低(P <0.01或P <0.05)。
     与MC组比较,XFC组大鼠滑膜、肺组织Smad2、Smad3、Smad4mRNA和TGF-β1、TβRI、TβRⅡ、Smad2/3、p-Smad2/3蛋白表达降低, Smad7mRNA、蛋白表达升高(P <0.01或P <0.05)。
     与MTX组比较,XFC组滑膜、肺组织TGF-β1、Smad3mRNA和TGF-β1、Smad2/3蛋白表达降低,肺Smad4mRNA、TβRI蛋白降低,滑膜、肺组织Smad7mRNA升高(P <0.05);与TPT组比较,XFC组滑膜Smad3mRNA和TGF-β1、p-Smad2/3、Smad4蛋白降低,Smad7蛋白升高(P <0.05),肺组织p-Smad2/3降低,Smad7mRNA升高(P <0.05)。
     3.2.7AA大鼠滑膜、肺组织ERK1/2变化及XFC对其影响
     相关分析显示:AA大鼠肺功能FEV1与ERK2mRNA呈负相关,FEF25与p-ERK1/2蛋白呈负相关,FEF75、MMF分别与ERK1/2、p-ERK1/2蛋白呈负相关(P <0.05)。肺组织ERK1mRNA与Smad3mRNA、TβRⅡ蛋白呈正相关,ERK2mRNA与p-Smad2/3呈正相关,ERK1/2蛋白与Smad2mRNA、Smad4蛋白呈正相关,p-ERK1/2蛋白与Smad4mRNA、p-Smad2/3蛋白呈正相关(P <0.05);p-ERK1/2蛋白与Smad7蛋白呈负相关(P <0.05)。
     与NC组比较,MC组大鼠滑膜组织ERK2mRNA、p-ERK1/2蛋白表达升高,肺组织ERK1、ERK2mRNA、ERK1/2、p-ERK1/2蛋白表达升高(P <0.01或P <0.05)。
     与MC组比较,XFC组大鼠滑膜组织ERK2mRNA、p-ERK1/2蛋白表达降低,肺组织ERK1、ERK2mRNA、ERK1/2、p-ERK1/2蛋白降低(P<0.01或P <0.05)。
     与MTX组比较,XFC组肺组织ERK1、ERK2mRNA表达降低(P<0.05)。
     4结论
     4.1AA大鼠肺功能的变化
     4.1.1AA大鼠肺功能损伤特点:AA大鼠存在肺功能损伤,肺功能变化以参数FEV1、MMF、PEF、FEF50、FEF75降低为主,主要表现特征为通气功能障碍,并伴有一定程度的小气道功能损伤。
     4.1.2Smads和ERK通路cross-talk导致肺功能降低:Smads和ERK通路在启动子TGF-β1诱导下,逐渐被磷酸化激活,进而进入细胞核参与转录活动,导致AA肺部病变发生,出现肺功能降低。
     4.1.3RA肺功能降低中医病机呈“脾虚湿盛”特征:“脾虚”在RA肺功能损伤发生、发展中起重要作用,脾气亏虚,正气不足,肺气虚弱;脾气亏虚,痰湿内生,肺失治节;脾气亏虚,痰瘀互结,肺络阻滞。
     4.2“健脾化湿通络”中药XFC对AA大鼠的疗效
     4.2.1XFC能明显抑制AA大鼠关节炎症反应:XFC能降低AA大鼠足趾肿胀度和AI,减少炎细胞对关节滑膜的浸润,减轻局部充血和肿胀,抑制血管翳的形成,改善关节功能。
     4.2.2XFC能明显改善AA大鼠肺功能水平:XFC通过提高肺功能参数FEV1、FEF50、FEF75、MMF、PEF表达,改善AA大鼠肺部通气功能和小气道功能,增强肺部气体交换率,提高肺功能水平。
     4.2.3XFC能明显提高AA大鼠体质量:XFC通过健脾益气、化湿通络的功效,能明显提高AA大鼠食欲及饮水量,增加体质量水平,改善全身症状和机能活动。
     4.2.4XFC能明显调节AA大鼠肺组织形态学:XFC能减轻炎性细胞浸润程度,通过抑制炎性介质对肺组织的刺激,降低AA大鼠肺间质纤维化程度,维持Ⅱ型肺泡细胞细胞器的功能和形态。
     4.3XFC改善AA大鼠肺功能的机制
     4.3.1XFC可降低AA大鼠关节炎症反应提高肺功能:XFC通过抑制滑膜组织炎细胞浸润,降低全身炎症反应,减少炎症介质渗出及对肺组织器官的刺激,抑制肺间质病变的发生,改善肺功能水平。
     4.3.2XFC可减轻AA大鼠肺部炎症反应提高肺功能:XFC通过抗炎作用,减少炎性介质对肺泡的直接刺激,促进中性粒细胞等炎细胞的吸收或清除,降低肺组织炎症反应,改善肺功能水平。
     4.3.3XFC可调节AA大鼠细胞因子平衡提高肺功能:XFC通过上调IL-10、IFN-γ、FGF表达,下调IL-1β、IL-4、TGF-β1、CTGF表达,抑制AA大鼠肺间质纤维化的发生,提高肺功能水平。
     4.3.4XFC可改善AA大鼠肺组织形态学提高肺功能:XFC通过减少炎性渗出物对肺组织损伤,保持肺组织病理形态学,维持肺泡Ⅱ型上皮细胞结构,增加肺泡的通气功能和弥散功能,改善肺功能。
     4.3.5XFC可调节AA大鼠TGF-β1/Smads通路提高肺功能:XFC通过提高Smad7表达,抑制p-Smad2/3与Smad4的结合及阻止Smad2/3磷酸化,延缓AA大鼠肺纤维化的发生,改善肺功能。
     4.3.6XFC可抑制AA大鼠ERK1/2通路表达提高肺功能:XFC通过抑制ERK1/2磷酸化过程,阻止信号通路的激活,减少致纤维化因子对肺组织的损伤,降低AA大鼠肺病变程度,改善肺功能。
     4.3.7XFC可调节AA大鼠Smads和ERK通路cross-talk提高肺功能:XFC通过调节信号通路cross-talk,降低信号传导与DNA的转录活动,抑制AA大鼠肺间质纤维化形成,改善肺功能。
1Objective
     Based on the Traditional Chinese Medicine theory of "correlationbetween lung and spleen ",“Lung Paralysis" as the breakthroughpoint,this paper analyzes and summarizes medical pathogenesis of lungfunction damage in rheumatoid arthritis (RA). From the perspective ofanimal experiment to observe the dynamic changes of paw swelling,arthritis index (AI) and lung function changes in adjuvant arthritis (AA)rat, detects changes of TGF-β1/Smads, ERK signaling pathways andcytokine in AA rats’ synovial and lung tissue, evaluates influence ofChinese medicine Xinfeng Capsule (XFC), and explores the mechanismof XFC improves lung function in AA rats.
     2Methods
     2.1Theoretical study
     Collecting and organizing the relevant literature of RA lung disease,screening and summarize the research status of the RA lung diseasepathogenesis,evaluation and analysis of transforming growth factor beta1(TGF-beta1) induced by Smads, ERK pathway activation pathways.Studied from a theoretical point of the relationship between lung functionreduce in RA and the TGF-β1/Smads, ERK signaling pathway cross-talk. This article based on the basic theories of TCM, discussed therelationship between TCM "lung" and "spleen", by studying from theperspective of physiological pathology and etiology pathogenesis, andexplained the mechanism of “jianpihuashi Tongluo therapy” in thetreatment of RA decline in lung function.
     2.2Experimental Study
     50Wistar rats rats were randomly divided into five groups:normalcontrol (NC) group, model control (MC) group, methotrexate (MTX)group, Tripterygium glycosides piece (TPT) and XFC group, n=10. Inaddition to the NC group, right rear foot plantar skin of the rest ratsinjected Freund's complete adjuvant (CFA)0.1ml of proinflammatorymodeling, strengthen the immune by injection in the base of the tail ofCFA0.05ml at the15d, dosage at the19d. Dosage groups are asfollows: the XFC group:0.034g/1ml/100g, TPT group:0.57mg/1ml/100g,MTX group0.095mg/1ml/100g, NC、MC group:physiological saline9mg/1ml/100g; XFC,TPT,NC,MC group once a day, MTX group once aweek, each group continuous medication for30d. Observed the rats’body mass, paw swelling, arthritis index (AI) and pulmonary functionchanges, morphological changes of lung tissue, synovium by lightmicroscopy and electron microscopy, tested the expression of cytokineTGF-β1in interleukin the prime (IL)-1β, IL-4, IL-10, gamma interferon(IFN-γ), connective tissue growth factor (CTGF), fibroblast growth factor(FGF) by enzyme-linked immunosorbent assay, detected changes ofSmads/ERK pathway in synovial membranes and lung tissue by PCR,immunohistochemistry and Western blot.
     3Results
     3.1The theoretical research results
     3.1.1TGF-β1/Smads pathway activated prompted RA lung function decreased.TGF-β1can first combined TβR Ⅱ (its receptor) to form atrimer complex TβRI, than further phosphorylated Smad2/3, p-Smad2/3to separate from TβRI, which than combined to form complexes withSmad4, carried signals from the cytoplasm into the nucleus to activatetranscription, promote lung lesions; whereas Smads7is inhibitorymolecules, if reduceing Smad7inhibition ability, inhibition oftranscription of Smads signals cannot be lost, the inhibitory effect on RAlung lesions, resulting in decreased lung function.
     3.1.2ERK signaling pathway induced by RA lung function decreased:the activation of the ERK pathway may mediates cell growth,differentiation, proliferation, promotes the secretion of fibroblasts andexcessive accumulation of extracellular matrix (ECM) in pulmonaryinterstitial and alveolar, makes the alveolar distance increased to forminterstitial lung, decreases in pulmonary capillary bed and blood flow,changes in blood rheology, reduces pulmonary diffusion, weakens theexchange of oxygen and carbon dioxide, while the activation of ERKpathway can regulate the expression of inflammation-related genes,leading to lung function decreased.
     3.1.3Smads and ERK pathway cross-talk is an important factor in thedecline in RA lung function: the activation process of TGF-β1/Smadsignaling pathway is also affected by the regulation of the ERK pathway,Smad2/3contains ERK phosphorylation sites,which can be phosphoryl-ated by ERK, promote p-Smad2/3and Smad4in binding andtranscription. Meanwhile, ERK pathway is regulated by Smads pathway,Smad4regulates transcription of ERK pathway related cytokines orkinase, which activates ERK signaling pathway, Smads and ERKpathway cross-talk common led to the decline in lung function.
     3.1.4The "Spleen asthenia" is the pathological basis of RA decline in lung function: spleen asthenia caused by Qi and blood deficiency,spleen can not bear the lung,lead to deficiency of lung-qi and yin,andalso lead to failure of pulmonary qi to disperse and descend,resulting insuch syndrome like: cough, shortness of breath, spontaneousperspiration,etc; asthenia of splenic qi,failure of transportation andtransformation, which fails to distribute fluid and leads to attack of fluidretention on the lung, then lung fails to its Regulatory functions,manifeasting in such syndrome like: cough with profuse whitish sputum,even asthmatic breath with sputum rale, chest pain, prolonged andincurable; lung collaterals block, see more lung texture disorder,nodules, interstitial fibrosis were frequent in spleen deficiency caused byphlegm and blood stasis.
     3.1.5The “Jianpihuashitang Tongluo Therapy” makes significantimprovement in RA lung function: According to the TCM pathogenesis ofRA decline in lung function “asthenia of spleen and stomach, asthenia ofqi and blood, accumulation of fluid and dampness, phlegm and bloodstasis " and “inclusion of asthenia and sthenia”characteristics, clinicallydefered to "eliminating pathogen and strengthening vital qi " principle oftreatment, using the " Jianpihuashitang Tongluo Therapy ", applyedXFC treatment of RA and pulmonary dysfunction, and achieved goodresults, XFC could further improve pulmonary symptoms and signs, toimprove the dispersion function and ventilation function by improvingjoint and systemic symptoms and signs.3.2The experimental study results
     3.2.1Changes of lung function in rats and the impact of XFCCompared with NC group, the MC rats lung function FEV1, FEF50, FEF75,MMF, PEF decreased (P <0.01).Compared with the MC group, FEV1, FEF50, FEF75, MMF, PEF were increased in the XFC group (P <0.05or P <0.01).Compared with the MTX group, the level of FEF50, FEF75MMF wereincreased in the XFC group (P <0.05); compared with TPT group,pulmonary function parameters FEF75, MMF were increased in the XFCgroup (P <0.05or P <0.01).
     3.2.2Changes of paw swelling, AI in rats and the impact of XFCCorrelation analysis showed the AA rat lung function FEF75, pawswelling were negative correlation, FEF50, FEF75and the AI werenegatively correlated (P <0.05or P <0.01).Prior to administration, compared with the NC group, body weight wasreduced in MC rats, and paw swelling degree, AI were significantlyhigher than those the MC rats (P <0.01).30days after administration, compared with the NC group, toe swelling,AI were elevated in MC rats; compared with the MC group, rat pawedema degrees and AI were lower in each treatment group; comparedwith the MTX group (P <0.05or P <0.01).
     3.2.3Changes of joint morphological in rats and the impact of XFCLight microscopic observation: Compared with NC group, the MC ratssynovium and its affiliated organizations visible to a large number ofinflammatory cell infiltration increased vascular increased synoviallayered, showed villous projections embedded in the intra-articularsurface of the articular cartilage exfoliative or missing such as. Electronmicroscopy: the MC group synovial cells deformation, swelling ofmitochondria, rough endoplasmic reticulum was reduced, damaged,incomplete nuclear membrane, the uneven distribution of chromatin,irregular or partial disappearance of cristae arranged.The XFC treatment, the rat synovial visible small number of neutrophilsand other inflammatory cell infiltration, embedded in the intra-articular part of the synovial tissue, the articular surface was orderly; synovialcells the mitochondrial small amount of deformation, swelling, nuclearmembrane boundary more clearly, chromatin more uniform, most of thecristae arranged complete. Compared with the MTX group the XFCgroup synovial cells reduce mitochondrial swelling; the XFC group TPTgroup no significant difference.
     3.2.4Changes of lung tissue morphologic in rats and the impact of XFCLight microscopy showed that: compared with the NC group, MC grouprat alveolar structure was irregular, the alveolar cavity atrophy ordisappear, was part of the lung substantive changes in lung intervalswidened visible in the interstitial infiltration of inflammatory cells, alveolarepithelial cell proliferation; reduce the number of electron microscopy Ⅱalveolar epithelial cells, the membrane structure was not completemitochondrial swelling, degeneration, reduced lamellar bodies wereemptying state, interstitial lung fibroblasts.XFC treated rats compared with regular alveolar structure, part of thealveolar space atrophy, deformation, seen in a small number ofneutrophils and other inflammatory cells in the interstitial infiltration;basic integrity of the structure of type Ⅱ alveolar epithelial cells,abundant rough endoplasmic reticulum, mitochondria and large partiallyintact, occasionally lamellar bodies emptying phenomenon; comparedwith the MTX group, the the XFC group of lung tissue inflammatory cellinfiltration and decrease in alveolar epithelial cells; the TPT groupshowed no significant differences.
     3.2.5Changes of serum cytokine in rats and the impact of XFCCorrelation analysis showed AA the rats lung function FEV1, FEF75IL-1β, IL-4was negatively correlated FEF25, FEF50, FEF75, MMF withTGF-β1, CTGF, FGF negatively correlated; PEF and IL-10were positively correlated, FEV1, FEF50were positively correlated withTh1/Th2,FEF50, FEF75and IFN-γ were positively correlated (P <0.05orP <0.01).
     Compared with the NC group, the level of IL-1β, IL-4, TGF-β1, CTGF ofserum were increased in MC, IFN-γ, IL-10, Th1/Th2cells, FGF werereduced (P <0.05or P <0.01).
     Compared with the MC group, the expression of IL-1β, IL-4, TGF-β1,CTGF were reduce, and the expression of IFN-γ, IL-10, Th1/Th2, FGFwere increased in the XFC group (P <0.05or P <0.01).Compared with the MTX group, CTGF was decreased, and IFN-γ,expression of IL-10, Th1/Th2were increased in XFC group (P <0.05);Compared with TPT group, TGF-β1were decreased in the XFC group(P <0.05).
     3.2.6Changes of Smads pathway in rats and the impact of XFCCorrelation analysis showed FEV1and TGF-β1mRNA, protein werenegatively correlated, FEF25and Smad4protein were negativelycorrelated, FEF50and TβRⅡ protein expression were negativelycorrelated with FEF75and TGF-β1, Smad3mRNA, p-Smad2/3proteinwas negatively correlated with PEF and TGF-β1protein were negativelycorrelated (P <0.05); FEF50, MMF Smad7mRNA were positivelycorrelated(P <0.05).
     Compared with NC group, the level of TGF-β1, Smad2/3/4mRNA,TGF-β1, TβRI, TβRⅡ, Smad2/3, p-Smad2/3, Smad4protein wereincreased, expression of Smad7mRNA, protein of synovial lung tissuewere decreased in MC group (P <0.05or P <0.01).Compared with the MC group, expression of Smad2, Smad3, Smad4mRNA and TGF-β1, TβRI, TβRⅡ, Smad2/3, p-Smad2/3protein weredecreased, expression of Smad7mRNA and protein of lung tissue were elevated in XFC group (P <0.05or P <0.01).
     Compared with the MTX group, expression of TGF-β1,Smad3mRNAand TGF-β1, Smad2/3protein were decreased, Smad4mRNA TβRIprotein were reduced, Smad7mRNA was increased in XFC group (P<0.05); Compared with TPT group, Smad3mRNA, TGF-β1, p-Smad2/3, Smad4protein were reduced, Smad7protein was increased in theXFC group (P <0.05), p-Smad2/3of lung tissue was lowered, Smad7mRNA was increased in the XFC group (P <0.05).
     3.2.7Changes of ERK1/2in rats and the impact of XFC
     Correlation analysis showed pulmonary function FEV1and ERK2mRNAwere negatively correlated, FEF25and p-ERK1/2protein werenegatively correlated, FEF75, MMF and ERK1/2, p-ERK1/2proteinwere negatively correlated (P <0.05). ERK1mRNA, Smad3mRNA inTβRⅡ protein of lung tissue were positively correlated, ERK2mRNA andp-Smad2/3was positively correlated, ERK1/2proteins, Smad2mRNA,Smad4protein were positively correlated, p-ERK1/2proteins andSmad4mRNA, p--Smad2/3protein were positively related (P <0.05);p-ERK1/2protein and Smad7were negatively correlated (P <0.05).Compared with the MC group, expression of ERK2mRNA, p-ERK1/2protein of lung tissue were decreased, ERK1, ERK2mRNA, ERK1/2,p-ERK1/2protein were decreased in the XFC group (P <0.05or P<0.01).
     Compared with the MTX group, expression of ERK1, ERK2mRNA oflung tissue were decreased in the XFC group (P <0.05).
     4Conclusions
     4.1Changes of lung function in AA rats
     4.1.1Pulmonary dysfunction features: changes of pulmonary functionparameter FEV1, MMF, PEF, FEF50, FEF75were reduced in AA rats, which mainly characterized ventilatory dysfunction, and accompanied bya certain degree of small airway function damage.
     4.1.2Smads and ERK pathway cross-talk lead to reduce lung function:Smads and ERK pathway can inducte TGF-β1, which graduallyactivated by phosphorylation, and then enter the nucleus involved intranscriptional activity, resulting in AA lung lesions occur, pulmonaryThe function was reduced.
     4.1.3TCM pathogenesis characteristics:"Spleen" in RA lung functionoccurred, plays an important role in the development, temper deficiency,lack of righteousness, lung weakness; temper deficiency sputum Thewet endogenous governance section of lung failure; temper deficiency,phlegm, pulmonary collaterals block.
     4.2Efficacy of XFC on AA rats
     4.2.1XFC can inhibit joint inflammation reaction of AA rats: XFC toreduce the the AA rat paw swelling and AI, to reduce the infiltration ofinflammatory cells of the synovial alleviate local congestion and swelling,inhibit the formation of pannus, improve joint function.
     4.2.2XFC can improve the level of AA rats lung function by improvinglung function parameters FEV1, FEF50, FEF75, MMF, PEF expression:XFC improve the AA rat pulmonary ventilation function and small airwayfunction, enhanced pulmonary gas exchange rate and improve lungfunction level.
     4.2.3XFC can improve the quality of the AA rats: XFC Jianpiyiqi thedampness Tongluo the efficacy, can significantly improve the the AArats appetite and water intake, increase the level of body mass, improvesystemic symptoms and functional activity.
     4.2.4XFC can adjust the AA rat lung tissue morphology significantly:XFC can reduce the degree of infiltration of inflammatory cells, inflammatory mediators by inhibiting lung tissue stimulation, reduce theAA rat pulmonary interstitial fibrosis, maintain alveolar type Ⅱ cellfunction and morphology of the organelle.
     4.3Mechanisms of XFC improve lung function
     4.3.1XFC can reduce the AA rats joint inflammation reaction to improvelung function: XFC seeping through the inhibition of inflammatory cellinfiltration of synovial tissue, reduce the systemic inflammatoryresponse, reducing inflammatory mediators and the stimulation of lungtissues and organs, inhibition of interstitial lung disease occur, improvelung function level.
     4.3.2XFC can reduce the AA rats lung inflammation to improve lungfunction: XFC by the anti-inflammatory effect, reducing the directstimulation of inflammatory mediators of alveolar promote absorption ofneutrophils and other inflammatory cells or clear, to reduce lunginflammation reaction, improve lung function level.
     4.3.3XFC can adjust the AA rats cytokine balance to improve lungfunction: XFC FGF expression by up-regulating IL-10, IFN-γ, loweredIL-1β, IL-4, TGF-β1, CTGF expression, inhibition of AA rats Theincidence of pulmonary fibrosis to improve lung function level.
     4.3.4XFC can improve the AA rat lung tissue morphology to improvelung function by reducing the inflammatory exudate lung tissue damage,keep the lung tissue pathomorphological maintain alveolar type Ⅱepithelial cell structure, increased alveolar ventilation function: XFCimprovement in lung function and diffusion capacity.
     4.3.5XFC can adjust AA rats TGF-β1/Smads pathway to improve lungfunction: XFC increase Smad7expression, inhibition of p-Smad2/3with Smad4binding and prevents Smad2/3phosphorylation, delayingthe the AA rat lung fibrosis the occurrence, and improve lung function.
     4.3.6XFC can inhibit the AA rats ERK1/2pathway expression toimprove lung function by inhibition of ERK1/2phosphorylation process,preventing the activation of the signaling pathway, reducing fibrogenicfactors on lung tissue damage.
     4.3.7XFC can adjust Smads and ERK pathway cross-talk to improvelung function: XFC reduce signaling and DNA transcription activity,inhibiting the formation of the AA rat pulmonary interstitial fibrosis byregulating signaling pathways cross-talk to improve lung function.
引文
[1]Antin-Ozerkis D, Evans J, Rubinowitz A, et al. Pulmonary manifestations ofrheumatoid arthritis. Clin Chest Med,2010;31(3):451-478.
    [2]Rueth N, Andrade R, Groth S, et al. Pleuropulmonary complications ofrheumatoid arthritis: a thoracic surgeon's challenge. Ann ThoracSurg,2009;88(3):20-21.
    [3]Bongartz T, Nannini C, Medina-Velasquez YF, et al. Incidence andmortality of interstitial lung disease in rheumatoid arthritis: a population-basedstudy. Arthritis Rheum,2010;62(6):1583-1591.
    [4] Brusselle G. Rheumatoid arthritis and interstitial lung disease.Rheumatology(Oxford),2010;49(8):1425-1426.
    [5] Amital A, Shitrit D, Adir Y. The lung in rheumatoid arthritis. Presse Med,2011;40(1-2):e31-48.
    [6]Olson AL, Swigris JJ, Sprunger DB, et al. Rheumatoid arthritis-interstitiallung disease-associated mortality. Am J Respir Crit Care Med,2011;183(3):372-378.
    [7]Mori S, Koga Y, Sugimoto M. Different risk factors between interstitial lungdisease and airway disease in rheumatoid arthritis. Respir Med,2012;106(11):1591-1599.
    [8]Leonel D, Lucia C, Martha-Alicia H, et al. Pulmonary function test: itscorrelation with pulmonary high-resolution computed tomography in patientswith rheumatoid arthritis. Rheumatol Int,2012;32(7):2111-2116.
    [9]Ascherman DP. Interstitial lung disease in rheumatoid arthritis. CurrRheumatol Rep,2010;12(5):363-369.
    [10]Saito H. Regulation of cross-talk in yeast MAPK signaling pathways. CurrOpin Microbiol,2010;13(6):677-683.
    [11]Kawamura I, Maeda S, Imamura K, et al. SnoN suppresses maturation ofchondrocytes by mediating signal cross-talk between transforming growthfactor-β and bone morphogenetic protein pathways. J Biol Chem,2012;287(34):29101-29113.
    [12]刘健,万磊,盛长健,等.佐剂性关节炎大鼠肺功能变化与Foxp3、TGF-β1/Smads信号传导通路的相关性研究.中国免疫学杂志,2010;26(3):258-263.
    [13]Toyoshima M, Chida K, Suda T, et al. Methotrexate might increasemortality from interstitial lung disease in rheumatoid arthritis. Am J Respir CritCare Med,2012;185(9):1024.
    [14]Wang Y, Xu SQ, Xu JH, et al. Treatment with etanercept in a patient withrheumatoid arthritis-associated interstitial lung disease. Clin Med Insights CaseRep,2011;4:49-52.
    [15]Kobayashi A, Okamoto H. Treatment of interstitial lung diseasesassociated with connective tissue diseases. Expert Rev Clin Pharmacol,2012;5(2):219-227.
    [16]刘健,范海霞,杨梅云.新风胶囊对类风湿性关节炎患者的疗效及肺功能、生活质量的影响.中华中医药学刊,2007,25(10):2061-2063.
    [17]Liu J, Cheng RL.The potential role of Chinese medicine in amelioratingextra-articular manifestations of rheumatoid arthritis. Chin J Integr Med,2011;17(10):735-737.
    [18]万磊,刘健,盛长健,等.类风湿关节炎患者肺功能变化及新风胶囊对其的影响.中医药临床杂志,2010;22(9):798-803.
    [19]万磊,刘健,盛长健,等.新风胶囊对佐剂关节炎大鼠肺功能及Notch信号传导通路的影响.世界科学技术(中医药现代化),2010;20(4):585-592.
    [20]刘健,范海霞,杨梅云.新风胶囊对佐剂关节炎大鼠肺功能血清细胞因子含量的影响.安徽中医学院学报,2007;26(2):32-35.
    [21]刘健,范海霞,杨梅云.新风胶囊对AA大鼠肺功能、肺部HRCT及血清细胞因子的影响.陕西中医学院学报,2007;20(3):32-35.
    [22]Zhao ZG, Cao Z, Xu W, et al. Immune protection function of multipotentmesenchymal stromal cells: role of transforming growth factor-β1. CancerInvest,2012;30(9):646-656.
    [23]Hou-Dong L, Bin S, Ying-Bin X, et al. Differentiation of Rat DermalPapilla Cells Into Fibroblast-like Cells Induced by Transforming GrowthFactor β1.J Cutan Med Surg,2012;16(6):400-406.
    [24]Huse K, Bakkeb M, W lchli S, et al. Role of Smad proteins in resistanceto BMP-induced growth inhibition in B-cell lymphoma. PLoS One,2012;7(10):e46117.
    [25]Szlubowski A, Soja J, Grzanka P. et al. TGF-beta1in bronchoalveolarlavage fluid in diffuse parenchymal lung diseases and high-resolutioncomputed tomography score. Pol Arch Med Wewn,2010;120(7-8):270-275.
    [26]Kawashima T, Yamazaki R, Matsuzawa Y, et al. Contrary effects ofsphingosine-1-phosphate on expression of α-smooth muscle actin intransforming growth factor β1-stimulated lung fibroblasts.Eur J Pharmacol,2012;696(1-3):120-129.
    [27]Li Y, Xu Q, Zhang Z, et al. The impact of TGF-β1on the mRNAexpression of TβR I, TβR Ⅱ, Smad4and the invasiveness of the JEG-3placental choriocarcinoma cell line.Oncol Lett,2012;4(6):1344-1348.
    [28]Yao Q, Pawlaczyk K, Ayala ER, et al. The role of the TGF/Smad signalingpathway in peritoneal fibrosis induced by peritoneal dialysis solutions.Nephron Exp Nephrol,2008;109(2):e71-78.
    [29]Davies RJ, Holmes AM, Deighton J, et al. BMP type Ⅱ receptordeficiency confers resistance to growth inhibition by TGF-β in pulmonaryartery smooth muscle cells: role of proinflammatory cytokines. Am J PhysiolLung Cell Mol Physiol,2012;302(6):L604-615.
    [30]Samarakoon R, Overstreet JM, Higgins PJ. TGF-β signaling in tissuefibrosis: Redox controls, target genes and therapeutic opportunities.Cell Signal,2013;25(1):264-268.
    [31]周语平,杨成林.理肺化纤方对肺纤维化大鼠的防治作用及对TGF-β1/Smad3信号转导通路的影响.中国实验方剂学杂志,2011,17(12):151-155.
    [32]兰晓莉,马宏,李荟.转化生长因子-β1/Smad2/3介导肾小管上皮细胞转分化与幼鼠肾间质纤维化的相关性.中国药物与临床,2012;12(8):999-1003.
    [33]Estrada KD, Retting KN, Chin AM, et al. Smad6is essential to limit BMPsignaling during cartilage development.J Bone Miner Res,2011;26(10):2498-2510.
    [34]Kamiya Y, Miyazono K, Miyazawa K. Smad7inhibits transforminggrowth factor-beta family type I receptors through two distinct modes ofinteraction[J]. J Biol Chem,2010;285(40):30804-30813.
    [35]Yano M, Inoue Y, Tobimatsu T, et al. Smad7inhibits differentia-tion andmineralization of mouse osteoblastic cells. Endocr J,2012;59(8):653-662.
    [36]巨春蓉,夏熙郑.Smad7在大鼠肺间质纤维化中的表达及白介素-7的治疗作用[J].国际呼吸杂志,2006;26(7):486-489.
    [37]张云龙,姚立.转化生长因子β-Smad信号通路与肝纤维化.中西医结合肝病杂志,2011;21(6):383-385.
    [38]陈燕,郑勇,李睿,等.Smad-7与Timp-1siRNA质粒联合作用对大鼠肝纤维化的影响.胃肠病学和肝病学杂志,2011;20(8):703-707.
    [39]Schuliga M, Javeed A, Harris T, et al. TGF-β-Induced Differentiation ofAirway Smooth Muscle Cells is Inhibited by FGF-2.Am J Respir Cell MolBiol,2012;23(2):113-120.
    [40]Zhang X, Arnott JA, Rehman S, et al. Src is a major signaling componentfor CTGF induction by TGF-beta1in osteoblasts. J Cell Physiol,2010;224(3):691-701.
    [41]Fagone E, Conte E, Gili E, et al. Resveratrol inhibits transforming growthfactor-β-induced proliferation and differentiation of ex vivo human lungfibroblasts into myofibroblasts through ERK/Akt inhibition and PTENrestoration. Exp Lung Res,2011;37(3):162-174.
    [42] Milara J, Serrano A, Peiró T, et al. Aclidinium inhibits human lungfibroblast to myofibroblast transition. Thorax,2012;67(3):229-237.
    [43]Xiao L, Du Y, Shen Y, et al. TGF-beta1induced fibroblast proliferation ismediated by the FGF-2/ERK pathway. Front Biosci,2012,17:2667-2674.
    [44]Choe JY, Jung HJ, Park KY, et al. Anti-fibrotic effect of thalidomidethrough inhibiting TGF-beta-induced ERK1/2pathways in bleomycin-inducedlung fibrosis in mice. Inflamm Res,2010;59(3):177-188.
    [45]Tang N, Marshall WF, McMahon M, et al. Control of mitotic spindle angleby the RAS-regulated ERK1/2pathway determines lung tube shape.Science,2011;333(6040):342-345.
    [46]杨雅茹,黄艳,李俊,等.枇杷叶三萜酸对TGF-β1刺激的人胚肺成纤维细胞转分化及ERK通路的影响.中国药理学通报,2011;27(3):341-343.
    [47]梁瑛琦,黎关龙,王园园,等.三七总皂甙对低氧大鼠肺动脉压和肺组织ERK1/2表达的影响.中国应用生理学杂志,2012;28(2):101-103.
    [48]胡瑜,刘雪雁,富建华,等.高氧致慢性肺疾病新生大鼠肺组织中ERK1/2变化的研究.中国当代儿科杂志,2011;13(7):581-585.
    [49]徐芳,徐启勇,叶燕青.ERK信号通路在肺纤维化大鼠中的研究.武汉大学学报(医学版),2005;26(3):322-325.
    [50]罗玲,杨奕,徐洪,等.PDGF介导的ERK1/2信号转导通路在大鼠矽肺纤维化形成中的作用.中国卫生与职业病,2011;37(4):193-198.
    [51] Hough C, Radu M, Doré JJ. Tgf-beta induced Erk phosphorylation ofsmad linker region regulates smad signaling. PLoS One,2012;7(8):e42513.
    [52]Asano K, Shikama Y, Shoji N, et al. Tiotropium bromide inhibitsTGF-β-induced MMP production from lung fibroblasts by interfering withSmad and MAPK pathways in vitro. Int J Chron Obstruct Pulmon Dis,2010;5:277-286.
    [53]何欣蓉,霍艳英,胡迎春,等.Smad4分子在ERK/MAPK信号转导通路中的作用.中国生物化学与分子生物学报,2006;22(4):333-337.
    [54]何欣蓉,霍艳英,胡迎春,等.TGFβ1以受体和Smad7依赖的方式活化ERK.生物技术通讯,2006;17(1):22-23.
    [55]杨雅茹,黄艳,李俊.TGF-β1介导的Smads与ERK通路在肺纤维化中的作用及相互关系.中国药理学通报,2010,26(5):561-563.
    [56]Medici D, Potenta S, Kalluri R. Transforming growth factor-β2promotesSnail-mediated endothelial-mesenchymal transition through convergence ofSmad-dependent and Smad-independent signaling. Biochem J,2011;437(3):515-520.
    [57]胡瑜,刘雪雁,富建华,等.细胞外信号调节激酶1/2在慢性肺疾病新生大鼠肺成纤维细胞中的研究.中华急诊医学杂志,2012;21(1):33-37.
    [58]Asano K, Shikama Y, Shoji N, et al. Tiotropium bromide inhibitsTGF-β-induced MMP production from lung fibroblasts by interfering withSmad and MAPK pathways in vitro. Int J Chron Obstruct Pulmon Dis,2010;5:277-286.
    [59]冯莉,王献华.转化生长因子β1介导的ERK/MAPK信号通路与肺纤维化.中国煤炭工业医学杂志,2008;11,(10):1621-1623.
    [60]刘健,郑志坚.类风湿性关节炎中医学病机探讨.中国中医基础医学杂志,2001;7(9):13-14.
    [61]刘健,徐桂琴.新风胶囊治疗类风湿关节炎临床疗效的系统评价.中医药临床杂志,2011;23(6):502-508
    [62]刘健,万磊,盛长健,等.老年类风湿关节炎肺功能变化及其相关性.中国临床保健杂志,2010;13(1):4-8.
    [63]万磊,刘健,盛长健,等.活动期类风湿关节炎患者肺功能变化相关性研究.中国中医药信息杂志,2010;17(4):18-21.
    [64]刘健,范海霞,杨梅云.新风胶囊对佐剂关节炎大鼠肺功能血清细胞因子含量的影响.安徽中医学院学报,2007;26(2):32-35.
    [65]刘健,万磊,冯云霞,等.健脾化湿通络法治疗类风湿关节炎肺功能降低探讨.中医药临床杂志,2011;23(6):394-397.
    [66]刘健,范海霞,杨梅云.新风胶囊对类风湿性关节炎患者的疗效及肺功能、生活质量的影响.中华中医药学刊,2007;25(10):2061-2063.
    [67]刘健,郭雯,程华威,等.新风胶囊对佐剂关节炎大鼠肺间质病变的影响.安徽中医学院学报,2006;25(5):24-27.
    [68]刘健,范海霞,杨梅云.类风湿关节炎患者肺功能的变化及新风胶囊对其的影响.中国临床保健杂志,2007;10(1):29-31.
    [69]万磊,刘健,程园园,等.伴和不伴肺功能降低的类风湿关节炎患者Treg变化及新风胶囊对其影响.中医药临床,2011;23(5):394-397.
    [70]刘健,范海霞,杨梅云.新风胶囊对AA大鼠肺功能、肺部HRCT及血清细胞因子的影响.陕西中医学院学报,2007;20(3):32-35.
    [71]李仪奎.中药药理实验方法学.上海:上海科学技术出版社,1991:305.
    [72]马玉琛,段斐,孟明,等.改良弗氏完全佐剂制备大鼠类风湿性关节炎模型.现代预防医学,2008;35(l0):1989-1991.
    [73]徐叔云,卞如濂,陈修.药理实验方法学.2版.北京:人民卫生出版社,1991:719-25.
    [74]Al-Ghamdi MS. The Anti-inflamnmtory, Analgesic and AntipyreficActivity of Nigella sativa.JEthnopharmaeol,2001;76(1):45-48.
    [75]Mythilypriya R, Shanthi P, Sachdanandam P. Efficacy of Siddhaformulation Kalpaamruthaa in ameliorating joint destruction in rheumatoidarthritis in rats.Chem Biol Interact,2008;176(2-3):243-251.
    [76]Szapiel SV, Elson NA, Fulmer JD, et al. Bleomycin-induced interstitialpulmonary disease in the nude, athymicmouse.Am Rev RespirDis,1979,120(4):893-899.
    [77]Prete M, Racanelli V, Digiglio L, et al. Extra-articular manifestations ofrheumatoid arthritis: An update.Autoimmun Rev,2011;11(2):123-131.
    [78]Cojocaru M, Cojocaru IM, Silosi I, et al. Extra-articular Manifestations inRheumatoid Arthritis.Maedica (Buchar),2010;5(4):286-291.
    [79]徐世文,吴晓东,姜益.类风湿性关节炎相关的肺部损害的临床分析.现代实用医学,2011;23(9):991-992.
    [80]赵颖,李菁,吴庆军,等.类风湿关节炎相关肺间质病变的危险因素、临床和影像学特点.中华临床免疫和变态反应杂志,2012;19(3):198-213.
    [81]Nannini C, Ryu JH, Matteson EL. Lung disease in rheumatoidarthritis.Curr Opin Rheumatol,2008;20(3):340-346.
    [82]Mohd Noor N, Mohd Shahrir MS, Shahid MS, et al. Clinical and highresolution computed tomography characteristics of patients with rheumatoidarthritis lung disease. Int J Rheum Dis,2009;12(2):136-144.
    [83]Cottin V. Pragmatic prognostic approach of rheumatoid arthritis-associatedinterstitial lung disease.Eur Respir J,2010;35(6):1206-1208.
    [84]Habib HM, Eisa AA, Arafat WR, et al. Pulmonary involvement in earlyrheumatoid arthritis patients. Clin Rheumatol,2011;30(2):217-221.
    [85]Youssef AA, Machaly SA, El-Dosoky ME, et al. Respiratory symptoms inrheumatoid arthritis: relation to pulmonary abnormalities detected byhigh-resolution CT and pulmonary functional testing. Rheumatol Int,2012;32(7):1985-1995.
    [86]Hamblin MJ, Horton MR. Rheumatoid arthritis-associated interstitial lungdisease: diagnostic dilemma. Pulm Med,2011,2011:872120.
    [87]Martinez JA. Pulmonary impairment in rheumatoid arthritis.Rev BrasReumatol,2011;51(4):295-296,298.
    [88]万磊,刘健,盛长健,等.活动期类风湿关节炎患者肺功能变化相关性研究.中国中医药信息杂志,2010;17(4):18-21.
    [89]刘健,万磊,盛长健,等.佐剂性关节炎大鼠肺功能变化与Th1/Th2细胞、调节性T细胞的相关性研究.细胞与分子免疫学杂志,2011;27(1):56-60.
    [90]万磊,刘健,程园园,等.剂关节炎大鼠肺功能变化与Notch1、Notch2/Jagged1、 Jagged2通路的相关性.安徽医科大学学报,2012;47(10):1156-1160.
    [91]李丽娜,王华,周蕾,等.博莱霉素诱导小鼠肺间质纤维化造模方式的选择.中国免疫学杂志,2010;26(03):254-257.
    [92]胡晓玲.免疫复合物致大鼠肺间质纤维化作用的研究.青岛大学医学院学报,2004;40(2):112-116.
    [93]倪强强,罗文哲,王建杰.丹皮酚对大鼠佐剂性关节炎致肺功能损伤的影响.黑龙江医药科学,2012;35(1):82-83.
    [94]刘健,范海霞,杨梅云.新风胶囊对类风湿关节炎的疗效及对其肺功能、红细胞CRI、CD59的影响.湖北中医杂志,2007;29(6):9-11.
    [95]刘健,纵瑞凯,余学芳,等.新风胶囊对活动期类风湿关节炎患者的疗效及对血小板参数血小板CD59的影响.中华中医药学刊,2008;26(7):1368-1371.
    [96]汪元,刘健,纵瑞凯,等.新风胶囊对活动期类风湿关节炎患者血小板参数的影响.中医正骨,2008;20(9):1-3.
    [97]刘健,范海霞,杨梅云.类风湿关节炎患者肺功能变化与CR1、CD59表达水平的关系[J].中国临床医学,2007;14(3):306-309.
    [98]刘健,范海霞,杨梅云.新风胶囊对类风湿关节炎的疗效及对其肺功能、红细胞CRI、CD59的影响.湖北中医杂志,2007;29(6):9-11.
    [99]刘健,万磊,刘磊,等.健脾通络法对类风湿关节炎调节性T细胞及肺功能的影响.中国临床保健杂志,2011;14(2):113-116.
    [100]刘健,万磊,程园园,等.佐剂关节炎大鼠肺功能与Treg、Notch信号通路的关系.中国免疫学杂志,2012;28(9):825-830.
    [101]刘健,韩明向,张皖东,等.新风胶囊对佐剂性关节炎大鼠疗效及滑膜fas、fasL及bcl-2表达的影响.中国中西医结合杂志,2002,22(8):599.
    [102]万磊,刘健,程园园,等.佐剂关节炎大鼠肺功能变化与Notch1、Notch2/Jagged1、 Jagged2通路的相关性.安徽医科大学学报,2012;47(10):1156-1160.
    [103]杨晓航,史传道,叶峥嵘.黄芪总黄酮对佐剂性关节炎模型大鼠IL-4、IFN-γmRNA表达影响的研究.陕西医学杂志,2010;39(8):944-949.
    [104]杜文生,徐英敏,韩付伟,等.黄芪消肿汤治疗膝关节滑膜炎[J].中国实验方剂学杂志,2011;17(20):275-277.
    [105]谢浩,朱艳芬,林永联,等.黄芪多糖对哮喘患者血清T h1/T h2细胞因子及肺功能的影响.中国实验诊断学,2011;15(6):986-988.
    [106]李娟,张毅,刘永琦,等.黄芪多糖对肺纤维化大鼠细胞因子及肺组织病理结构的影响.时珍国医国药,2011;22(7):1684-1685.
    [107]史进.薏苡仁汤配合关节镜治疗痛风性关节炎24例.实用中医内科杂志,2012;26(3):57-58.
    [108]宋科.加味薏苡仁汤治疗类风湿关节炎贫血的临床观察.中国保健营养,2012;9(7):234-234.
    [109]赵钟文,吴宽裕.雷公藤甲素治疗类风湿性关节炎作用机理的研究现状[J].按摩与康复医学,2012;3(4):36-37.
    [110]曹蕾,林佳.雷公藤甲素治疗老年类风湿关节炎的疗效及其对生存质量的影响.中国老年学杂志,2012;32(6):1302-1304.
    [111]毛晓丹,孙赛君,裴紫燕,等.雷公藤内酯醇对类风湿关节炎滑膜成纤维细胞IL-18及其受体表达的影响.细胞与分子免疫学杂志,2009;25(7):606-611.
    [112]赵太平,邱佰房,徐玉东,等.雷公藤治疗大鼠类风湿性关节炎的效果及其免疫机制.广东医学,2011;32(30):2642-2644.
    [113]王伟东,陈如平,肖鲁伟,等.雷公藤甲素对类风湿关节炎滑膜新生血管中血管内皮生长因子、白细胞介素6抑制机理的探讨.中医正骨,2012;24(2):3-5.
    [114]杨素芳,邱颂平,林静瑜,等.雷公藤多苷对肺纤维化大鼠的干预作用.福建中医药大学学报,20l1;21(3):36-38.
    [115]高建瓴,陈军,詹英,等.雷公藤甲素对内毒素致大鼠急性肺损伤的影响.中国麻醉学杂志,2011;31(10):1245-1248.
    [116]赵海梅,左志琴,程绍民,等.全蝎、蜈蚣对胶原诱导型关节炎大鼠小肠黏膜IL-2、IL-4、IL-10表达及关节损伤的影响.中国中西医结合杂志,2012;32(1):80-83.
    [117]刘端勇,赵海梅,程绍民,等.全蝎、蜈蚣对胶原诱导型关节炎大鼠肠黏膜免疫状态的调节作用.中国实验方剂学杂志,2011;17(13):133-136.
    [118]邴飞虹,张国斌,邓成志,等.蜈蚣三七提取物对小鼠胶原性关节炎免疫作用机理的初步研究.中国免疫学杂志,2008;24(8):716-719.
    [119]张玲玲,沈玉先,魏伟.类风湿关节炎动物模型与临床的关系.中国药理学通报,2002;18(5):502-505.
    [120]胡吴斌,胡玲,唐照亮,等.类风湿关节炎实验动物模型研究与评述.中国中两医结合杂志,2011;31(9):1290-1293.
    [121]薛盟举.类风湿关节炎的中医实验动物模型及评价.中西医结合研究,2011;3(1):31-33.
    [122]李沙,傅颖媛,尧荣凤,等.胶原诱导的关节炎和佐剂诱导的关节炎大鼠模型的制备.江西医学院学报,2009;49(12):17-26.
    [123]张敏娜.类风湿关节炎的实验动物模型及其评价.实验动物科学,2011;28(4):57-59.
    [124]李培培,解国熊,宋姗姗,等.大鼠佐剂性关节炎模型表现特征及评价指标.中国免疫学杂志,2012;28(5):453-457.
    [125]冯芳,丁志建,刘俊.佐剂性关节炎大鼠模型的实验研究.天津药学,2004,16(2):1-4.
    [126]彭传玉,罗磊,胡玲,等.不同剂量弗氏完全佐剂对类风湿关节炎模型大鼠复制的影响.中国医药指南,2012;10(1):1-3.
    [127]杜仲皮,赵宏艳,肖诚.类风湿性关节炎脾虚证病证结合动物模型的建立.世界科学技术-中医药现代化,2012;14(2):1384-1390.
    [128]陈柏松,徐玉东,钟淑琦,等.大鼠佐剂性关节炎模型的建立与评价.哈尔滨医科大学学报,2005;39(6):489-491.
    [129]Yang KM, Kim W, Bae E, et al. DRAK2Participates in a NegativeFeedback Loop to Control TGF-β/Smads Signaling by Binding to Type ITGF-β Receptor. Cell Rep,2012;2(5):1286-1299.
    [130]Liao HC, Liu Y, Zhou B. Effects of Sini decoction on the expressions ofSmad2and Smad7in isoproterenol induced myocardial fibrosis rats[J]. Chin JIntegr Med,2012;32(7):934-938.
    [131]徐国萍,李清泉,曹汐汐,等.Smad7对转化生长因子β1诱导的肺泡上皮细胞向间质细胞转变的影响.中华医学杂志,2007;87(27)1918-1923.
    [132]Wang X, Harimoto K, Xie S, et al. Matrix protein biglycan inducesosteoblast differentiation through extracellular signal-regulated kinase andSmad pathways[J]. Biol Pharm Bull,2010,33(11):1891-1897.
    [133]徐芳,徐启勇,叶燕青.ERK信号通路在肺纤维化大鼠中的研究.武汉大学学报(医学版),2005;26(3):322-325.
    [134]Mackinnon AC, Gibbons MA, Farnworth SL, et al. Regulation oftransforming growth factor-β1-driven lung fibrosis by galectin-3[J]. Am JRespir Crit Care Med,2012;185(5):537-546.
    [135]Mu oz-Valle JF, Torres-Carrillo NM, Guzmán-Guzmán IP, et al. Thefunctional class evaluated in rheumatoid arthritis is associated with solubleTGF-β1serum levels but not with G915C (Arg25Pro) TGF-β1polymorphism.Rheumatol Int,2012;32(2):367-372.
    [136]Sung MS, Lee EG, Jeon HS, et al. Quercetin inhibits IL-1β-inducedproliferation and production of MMPs, COX-2, and PGE2by rheumatoidsynovial. Inflammation,2012;35(4):1585-1594.
    [137]Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin andIL-1beta-mediated pulmonary fibrosis is IL-17A dependent.J Exp Med,2010;207(3):535-552.
    [138]殷宗宝,王洪武,邓超,等.甘利欣对肺纤维化大鼠的TGF-β1,IFN-γ,IL-4的影响.中国实验方剂学杂志,2010;16(8)182-184.
    [139]叶进燕,殷宗宝,管敏强,等.甘利欣对大鼠肺纤维化的治疗作用及对血清IL4/IFN-γ浓度的影响.实用医学杂志,2011;27(6):960-962.
    [140]Sfikakis PP. Is IL-4a potential therapeutic target in systemicsclerosis-associated pulmonary fibrosis. Clin Immunol,2011;141(3):240-241.
    [141]汪涛,刘忠.白介素-4在博莱霉素致大鼠肺纤维模型中的表达.重庆医科大学学报,2005;30(1):20-26.
    [142]Woszczek G, Chen LY, Nagineni S, et al. IL-10inhibits cysteinylleukotriene-induced activation of human monocytes and monocyte-deriveddendritic cells[J]. J Immunol,2008;180(11):7597-7603.
    [143]IL-10与TGF-β1在肺纤维化中的研究进展.中国实验诊断学,2011;15(11):1989-1990.
    [144]陈立辉,张源潮,孟红艳.类风湿关节炎(RA)患者Th1、Th2型细胞在患者病情演变中的特点及临床意义.中国医药指南,2012;10(16):51-55.
    [145]Honda T, Imaizumi K, Yokoi T, et al. Differential Th1/Th2chemokinepneumonia.Am J Med Sci,2010;339(1):41-48.
    [146]张雷,卢惠苹,赖国祥.结缔组织生长因子在博莱霉素诱导的小鼠肺纤维化中的作用探讨.细胞与分子免疫学杂志,2005;21(3):290-293.
    [147]刘朝朝,王西华,吴国球,等.结缔组织生长因子单链抗体对博莱霉素诱导的小鼠肺纤维化程度及羟脯氨酸含量的影响.东南大学学报(医学版),2010;29(2):135-139.
    [148]苏波.杨春萍.鲁静.类风湿关节炎患者血清结缔组织生长因子水平及与间质性肺疾病的关系.细胞与分子免疫学杂志,2008;21(11):1092-1093.
    [149]Xiao L, Du Y, Shen Y, et al. TGF-beta1induced fibroblast proliferation ismediated by the FGF-2/ERK pathway. Front Biosci,2012;17:2667-2674.
    [150]Han L, Gotlieb AI. Fibroblast growth factor-2promotes in vitro mitralvalve interstitial cell repair through transforming growth factor-β/Smad signaling.Am J Pathol,2011;178(1):119-127.
    [1]万磊,刘健,程园园,等.伴和不伴肺功能降低类风湿关节炎患者Treg变化及新风胶囊对其影响.中医药临床杂志,2011;23(5):394-397.
    [2]刘健,范海霞,杨梅云.新风胶囊对AA大鼠肺功能、肺部HRCT及血清细胞因子的影响.陕西中医学院学报,2007;20(3):32-35.
    [3]Cao Y,Tao JQ,Bates SR,et al.IL-4induces production of thelung collectinsurfactant protein-D. J Allergy Clin Immunol,2004,113(3):439-444.
    [4]王耀勇.IL-10在博莱霉素诱导大鼠所致肺纤维化中的作用.武汉大学学报(医学版),2004;25(2):159-165.
    [5]马靖.白细胞介素-18在肺纤维化大鼠肺组织中的表达.北京大学学报(医学版),2002;34(4):376-383.
    [6]Mackinnon AC, Gibbons MA, Farnworth SL, et al. Regulation oftransforming growth factor-β1-driven lung fibrosis by galectin-3. Am J RespirCrit Care Med,2012;185(5):537-546.
    [7]Mu oz-Valle JF, Torres-Carrillo NM, Guzmán-Guzmán IP, et al. Thefunctional class evaluated in rheumatoid arthritis is associated with solubleTGF-β1serum levels but not with G915C (Arg25Pro) TGF-β1polymorphism.Rheumatol Int,2012;32(2):367-372.
    [8]张雷,卢惠苹,赖国祥.结缔组织生长因子在博莱霉素诱导的小鼠肺纤维化中的作用探讨.细胞与分子免疫学杂志,2005;21(3):290-293.
    [9]刘朝朝,王西华,吴国球,等.结缔组织生长因子单链抗体对博莱霉素诱导的小鼠肺纤维化程度及羟脯氨酸含量的影响.东南大学学报(医学版),2010;29(2):135-139.
    [10]苏波.杨春萍.鲁静.类风湿关节炎患者血清结缔组织生长因子水平及与间质性肺疾病的关系.细胞与分子免疫学杂志,2008;21(11):1092-1093.
    [11]Xiao L, Du Y, Shen Y, et al. TGF-beta1induced fibroblast proliferation ismediated by the FGF-2/ERK pathway. Front Biosci,2012;17:2667-2674.
    [12]Han L, Gotlieb AI. Fibroblast growth factor-2promotes in vitro mitralvalve interstitial cell repair through transforming growth factor-β/Smadsignaling.Am J Pathol,2011;178(1):119-127.
    [13]胡永斌.曾庆富.肺纤维化中转录因子激活及其信号转导途径.临床与实验病理学杂志,2002;6(5):540-542.
    [14] Hough C, Radu M, Doré JJ. Tgf-beta induced Erk phosphorylation ofsmad linker region regulates smad signaling. PLoS One,2012;7(8):e42513.
    [15]Asano K, Shikama Y, Shoji N, et al. Tiotropium bromide inhibitsTGF-β-induced MMP production from lung fibroblasts by interfering withSmad and MAPK pathways in vitro. Int J Chron Obstruct Pulmon Dis,2010;5:277-286.
    [16]徐芳,徐启勇,叶燕青.ERK信号通路在肺纤维化大鼠中的研究.武汉大学学报(医学版),2005;26(3):322-325.
    [17]何欣蓉,霍艳英,胡迎春,等.Smad4分子在ERK/MAPK信号转导通路中的作用.中国生物化学与分子生物学报,2006;22(4):333-337.
    [18]何欣蓉,霍艳英,胡迎春,等.TGFβ1以受体和Smad7依赖的方式活化ERK.生物技术通讯,2006;17(1):22-23.
    [19]杨雅茹,黄艳,李俊.TGF-β1介导的Smads与ERK通路在肺纤维化中的作用及相互关系.中国药理学通报,2010,26(5):561-563.
    [20]Medici D, Potenta S, Kalluri R. Transforming growth factor-β2promotesSnail-mediated endothelial-mesenchymal transition through convergence ofSmad-dependent and Smad-independent signaling. Biochem J,2011;437(3):515-520.
    [21]胡瑜,刘雪雁,富建华,等.细胞外信号调节激酶1/2在慢性肺疾病新生大鼠肺成纤维细胞中的研究.中华急诊医学杂志,2012;21(1):33-37.
    [22]Asano K, Shikama Y, Shoji N, et al. Tiotropium bromide inhibitsTGF-β-induced MMP production from lung fibroblasts by interfering withSmad and MAPK pathways in vitro. Int J Chron Obstruct Pulmon Dis,2010;5:277-286.
    [23]冯莉,王献华.转化生长因子β1介导的ERK/MAPK信号通路与肺纤维化.中国煤炭工业医学杂志,2008;11,(10):1621-1623.
    [24]刘健,郑志坚.类风湿性关节炎中医学病机探讨.中国中医基础医学杂志,2001;7(9):13-14.
    [25]莫碧文.黄芪对博莱霉素致鼠急性肺损伤的保护作用.桂林医学院学报,1996;9(1):13.
    [26]钟殿胜,朱元环,郭子建.雷公藤毛单体治疗肺纤维化的实验研究.中华结核和呼吸杂志,1997;36(8):546.
    [27]郭虎占,董泽宏,佘靖.中药现代研究与应用(第五卷).北京:学苑出版社,1998:4492.
    [28]王海南等.丹参酚酸B盐对肝星状细胞增殖与TGF-信号转导的影.中华肝脏病杂志,2002;10(5):382.
    [29]陈炜,毕小利.生地对特发性肺间质纤维化基质重建调控作用的实验研究[J].中国中医基础医学杂志,2001;7(6):34.
    [30]杨俊玲,辛秀琴.刺五加对肺间质纤维治疗作用的探讨.中医老年病杂志,2001;30(5):35.
    [31]刘健,范海霞,杨梅云.新风胶囊对佐剂关节炎大鼠肺功能血清细胞因子含量的影响.安徽中医学院学报,2007;26(2):32-35.
    [32]健,万磊,冯云霞,等.健脾化湿通络法治疗类风湿关节炎肺功能降低探讨.中医药临床杂志,2011;23(6):394-397.
    [33]刘健,范海霞,杨梅云.新风胶囊对类风湿性关节炎患者的疗效及肺功能、生活质量的影响.中华中医药学刊,2007;25(10):2061-2063.
    [34]刘健,郭雯,程华威,等.新风胶囊对佐剂关节炎大鼠肺间质病变的影响.安徽中医学院学报,2006;25(5):24-27.
    [35]刘健,范海霞,杨梅云.类风湿关节炎患者肺功能的变化及新风胶囊对其的影响.中国临床保健杂志,2007;10(1):29-31.
    [36]宋建平,刘方州.生脉对肺纤维化模型大鼠支气管肺泡灌洗液中谷胱甘肽含量的影响.中国中医药科技,2002;9(1):1.
    [37]李素云,朱佳,吴纪珍.抗纤颗粒治疗弥漫性肺间质纤维化及其对细胞因子的影响.中国中医药信息杂志,2002;9(5):26.
    [38]林庶茹,才丽平.抵当汤合小陷胸汤化裁方对实验性肺间质纤维化大鼠血清透明质酸与Ⅳ型胶原的影响.中国中医基础医学杂志,2005;11(12):897.
    [39]龚婕宁.养肺活血方对纤维化大鼠自由基代谢影响的实验研究.中国中医药科技,1999;6(4):203.
    [40]张天嵩,赵子贤,马君,等.补气通肺汤治疗特发性肺纤维化12例.浙江中医杂志,1999;34(2):54-55.
    [41]牛艳艳,顿颖,武玉鹏.肺康灵对实验性大鼠肺纤维化的作用.中药药理与临床,1997;13(4):37.
    [42]陈献亮.虫草汤配合激素治疗特发性肺间质纤维化21例.陕西中医,2002;23(10):877.
    [43]张纾难,李兰群,张洪春,等.益气润肺化瘀解毒法治疗特发性肺纤维化临床研究.北京中医药大学学报,1999;22(3):57-60.
    [44]卫张蕊,田琼.中药肺宁对实验性肺纤维化的保护作用.第四军医大学学报,2005;26(7):1.
    [45]孔祥文.特发性肺纤维化的中医治疗.现代中西医结合杂志,2003;12(1):67-69.
    [46]许振亚,陈景礼,徐振荣,等.特发性肺间质纤维化的辨证论治.浙江中医杂志,1997;32(12):533-534.
    [47]王海彤,武维屏.中医药治疗弥漫性肺间质纤维化信息讨论.中国中医药信息杂志,1996;3(7):25-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700