GJB2单杂合突变非综合征型耳聋致病机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:进行GJB2单杂合突变非综合征型耳聋(NSHI)患者的筛选,分析和总结GJB2单杂合突变患者的基因型与表型及其相互关系。探讨携带GJB2单杂合突变NSHI患者GJA1突变情况。探讨GJB2单杂合突变NSHI患者GJB2序列是否存在大片段碱基插入或缺失。
     方法:第一部分对解放军总医院聋病分子诊断中心的7514例NSHI患者基因诊断的结果进行分析,筛选出GJB2单杂合突变而未查出其他常见耳聋基因突变(如GJB3、GJB6、SLC26A4、mtDNA等)的病例217例,分析GJB2单杂合致病突变类型以及单核苷酸多态(SNP),总结临床特点,包括一般资料、听力学结果和颞骨高分辨率CT(HRCT)。听力学检查包括:纯音测听及小儿行为测听191例、声导抗74例、听性脑干反应(ABR)60例、耳声发射(OAEs)47例、40Hz听觉事件相关电位(AERP)35例、听觉稳态反应(ASSR)29例。由于不是每个病例都做全上述检查,全国流行病学调查的病例仅有纯音测听,26例患者无法配合纯音测听但客观听力测试提示为感音神经性聋,因此每种检查的病例数不相同。第二部分对205例(12例无DNA标本)GJB2单杂合突变NSHI患者进行GJA1编码区直接测序,对照组为111例听力正常成年人。第三部分应用长链PCR及0.8%琼脂糖凝胶电泳检测201例(16例无DNA标本)GJB2单杂合突变NSHI患者GJB2全序列长度,对照组同第二部分。
     结果:7514例NSHI中筛选出GJB2单杂合突变217例(2.89%,217/7514),男119例,女98例,共筛查出GJB2单杂合致病突变17种,最常见的突变类型为235delC杂合152例(70.05%)、299delAT杂合28例(12.90%)、176del16杂合6例(2.76%),其它突变类型31例(14.29%)。SNP分析:无SNP100例(46.08%),109G>A杂合53例(24.42%),79G>A杂合+341A>G杂合32例(14.75%),79G>A杂合24例(11.06%),其它类型SNP8例(3.69%)。191例纯音测听结果:极重度聋132例(69.11%),重度聋25例(13.09%),中度聋25例(13.09%),轻度聋7例(3.66%),正常2例(1.05%);162例(162/191,84.82%)表现为双侧对称性听力下降,29例(15.18%)不对称;移码突变176例(92.14%,176/191),其中极重度聋123例(69.89%,123/176),错义突变13例(6.81%,13/191),无义突变2例(1.05%,2/191)。74例声导抗结果:鼓室压图为A型102耳(68.92%),As型27耳(18.24%),C型9耳(6.08%),Ad型6耳(4.05%),B型2耳(1.35%)和D型2耳(1.35%);声反射阈:(80-95)dB HL37耳(25.00%),(96-110)dB HL18耳(12.16%),声发射未引出93耳(62.84%);重振48耳(32.88%)。60例ABR结果:未引出反应63耳(52.50%),ABR阈值(30-60)dB nHL15耳(12.50%),(61-90)dB nHL23耳(19.17%),>90dB nHL19耳(15.83%)。35例40Hz AERP结果:1kHz反应阈值≤60dB nHL5耳(7.14%),(61-90)dB nHL14耳(20.00%),(91-120)dB nHL35耳(50.00%),>120dB nHL16耳(22.86%)。29例ASSR结果:ASSR反应阈值≤80HLcg8耳(13.79%),(81-119)HLcg38耳(65.52%),≥120HLcg12耳(20.69%)。47例OAEs结果:87耳(92.55%)OAEs无反应,7耳(7.45%)不同程度引出反应。95例颞骨CT检查发现内耳畸形3例(3.16%)。205例GJB2单杂合突变患者中,GJA1IVS2+1insA杂合突变3例(1.45%),456G>A和717G>A各1例,都为杂合同义突变。111例对照组中, IVS2+1insA杂合突变3例(2.70%),466A>G杂合突变1例(0.90%)。两组IVS2+1insA突变率无明显差异(校正χ2=0.115,P=0.735>0.05)。201例GJB2单杂合突变患者和111例对照组GJB2序列长度检测均未见明显异常。
     结论:中国GJB2单杂合突变NSHI患者常见的突变类型为235delC杂合、299delAT杂合和176del16杂合,以移码突变最常见,其基因型相关的听力表型多种多样,临床表现大多数为双侧对称性极重度语前聋,A型及As型鼓室压图常见,ABR、OAEs、40HzAERP、ASSR等是重要的检查方法,颞骨CT可见内耳畸形。GJB2单杂合突变NSHI患者中GJA1检测未见致病突变,GJB2序列长度检测未见明显异常,GJB2序列可能无大片段碱基插入或缺失。
Objective: To screen the nonsyndromic hearing impairment (NSHI) patientswith monoallelic mutations of the GJB2gene, and to summarize thecharacteristics of genotype and phenotype of monoallelic mutations of the GJB2gene and the genotype-phenotype correlation. To evaluate GJA1gene mutationsin NSHI patients with monoallelic GJB2mutations. To explore the underlyingpathogenic factors for the NSHI patients with monoallelic mutations of the GJB2gene, and to detect whether or not insertion or deletion of large fragmentnucleotides exists in the GJB2gene sequence.
     Material and Methods: In part one, we analyzed the results of genediagnosis for7514NSHI patients from the Deafness Molecular DiagnosticsCenter of the People's Liberation Army General Hospital and chose217caseswith monoallelic mutations of the GJB2gene but without the other commondeafness gene mutations for further study, such as GJB3gene, GJB6gene,SLC26A4gene, mitochondria DNA, etc. We analyzed the genotype of the GJB2gene monoallelic mutations and the single nucleotide polymorphism(SNP) andsummarized the clinical characteristics of the patients with GJB2geneheterozygous mutations, including the general information of the patients, theaudiological results and the radiological imaging data. The appropriateaudiological tests were selected according to the patients' condition, includingpure tone audiometry, children behavioural audiometry, acoustic impedanceaudiometry, auditory brainstem response (ABR),40Hz auditory event related potentials(40Hz AERP), auditory steady-state response (ASSR), otoacousticemissions(OAEs), etc. In part two, we sequenced the entire coding region of theGJA1gene in205nonsyndromic hearing-impaired patients carrying a pathogenicGJB2gene mutation and in111normal hearing controls. In part three, wedetected the full length of the GJB2gene sequence for201NSHI patients withGJB2gene monoallelic mutations and111adults with normal hearing by longchain two-step PCR method and0.8%agarose gel electrophoresis(AGE).
     Results: The monoallelic mutation rate of the GJB2gene was2.89%(217/7541) in the Chinese NSHI patients. Among the217NSHI patientswith monoallelic GJB2gene mutations, there are119males and98females. Therewere17types of monoallelic pathologic mutations of the GJB2gene, the mostcommon types of monoallelic mutations were235delC heterozygous,299delATheterozygous and176del16heterozygous, with152cases (70.05%),28cases(12.90%),6cases (2.76%), respectively. There were100cases(46.08%) withoutany SNP in the patients with monoallelic GJB2gene mutations,53cases (24.42%)only with heterozygous109G>A,32cases (14.75%) with heterozygous of79G>Aand341A>G,24cases(11.06%)only with heterozygous79G>A, and8cases(3.69%) with other types of heterozygous SNP. The results of pure toneaudiometry test for191cases were132cases (69.11%) with very severe hearingloss,25cases (13.09%) with severe hearing loss,25cases (13.09%) withmoderate hearing loss,7cases (3.66%) with mild hearing loss, and2cases (1.05%)with normal hearing; there were162cases (84.82%) with bilateral symmetricalhearing loss and29cases (15.18%) with binaural nonsymmetrical hearing loss.There were176patients (92.14%,176/191) with frameshift mutations,13patients(6.81%,13/191)with missense mutations and2patients (1.05%,2/191) withnonsense mutations, and123patients (69.89%,123/176)with very severe hearingloss and frameshift mutations. The results of acoustic impedance audiometry test for74cases were102ears (68.92%) with type A of tympanogram,27ears(18.24%) with type As,9ears (6.08%) with type C,6ears (4.05%) with type Ad,2ears (1.35%) with type B and2ears (1.35%) with type D; there were37ears(25.00%) with the acoustic reflex threshold less than or equal to95dB,18ears(12.16%) with the acoustic reflex threshold between96dB and110dB and93ears(62.84%) without acoustic reflex; there were48ears (32.88%) with recruitment.The results of ABR for66cases were63ears (52.50%) without response,15ears(12.50%) with the threshold of ABR between30dB nHL and60dB nHL,23ears(19.17%) with the threshold between61dB nHL and90dB nHL, and19ears(15.83%) with the threshold more than90dB nHL. The results of40Hz AERP for35cases were5ears (7.14%) with the threshold of40Hz AERP less than or equalto60dB nHL,14ears (20.00%) with the threshold between61dB nHL and90dBnHL,35ears (50.00%) with the threshold between91dB nHL and120dB nHL,and12ears (22.86%) without response more than120dB nHL. The threshold ofASSR was the average threshold at0.5、1、2、4kHz, and the results of ASSR for29cases were8ears (13.79%) with the threshold of ASSR less than or equal to80HLcg,38ears (65.52%) with the threshold between81HLcg and119HLcg,12ears (20.69%) with the threshold equal to or more than120HLcg. The results ofOAEs for47cases were87ears (92.55%) without OAEs response and only7earswith OAEs response. Three of95patients were found having malformations ininner ear by temporal bone HRCT. Five of the205patients were found havingmonoallelic GJA1gene mutations,3(1.45%) having IVS2+1insA mutations,1having456G>A mutation, and1having717G>A mutation. Four individuals fromthe control group were found having monoallelic GJA1gene mutations,3(2.70%)with IVS2+1insA mutations, and1with466A>G mutation. No significantdifference in the IVS2+1insA mutation rate was found between the two groups(continuity correction χ2=0.115, P=0.735>0.05). Obvious increase or decrease of the sequence length of GJB2gene was not found in201NSHI patients withmonoallelic GJB2gene mutations and in the111cases from the control group.
     Conclusion: The common types of monoallelic mutations of the GJB2genemonoallelic mutations in Chinese NSHI patients were235delC heterozygous,299delAT heterozygous and176del16heterozygous. The main clinicalmanifestation of most NSHI patients with monoallelic mutations of the GJB2gene showed bilateral, symmetrical, prelingual and very severe hearing loss. Thegenotype-phenotype correlation of monoallelic mutations of the GJB2generevealed versatility and polymorphism. The most common tympanogram typeswere type A and type As, and the patients whose acoustic reflection could beelicited often had recruitment. Other audiological tests were important means forNSHI patients, such as ABR, OAEs,40Hz AERP and ASSR. Malformations ofthe inner ear could be found in NSHI patients with monoallelic GJB2genemutations. Pathologic mutations of GJA1gene do not appear in NSHI patientswith monoallelic GJB2gene mutations. Insertion or deletion of large fragmentnucleotides in the GJB2gene sequence was not found in NSHI patients withmonoallelic GJB2gene mutations.
引文
1Van Camp G, Willems PJ, Smith RJ. Nonsyndromic hearing impairment:unparalleled heterogeneity. Am J Hum Genet,1997,60(4):758-764.
    2Posukh O, Pallares-Ruiz N, Tadinova V, et al. First molecular screening ofdeafness in the Altai Republic population. BMC Med Genet,2005,6,12DOI:10.1186/1471-2350-6-12.
    3Alford RL. Nonsyndromic hereditary hearing loss. Adv Otorhinolaryngol,2011,70:37-42.
    4Kelsell DP, Dunlop J, Stevens HP, et al. Connexin26mutations in hereditarynon-syndromic sensorineural deafness. Nature,1997,387(6628):80-83.
    5Scott DA, Kraft ML, Stone EM, et al. Connexin mutations and hearing loss.Nature,1998,391(6662):32.
    6Maeda Y, Fukushima K, Nishizaki K, et al. In vitro and in vivo suppression ofGJB2expression by RNA interference. Hum Mol Genet,2005,14(12):1641-1650.
    7Thomas MA, Der Kaloustian VM, Tewfik TL. Connexin mutation testing ofchildren with nonsyndromic, autosomal recessive sensorineural hearing loss. JOtolaryngol,2004,33(3):189-192.
    8Scott DA, Kraft ML, Carmi R, et al. Identification of mutations in theconnexin26gene that cause autosomal recessive nonsyndromic hearing loss.Hum Mutat,1998,11(5):387-394.
    9Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin26gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J HumGenet,1998,62(4):792-799.
    10Estivill X, Fortina P, Surrey S, et al. Connexin-26mutations in sporadic andinherited sensorineural deafness. Lancet,1998,351(9100):394-398.
    11Zelante L, Gasparini P, Estivill X, et al. Connexin26mutations associatedwith the most common form of non-syndromic neurosensory autosomalrecessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet,1997,6(9):1605-1609.
    12Yu F, Han DY, Dai P, et al.[Mutation of GJB2gene in nonsyndromic hearingimpairment patients: analysis of1190cases]. Zhonghua Yi Xue Za Zhi,2007,87(40):2814-2819.
    13于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制[D].中国人民解放军军医进修学院,2006,博士学位论文:45-122.
    14Lipan M, Ouyang X, Yan D, et al. Clinical comparison of hearing-impairedpatients with DFNB1against heterozygote carriers of connexin26mutations.Laryngoscope,2011,121(4):811-814.
    15S hl G, Willecke K. Gap junctions and the connexin protein family.Cardiovascular Research,2004,62(2):228-232.
    16Liu XZ, Yuan Y, Yan D, et al. Digenic inheritance of non-syndromic deafnesscaused by mutations at the gap junction proteins Cx26and Cx31. Hum Genet,2009,125(1):53-62.
    17Liu XZ, Xia XJ, Adams J, et al. Mutations in GJA1(connexin43) areassociated with non-syndromic autosomal recessive deafness. Humanmolecular genetics,2001,10(25):2945-2951.
    18Zhao HB, Kikuchi T, Ngezahayo A, et al. Gap junctions and cochlearhomeostasis. J Membr Biol,2006,209(2-3):177-186.
    19Nickel R, Forge A. Gap junctions and connexins in the inner ear: their rolesin homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg,2008,16(5):452-457.
    20Hong HM, Yang JJ, Shieh JC, et al. Novel mutations in the connexin43(GJA1) and GJA1pseudogene may contribute to nonsyndromic hearing loss.Human genetics,2010,127(5):545-551.
    21Pm K, S A, Askew Jw EA. Human connexin30(GJB6), a candidate gene fornonsyndromic hearing loss: molecular cloning, tissue-specific expression, andassignment to chromosome13q12. Genomics,1999,62:172-176.
    22J L, Wj T-C, Altenhoff P EA. Expression of the gap-junction connexins26and30in the rat cochlea. Cell-Tissue-Res,1998,294:415-420.
    23袁永一.中国人重度-极重度耳聋分子流行病学及致病机制研究.中国人民解放军军医进修学院博士学位论文,2007.
    1于飞,韩东一,戴朴,等.1190例非综合征性耳聋患者GJB2基因突变序列分析.中华医学杂志,2007,87(40):2814-2819.
    2于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制[D].中国人民解放军军医进修学院,2006,博士学位论文:45-122.
    3袁永一.中国人重度-极重度耳聋分子流行病学及致病机制研究.中国人民解放军军医进修学院博士学位论文,2007.
    4《赫尔辛基宣言》第52界世界医学大会,2000年10月,苏格兰爱丁堡.
    5《世界人类基因组与人权宣言》联合国教科文组织第29届大会.1997年11月11日,巴黎.
    6联合国教育、科学及文化组织.世界人类基因组与人权宣言.中国医学伦理学,1998,11(2):65.
    7HUGO Ethics Committee: Statement on DNA Sampling: Control and Access.Genome Digest,1999,6(1):8-9.
    8戴朴,于飞,康东洋,等.线粒体DNAl555位点和GJB2基因及SLC26A4基因的诊断方法及临床应用.中华耳鼻咽喉头颈外科杂志,2005,40(10):769-773.
    9袁永一,戴朴,朱秀辉,等.耳聋-掌跖皮肤角化综合征的连接蛋白基因型和表型分析.中华耳科学杂志,2007,5(1):71-74.
    10刘新.线粒体DNA A1555G突变分子流行病学调查及线粒体聋病分子机制的研究[D].北京:中国人民解放军军医进修学院、中国人民解放军总医院,2006.
    11ISO/7029-1984,"Acoustics-Threshold of hearing by air conduction as afunction of age and sex for otologically normal persons".
    12WHO(1997,日内瓦)推荐的听力减退分级表.
    13黄选兆,汪吉宝,孔维佳.实用耳鼻咽喉头颈外科学(第2版)[M].北京:人民卫生出版社.2008:751-753.
    14韩东一,翟所强,韩维举.临床听力学[M].北京:中国协和医科大学出版社.2008.
    15李兴启.听觉诱发反应及应用[M].北京:人民军医出版社.2007:183-197.
    16孙宝春.感音神经性耳聋中内耳崎形的分类以及与SLC26A4、GJB2基因关系的研究.中国人民解放军军医进修学院博士学位论文,2011.
    1Green GE, Scott DA, Mcdonald JM, et al. Carrier rates in the midwesternUnited States for GJB2mutations causing inherited deafness. JAMA,1999,281(23):2211-2216.
    2Petersen MB, Willems PJ. Non-syndromic, autosomal-recessive deafness. ClinGenet,2006,69(5):371-392.
    3于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制[D].中国人民解放军军医进修学院,2006,博士学位论文:45-122.
    4于飞,韩东一,戴朴,等.1190例非综合征性耳聋患者GJB2基因突变序列分析.中华医学杂志,2007,87(40):2814-2819.
    5Gualandi F, Ravani A, Berto A, et al. Exploring the clinical andepidemiological complexity of GJB2-linked deafness. Am J Med Genet,2002,112(1):38-45.
    6Loffler J, Nekahm D, Hirst-Stadlmann A, et al. Sensorineural hearing loss andthe incidence of Cx26mutations in Austria. Eur J Hum Genet,2001,9(3):226-230.
    7Richard G, White TW, Smith LE, et al. Functional defects of Cx26resultingfrom a heterozygous missense mutation in a family with dominantdeaf-mutism and palmoplantar keratoderma. Hum Genet,1998,103(4):393-399.
    8Snoeckx RL, Huygen PL, Feldmann D, et al. GJB2mutations and degree ofhearing loss: a multicenter study. Am J Hum Genet,2005,77(6):945-957.
    9Cryns K, Orzan E, Murgia A, et al. A genotype-phenotype correlation forGJB2(connexin26) deafness. J Med Genet,2004,41(3):147-154.
    10Griffith AJ, Chowdhry AA, Kurima K, et al. Autosomal recessivenonsyndromic neurosensory deafness at DFNB1not associated with thecompound-heterozygous GJB2(connexin26) genotype M34T/167delT. Am JHum Genet,2000,67(3):745-749.
    11Mueller RF, Nehammer A, Middleton A, et al. Congenital non-syndromalsensorineural hearing impairment due to connexin26genemutations--molecular and audiological findings. Int J Pediatr Otorhinolaryngol,1999,50(1):3-13.
    12朱玉华,翟所强,戴朴,等.携带GJB2基因突变中老年人的听力学特点分析.听力学及言语疾病杂志,2009,17(2):133-136.
    13Liu XZ, Pandya A, Angeli S, et al. Audiological features of GJB2(connexin26) deafness. Ear Hear,2005,26(3):361-369.
    14Norris VW, Arnos KS, Hanks WD, et al. Does universal newborn hearingscreening identify all children with GJB2(Connexin26) deafness? Penetranceof GJB2deafness. Ear Hear,2006,27(6):732-741.
    15纪育斌,兰兰,王大勇,等.中国非综合征型聋患者GJB2基因突变流行病学文献荟萃分析.听力学及言语疾病杂志,2011,19(4):323-327.
    16Ballana E, Ventayol M, Rabionet R, et al. Connexins and deafness Homepage[EB/OL].[2013-3-31]. http://www.crg.es/deafness.
    17Posukh O, Pallares-Ruiz N, Tadinova V, et al. First molecular screening ofdeafness in the Altai Republic population. BMC Med Genet,2005,6,12DOI:10.1186/1471-2350-6-12.
    18Matsushiro N, Doi K, Fuse Y, et al. Successful cochlear implantation inprelingual profound deafness resulting from the common233delC mutation ofthe GJB2gene in the Japanese. Laryngoscope,2002,112(2):255-261.
    19Abe S, Usami S, Shinkawa H, et al. Prevalent connexin26gene (GJB2)mutations in Japanese. J Med Genet,2000,37(1):41-43.
    20Yu F, Han DY, Dai P, et al.[Mutation of GJB2gene in nonsyndromic hearingimpairment patients: analysis of1190cases]. Zhonghua Yi Xue Za Zhi,2007,87(40):2814-2819.
    21李庆忠,王秋菊,韩东一,等. GJB2基因突变始祖效应对中国耳聋人群的影响.解放军医学杂志,2005,30(5):394-396.
    22Shi GZ, Gong LX, Nie WY, et al.[Mutations of GJB2gene in infants withnon-syndromic hearing impairment]. Zhonghua Yi Xue Za Zhi,2005,85(10):689-692.
    23Chen Y, Tudi M, Sun J, et al. Genetic mutations in non-syndromic deafnesspatients of Uyghur and Han Chinese ethnicities in Xinjiang, China: acomparative study. J Transl Med,2011,9,154DOI:10.1186/1479-5876-9-154.
    24Yuan Y, Yu F, Wang G, et al. Prevalence of the GJB2IVS1+1G>A mutationin Chinese hearing loss patients with monoallelic pathogenic mutation in thecoding region of GJB2. J Transl Med,2010,8,127DOI:10.1186/1479-5876-8-127.
    25肖自安,冯永,潘乾,等.非综合征性耳聋患者连接蛋白26基因突变的研究.中华耳鼻咽喉科杂志,2000,35(3):188-191.
    26Choi SY, Lee KY, Kim HJ, et al. Functional evaluation of GJB2variants innonsyndromic hearing loss. Mol Med,2011,17(5-6):550-556.
    27Wilcox SA, Saunders K, Osborn AH, et al. High frequency hearing losscorrelated with mutations in the GJB2gene. Hum Genet,2000,106(4):399-405.
    28Pollak A, Skorka A, Mueller-Malesinska M, et al. M34T and V37I mutationsin GJB2associated hearing impairment: evidence for pathogenicity andreduced penetrance. Am J Med Genet A,2007,143A(21):2534-2543.
    29Huculak C, Bruyere H, Nelson TN, et al. V37I connexin26allele in patientswith sensorineural hearing loss: evidence of its pathogenicity. Am J MedGenet A,2006,140(22):2394-2400.
    30Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin26gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J HumGenet,1998,62(4):792-799.
    31徐志勇,高国凤,刘畅,等.耳聋患者及正常人GJB2基因的突变筛查.中华医学遗传学杂志,2009,26(2):144-146.
    32王国建,袁永一,李荣,等.不同听力学表型人群中常见耳聋基因突变检出率的分析.临床耳鼻咽喉头颈外科杂志,2011,25(10):445-448.
    33Oguchi T, Ohtsuka A, Hashimoto S, et al. Clinical features of patients withGJB2(connexin26) mutations: severity of hearing loss is correlated withgenotypes and protein expression patterns. J Hum Genet,2005,50(2):76-83.
    34Denoyelle F, Marlin S, Weil D, et al. Clinical features of the prevalent formof childhood deafness, DFNB1, due to a connexin-26gene defect:implications for genetic counselling. Lancet,1999,353(9161):1298-1303.
    35欧阳治国,吴皓. GJB2基因突变及其听力损失特点.听力学及言语疾病杂志,2008,16(1):72-74.
    36Orzan E, Murgia A. Connexin26deafness is not always congenital. Int JPediatr Otorhinolaryngol,2007,71(3):501-507.
    37Salvinelli F, Casale M, D'ascanio L, et al. Hearing loss associated with35delG mutation in Connexin-26(GJB2) gene: audiogram analysis. JLaryngol Otol,2004,118(1):8-11.
    38Murgia A, Orzan E, Polli R, et al. Cx26deafness: mutation analysis andclinical variability. J Med Genet,1999,36(11):829-832.
    39Iliadou V, Eleftheriades N, Metaxas AS, et al. Audiological profile of theprevalent genetic form of childhood sensorineural hearing loss due to GJB2mutations in northern Greece. Eur Arch Otorhinolaryngol,2004,261(5):259-261.
    40Orzan E, Polli R, Martella M, et al. Molecular genetics applied to clinicalpractice: the Cx26hearing impairment. Br J Audiol,1999,33(5):291-295.
    41Orzan E, Murgia A. Connexin26deafness is not always congenital. Int JPediatr Otorhinolaryngol,2007,71(3):501-507.
    42Fortnum HM, Summerfield AQ, Marshall DH, et al. Prevalence of permanentchildhood hearing impairment in the United Kingdom and implications foruniversal neonatal hearing screening: questionnaire based ascertainment study.BMJ,2001,323(7312):536-540.
    43Cohn ES, Kelley PM. Clinical phenotype and mutations in connexin26(DFNB1/GJB2), the most common cause of childhood hearing loss. Am JMed Genet,1999,89(3):130-136.
    44Marlin S, Feldmann D, Blons H, et al. GJB2and GJB6mutations: genotypicand phenotypic correlations in a large cohort of hearing-impaired patients.Arch Otolaryngol Head Neck Surg,2005,131(6):481-487.
    45Pagarkar W, Bitner-Glindzicz M, Knight J, et al. Late postnatal onset ofhearing loss due to GJB2mutations. Int J Pediatr Otorhinolaryngol,2006,70(6):1119-1124.
    46Azaiez H, Chamberlin GP, Fischer SM, et al. GJB2: the spectrum ofdeafness-causing allele variants and their phenotype. Hum Mutat,2004,24(4):305-311.
    47Berlin M, Legum C, Muchnik C, et al. Subclinical audiological findings incarriers of recessive genes for deafness. J Basic Clin Physiol Pharmacol,1999,10(3):201-208.
    48Cohen M, Francis M, Coffey R, et al. Abnormal audiograms and elevatedacoustic reflex thresholds in obligate carriers of autosomal recessivenon-syndromic hearing loss. Acta Otolaryngol,1997,117(3):337-342.
    49Franze A, Caravelli A, Di Leva F, et al. Audiometric evaluation of carriers ofthe connexin26mutation35delG. Eur Arch Otorhinolaryngol,2005,262(11):921-924.
    50李兴启.听觉诱发反应及应用[M].北京:人民军医出版社.2007:183-197.
    51韩东一,翟所强,韩维举.临床听力学[M].北京:中国协和医科大学出版社.2008.
    52Engel-Yeger B, Zaaroura S, Zlotogora J, et al. Otoacoustic emissions andbrainstem evoked potentials in compound carriers of connexin26mutations.Hear Res,2003,175(1-2):140-151.
    53Engel-Yeger B, Zaaroura S, Zlotogora J, et al. The effects of a connexin26mutation--35delG--on oto-acoustic emissions and brainstem evoked potentials:homozygotes and carriers. Hear Res,2002,163(1-2):93-100.
    54Elden LM, Potsic WP. Screening and prevention of hearing loss in children.Curr Opin Pediatr,2002,14(6):723-730.
    55Preciado DA, Lim LH, Cohen AP, et al. A diagnostic paradigm for childhoodidiopathic sensorineural hearing loss. Otolaryngol Head Neck Surg,2004,131(6):804-809.
    56Bauer PW, Geers AE, Brenner C, et al. The effect of GJB2allele variants onperformance after cochlear implantation. Laryngoscope,2003,113(12):2135-2140.
    57Propst EJ, Blaser S, Stockley TL, et al. Temporal bone imaging in GJB2deafness. Laryngoscope,2006,116(12):2178-2186.
    58Dai P, Yuan Y, Cui J, et al. GJB2mutation spectrum in deaf population in atypical southeastern area of China. J Otolaryngol,2006(1):94-98.
    59Lim LH, Bradshaw JK, Guo Y, et al. Genotypic and phenotypic correlationsof DFNB1-related hearing impairment in the Midwestern United States. ArchOtolaryngol Head Neck Surg,2003,129(8):836-840.
    60Green GE, Scott DA, Mcdonald JM, et al. Performance of cochlear implantrecipients with GJB2-related deafness. Am J Med Genet,2002,109(3):167-170.
    1Lipan M, Ouyang X, Yan D, et al. Clinical comparison of hearing-impairedpatients with DFNB1against heterozygote carriers of connexin26mutations.Laryngoscope,2011,121(4):811-814.
    2Liu XZ, Xia XJ, Adams J, et al. Mutations in GJA1(connexin43) areassociated with non-syndromic autosomal recessive deafness. Humanmolecular genetics,2001,10(25):2945-2951.
    3Zhao HB, Kikuchi T, Ngezahayo A, et al. Gap junctions and cochlearhomeostasis. J Membr Biol,2006,209(2-3):177-186.
    4Nickel R, Forge A. Gap junctions and connexins in the inner ear: their roles inhomeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg,2008,16(5):452-457.
    5Hong HM, Yang JJ, Shieh JC, et al. Novel mutations in the connexin43(GJA1)and GJA1pseudogene may contribute to nonsyndromic hearing loss. Humangenetics,2010,127(5):545-551.
    6Liu XZ, Yuan Y, Yan D, et al. Digenic inheritance of non-syndromic deafnesscaused by mutations at the gap junction proteins Cx26and Cx31. Hum Genet,2009,125(1):53-62.
    7Corcos IA, Meese EU, Loch-Caruso R. Human connexin43gene locus, GJA1,sublocalized to band6q21-->q23.2. Cytogenet Cell Genet,1993,64(1):31-32.
    8肖自安,谢鼎华.内耳间隙连接和连接蛋白基因家族与遗传性聋.中国耳鼻咽喉颅底外科杂志,2005,11(3):205-208.
    9王海涛,张桂茹.缝隙连接蛋白基因突变引起听力损害的分子遗传学研究进展.国外医学(遗传学分册),2005,28(6):369-371.
    10胡浩,邬玲仟,梁德生,等.非综合征型感音神经性聋相关基因研究进展.中华耳鼻咽喉头颈外科杂志,2005,40(8):633-637.
    11李庆忠,王秋菊,韩东一.连接蛋白突变与遗传性耳聋.中华耳科学杂志,2004,3(3):235-239.
    12贺定华,冯永.连接蛋白与遗传性耳聋.国外医学(耳鼻咽喉科学分册),2004,28(6):379-382.
    13S hl G, Willecke K. Gap junctions and the connexin protein family.Cardiovascular Research,2004,62(2):228-232.
    14Sierra‐Torres CH, Au WW, Arrastia CD, et al. Polymorphisms for chemicalmetabolizing genes and risk for cervical neoplasia. Environmental andmolecular mutagenesis,2003,41(1):69-76.
    15Kooshavar D, Tabatabaiefar MA, Farrokhi E, et al. Digenic inheritance inautosomal recessive non-syndromic hearing loss cases carrying GJB2heterozygote mutations: assessment of GJB4, GJA1, and GJC3. Int J PediatrOtorhinolaryngol,2013,77(2):189-193.
    16Laird DW. Closing the gap on autosomal dominant connexin-26andconnexin-43mutants linked to human disease. Journal of BiologicalChemistry,2008,283(6):2997-3001.
    17Hilgert N, Smith RJH, Van Camp G. Function and expression pattern ofnonsyndromic deafness genes. Current molecular medicine,2009,9(5):546.
    18Gemel J, Valiunas V, Brink PR, et al. Connexin43and connexin26form gapjunctions, but not heteromeric channels in co-expressing cells. Journal of cellscience,2004,117(12):2469-2480.
    19Elfgang C, Eckert R, Lichtenberg-Frate H, et al. Specific permeability andselective formation of gap junction channels in connexin-transfected HeLacells. J Cell Biol,1995,129(3):805-817.
    20Tomasetto C, Neveu MJ, Daley J, et al. Specificity of gap junctioncommunication among human mammary cells and connexin transfectants inculture. J Cell Biol,1993,122(1):157-167.
    21Lopez-Bigas N, Arbones ML, Estivill X, et al. Expression profiles of theconnexin genes, Gjb1and Gjb3, in the developing mouse cochlea. Mech Dev,2002,119Suppl1:S111-115.
    22Hoang Dinh E, Ahmad S, Chang Q, et al. Diverse deafness mechanisms ofconnexin mutations revealed by studies using in vitro approaches and mousemodels. Brain Res,2009,1277:52-69.
    1Thomas MA, Der Kaloustian VM, Tewfik TL. Connexin mutation testing ofchildren with nonsyndromic, autosomal recessive sensorineural hearing loss. JOtolaryngol,2004,33(3):189-192.
    2Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin26gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J HumGenet,1998,62(4):792-799.
    3于飞,韩东一,戴朴,等.1190例非综合征性耳聋患者GJB2基因突变序列分析.中华医学杂志,2007,87(40):2814-2819.
    4于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制[D].中国人民解放军军医进修学院,2006,博士学位论文:45-122.
    5Lipan M, Ouyang X, Yan D, et al. Clinical comparison of hearing-impairedpatients with DFNB1against heterozygote carriers of connexin26mutations.Laryngoscope,2011,121(4):811-814.
    6肖晓光,严勇,徐丽等. Connexin26基因与常染色体隐性非综合征性耳聋.国外医学遗传学分册,2003,26(2):110-112.
    7Pm K, S A, Askew Jw EA. Human connexin30(GJB6), a candidate gene fornonsyndromic hearing loss: molecular cloning, tissue-specific expression, andassignment to chromosome13q12. Genomics,1999,62:172-176.
    8J L, Wj T-C, Altenhoff P EA. Expression of the gap-junction connexins26and
    30in the rat cochlea. Cell-Tissue-Res,1998,294:415-420.
    9Kelsell DP, Dunlop J, Stevens HP, et al. Connexin26mutations in hereditarynon-syndromic sensorineural deafness. Nature,1997,387(6628):80-83.
    10Scott DA, Kraft ML, Stone EM, et al. Connexin mutations and hearing loss.Nature,1998,391(6662):32.
    11Maeda Y, Fukushima K, Nishizaki K, et al. In vitro and in vivo suppressionof GJB2expression by RNA interference. Hum Mol Genet,2005,14(12):1641-1650.
    12Scott DA, Kraft ML, Carmi R, et al. Identification of mutations in theconnexin26gene that cause autosomal recessive nonsyndromic hearing loss.Hum Mutat,1998,11(5):387-394.
    13Estivill X, Fortina P, Surrey S, et al. Connexin-26mutations in sporadic andinherited sensorineural deafness. Lancet,1998,351(9100):394-398.
    14Zelante L, Gasparini P, Estivill X, et al. Connexin26mutations associatedwith the most common form of non-syndromic neurosensory autosomalrecessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet,1997,6(9):1605-1609.
    15Yu F, Han DY, Dai P, et al.[Mutation of GJB2gene in nonsyndromic hearingimpairment patients: analysis of1190cases]. Zhonghua Yi Xue Za Zhi,2007,87(40):2814-2819.
    16Kiang DT, Jin N, Tu ZJ, et al. Upstream genomic sequence of the humanconnexin26gene. Gene,1997,199(1-2):165-171.
    17Ballana E, Ventayol M, Rabionet R, et al. Connexins and deafness Homepage[EB/OL].[2013-3-31]. http://www.crg.es/deafness.
    18袁永一.中国人重度-极重度耳聋分子流行病学及致病机制研究.中国人民解放军军医进修学院博士学位论文,2007.
    19刘森. PCR聚合酶链反应[M].北京:化学工业出版社.2009:195-219.
    20黄留玉. PCR最新技术原理、方法及应用[M].北京:化学工业出版社.2005:238-245.
    21王廷华, Dubus P. PGR理论与技术[M].第二版.北京:科学出版社.2009:1-35.
    1. Van Camp G, Willems PJ, Smith RJ. Nonsyndromic hearing impairment:unparalleled heterogeneity. Am J Hum Genet,1997,60(4):758-764.
    2. Posukh O, Pallares-Ruiz N, Tadinova V, et al. First molecular screening ofdeafness in the Altai Republic population. BMC Med Genet,2005,6,12DOI:10.1186/1471-2350-6-12.
    3. Alford RL. Nonsyndromic hereditary hearing loss. Adv Otorhinolaryngol,2011,70:37-42.
    4. Kelsell DP, Dunlop J, Stevens HP, et al. Connexin26mutations in hereditarynon-syndromic sensorineural deafness. Nature,1997,387(6628):80-83.
    5. Scott DA, Kraft ML, Stone EM, et al. Connexin mutations and hearing loss.Nature,1998,391(6662):32.
    6. Maeda Y, Fukushima K, Nishizaki K, et al. In vitro and in vivo suppression ofGJB2expression by RNA interference. Hum Mol Genet,2005,14(12):1641-1650.
    7. Thomas MA, Der Kaloustian VM, Tewfik TL. Connexin mutation testing ofchildren with nonsyndromic, autosomal recessive sensorineural hearing loss.J Otolaryngol,2004,33(3):189-192.
    8. Scott DA, Kraft ML, Carmi R, et al. Identification of mutations in theconnexin26gene that cause autosomal recessive nonsyndromic hearing loss.Hum Mutat,1998,11(5):387-394.
    9. Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin26gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am JHum Genet,1998,62(4):792-799.
    10. Estivill X, Fortina P, Surrey S, et al. Connexin-26mutations in sporadic andinherited sensorineural deafness. Lancet,1998,351(9100):394-398.
    11. Zelante L, Gasparini P, Estivill X, et al. Connexin26mutations associatedwith the most common form of non-syndromic neurosensory autosomalrecessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet,1997,6(9):1605-1609.
    12. Yu F, Han DY, Dai P, et al.[Mutation of GJB2gene in nonsyndromichearing impairment patients: analysis of1190cases]. Zhonghua Yi Xue ZaZhi,2007,87(40):2814-2819.
    13.于飞.非综合征型耳聋患者GJB2基因突变筛查和全频谱突变图谱绘制[D].中国人民解放军军医进修学院,2006,博士学位论文:45-122.
    14. Ballana E, Ventayol M, Rabionet R, et al. Connexins and deafnessHomepage [EB/OL].[2012-10-30]. http://www.crg.es/deafness.
    15. Willecke K, Jungbluth S, Dahl E, et al. Six genes of the human connexingene family coding for gap junctional proteins are assigned to four differenthuman chromosomes. Eur J Cell Biol,1990,53(2):275-280.
    16. Hsieh CL, Kumar NM, Gilula NB, et al. Distribution of genes for gapjunction membrane channel proteins on human and mouse chromosomes.Somat Cell Mol Genet,1991,17(2):191-200.
    17. Mignon C, Fromaget C, Mattei MG, et al. Assignment of connexin26(GJB2)and46(GJA3) genes to human chromosome13q11-->q12and mousechromosome14D1-E1by in situ hybridization. Cytogenet Cell Genet,1996,72(2-3):185-186.
    18. Sohl G, Nielsen PA, Eiberger J, et al. Expression profiles of the novel humanconnexin genes hCx30.2, hCx40.1, and hCx62differ from their putativemouse orthologues. Cell Commun Adhes,2003,10(1):27-36.
    19. Lee SW, Tomasetto C, Paul D, et al. Transcriptional downregulation ofgap-junction proteins blocks junctional communication in human mammarytumor cell lines. J Cell Biol,1992,118(5):1213-1221.
    20. Kiang DT, Jin N, Tu ZJ, et al. Upstream genomic sequence of the humanconnexin26gene. Gene,1997,199(1-2):165-171.
    21. Bruzzone R, White TW, Paul DL. Connections with connexins: themolecular basis of direct intercellular signaling. Eur J Biochem,1996,238(1):1-27.
    22. Kelsell DP, Di WL, Houseman MJ. Connexin mutations in skin disease andhearing loss. Am J Hum Genet,2001,68(3):559-568.
    23. Mese G, Richard G, White TW. Gap junctions: basic structure and function. JInvest Dermatol,2007,127(11):2516-2524.
    24. Martinez AD, Acuna R, Figueroa V, et al. Gap-junction channels dysfunctionin deafness and hearing loss. Antioxid Redox Signal,2009,11(2):309-322.
    25. Kumar NM, Gilula NB. The gap junction communication channel. Cell,1996,84(3):381-388.
    26. Yum SW, Zhang J, Valiunas V, et al. Human connexin26and connexin30form functional heteromeric and heterotypic channels. Am J Physiol CellPhysiol,2007,293(3):C1032-1048.
    27. Maeda S, Nakagawa S, Suga M, et al. Structure of the connexin26gapjunction channel at3.5A resolution. Nature,2009,458(7238):597-602.
    28. Bilal S, Rashid H, Khattak JZK, et al. Structure modeling and mutationalanalysis of gap junction beta2(GJB2). African Journal of Biotechnology,2012,11(27):6965-6973.
    29. Kikuchi T, Kimura RS, Paul DL, et al. Gap junction systems in themammalian cochlea. Brain Res Brain Res Rev,2000,32(1):163-166.
    30. Hilgert N, Smith RJ, Van Camp G. Function and expression pattern ofnonsyndromic deafness genes. Curr Mol Med,2009,9(5):546-564.
    31. Forge A, Becker D, Casalotti S, et al. Gap junctions in the inner ear:comparison of distribution patterns in different vertebrates and assessementof connexin composition in mammals. J Comp Neurol,2003,467(2):207-231.
    32. Rabionet R, Zelante L, Lopez-Bigas N, et al. Molecular basis of childhooddeafness resulting from mutations in the GJB2(connexin26) gene. HumGenet,2000,106(1):40-44.
    33. Van Laer L, Cryns K, Smith RJ, et al. Nonsyndromic hearing loss. Ear Hear,2003,24(4):275-288.
    34. Wangemann P. K(+) cycling and its regulation in the cochlea and thevestibular labyrinth. Audiol Neurootol,2002,7(4):199-205.
    35. Zhao HB, Kikuchi T, Ngezahayo A, et al. Gap junctions and cochlearhomeostasis. J Membr Biol,2006,209(2-3):177-186.
    36. Nickel R, Forge A. Gap junctions and connexins in the inner ear: their rolesin homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg,2008,16(5):452-457.
    37. Lefebvre PP, Van De Water TR. Connexins, hearing and deafness: clinicalaspects of mutations in the connexin26gene. Brain Res Brain Res Rev,2000,32(1):159-162.
    38. Jun AI, Mcguirt WT, Hinojosa R, et al. Temporal bone histopathology inconnexin26-related hearing loss. Laryngoscope,2000,110(2Pt1):269-275.
    39. Cheng X, Li L, Brashears S, et al. Connexin26variants and auditoryneuropathy/dys-synchrony among children in schools for the deaf. Am JMed Genet A,2005,139(1):13-18.
    40. D'andrea P, Veronesi V, Bicego M, et al. Hearing loss: frequency andfunctional studies of the most common connexin26alleles. BiochemBiophys Res Commun,2002,296(3):685-691.
    41. Mani RS, Ganapathy A, Jalvi R, et al. Functional consequences of novelconnexin26mutations associated with hereditary hearing loss. Eur J HumGenet,2009,17(4):502-509.
    42. Marziano NK, Casalotti SO, Portelli AE, et al. Mutations in the gene forconnexin26(GJB2) that cause hearing loss have a dominant negative effecton connexin30. Hum Mol Genet,2003,12(8):805-812.
    43. Kabahuma RI, Ouyang X, Du LL, et al. Absence of GJB2gene mutations,the GJB6deletion (GJB6-D13S1830) and four common mitochondrialmutations in nonsyndromic genetic hearing loss in a South Africanpopulation. Int J Pediatr Otorhinolaryngol,2011Mar8.[Epub ahead of print],DOI:10.1016/j.ijporl.2011.01.029.
    44. Padma G, Ramchander PV, Nandur UV, et al. GJB2and GJB6genemutations found in Indian probands with congenital hearing impairment. JGenet,2009,88(3):267-272.
    45. Yum SW, Zhang J, Scherer SS. Dominant connexin26mutants associatedwith human hearing loss have trans-dominant effects on connexin30.Neurobiol Dis,2010,38(2):226-236.
    46. Elias LA, Wang DD, Kriegstein AR. Gap junction adhesion is necessary forradial migration in the neocortex. Nature,2007,448(7156):901-907.
    47. Griffith AJ, Chowdhry AA, Kurima K, et al. Autosomal recessivenonsyndromic neurosensory deafness at DFNB1not associated with thecompound-heterozygous GJB2(connexin26) genotype M34T/167delT. AmJ Hum Genet,2000,67(3):745-749.
    48. Mueller RF, Nehammer A, Middleton A, et al. Congenital non-syndromalsensorineural hearing impairment due to connexin26genemutations--molecular and audiological findings. Int J PediatrOtorhinolaryngol,1999,50(1):3-13.
    49. Matsushiro N, Doi K, Fuse Y, et al. Successful cochlear implantation inprelingual profound deafness resulting from the common233delC mutationof the GJB2gene in the Japanese. Laryngoscope,2002,112(2):255-261.
    50. Abe S, Usami S, Shinkawa H, et al. Prevalent connexin26gene (GJB2)mutations in Japanese. J Med Genet,2000,37(1):41-43.
    51.李庆忠,王秋菊,韩东一,等. GJB2基因突变始祖效应对中国耳聋人群的影响.解放军医学杂志,2005,30(5):394-396.
    52. Shi GZ, Gong LX, Nie WY, et al.[Mutations of GJB2gene in infants withnon-syndromic hearing impairment]. Zhonghua Yi Xue Za Zhi,2005,85(10):689-692.
    53. Chen Y, Tudi M, Sun J, et al. Genetic mutations in non-syndromic deafnesspatients of Uyghur and Han Chinese ethnicities in Xinjiang, China: acomparative study. J Transl Med,2011,9,154DOI:
    10.1186/1479-5876-9-154.
    54. Yuan Y, Yu F, Wang G, et al. Prevalence of the GJB2IVS1+1G>A mutationin Chinese hearing loss patients with monoallelic pathogenic mutation in thecoding region of GJB2. J Transl Med,2010,8,127DOI:
    10.1186/1479-5876-8-127.
    55. Thonnissen E, Rabionet R, Arbones ML, et al. Human connexin26(GJB2)deafness mutations affect the function of gap junction channels at differentlevels of protein expression. Hum Genet,2002,111(2):190-197.
    56. Mese G, Londin E, Mui R, et al. Altered gating properties of functional Cx26mutants associated with recessive non-syndromic hearing loss. Hum Genet,2004,115(3):191-199.
    57. Common JE, Di WL, Davies D, et al. Further evidence for heterozygoteadvantage of GJB2deafness mutations: a link with cell survival. J MedGenet,2004,41(7):573-575.
    58. Meyer CG, Amedofu GK, Brandner JM, et al. Selection for deafness? NatMed,2002,8(12):1332-1333.
    59. Alvarez A, Del Castillo I, Pera A, et al. Uniparental disomy of chromosome13q causing homozygosity for the35delG mutation in the gene encodingconnexin26(GJB2) results in prelingual hearing impairment in twounrelated Spanish patients. J Med Genet,2003,40(8):636-639.
    60. Yan D, Ouyang XM, Angeli SI, et al. Paternal uniparental disomy ofchromosome13causing homozygous35delG mutation of the GJB2geneand hearing loss. Am J Med Genet A,2007,143(4):385-386.
    61. Abe S, Kelley PM, Kimberling WJ, et al. Connexin26gene (GJB2)mutation modulates the severity of hearing loss associated with the1555A-->G mitochondrial mutation. Am J Med Genet,2001,103(4):334-338.
    62. Ross SA, Novak Z, Kumbla RA, et al. GJB2and GJB6mutations in childrenwith congenital cytomegalovirus infection. Pediatr Res,2007,61(6):687-691.
    63. White TW, Deans MR, Kelsell DP, et al. Connexin mutations in deafness.Nature,1998,394(6694):630-631.
    64. Iossa S, Chinetti V, Corvino V, et al. R75Q dominant mutation in GJB2genesilenced by the in Cis recessive mutation c.35delG. Am J Med Genet A,2010,152A(10):2658-2660.
    65. Su CC, Li SY, Su MC, et al. Mutation R184Q of connexin26in hearing losspatients has a dominant-negative effect on connexin26and connexin30.Eur J Hum Genet,2010,18(9):1061-1064.
    66. Choi SY, Lee KY, Kim HJ, et al. Functional evaluation of GJB2variants innonsyndromic hearing loss. Mol Med,2011,17(5-6):550-556.
    67. Wilcox SA, Saunders K, Osborn AH, et al. High frequency hearing losscorrelated with mutations in the GJB2gene. Hum Genet,2000,106(4):399-405.
    68. Lipan M, Ouyang X, Yan D, et al. Clinical comparison of hearing-impairedpatients with DFNB1against heterozygote carriers of connexin26mutations.Laryngoscope,2011,121(4):811-814.
    69. Richard G, Rouan F, Willoughby CE, et al. Missense mutations in GJB2encoding connexin-26cause the ectodermal dysplasiakeratitis-ichthyosis-deafness syndrome. Am J Hum Genet,2002,70(5):1341-1348.
    70. Alvarez A, Del Castillo I, Pera A, et al. De novo mutation in the geneencoding connexin-26(GJB2) in a sporadic case ofkeratitis-ichthyosis-deafness (KID) syndrome. Am J Med Genet A,2003,117A(1):89-91.
    71. Van Geel M, Van Steensel MA, Kuster W, et al. HID and KID syndromes areassociated with the same connexin26mutation. Br J Dermatol,2002,146(6):938-942.
    72. De Zwart-Storm EA, Rosa RF, Martin PE, et al. Molecular analysis ofconnexin26asparagine14mutations associated with syndromic skinphenotypes. Exp Dermatol,2011,20(5):408-412.
    73. Maestrini E, Korge BP, Ocana-Sierra J, et al. A missense mutation inconnexin26, D66H, causes mutilating keratoderma with sensorineuraldeafness (Vohwinkel's syndrome) in three unrelated families. Hum MolGenet,1999,8(7):1237-1243.
    74. Birkenhager R, Lublinghoff N, Prera E, et al. Autosomal dominantprelingual hearing loss with palmoplantar keratoderma syndrome:Variability in clinical expression from mutations of R75W and R75Q in theGJB2gene. Am J Med Genet A,2010,152A(7):1798-1802.
    75. Heathcote K, Syrris P, Carter ND, et al. A connexin26mutation causes asyndrome of sensorineural hearing loss and palmoplantar hyperkeratosis(MIM148350). J Med Genet,2000,37(1):50-51.
    76. Richard G, Brown N, Ishida-Yamamoto A, et al. Expanding the phenotypicspectrum of Cx26disorders: Bart-Pumphrey syndrome is caused by a novelmissense mutation in GJB2. J Invest Dermatol,2004,123(5):856-863.
    77. De Zwart-Storm EA, Hamm H, Stoevesandt J, et al. A novel missensemutation in GJB2disturbs gap junction protein transport and causes focalpalmoplantar keratoderma with deafness. J Med Genet,2008,45(3):161-166.
    78. Verbov J. Palmoplantar keratoderma, deafness and atopy. Br J Dermatol,1987,116(6):881-882.
    79. Azaiez H, Chamberlin GP, Fischer SM, et al. GJB2: the spectrum ofdeafness-causing allele variants and their phenotype. Hum Mutat,2004,24(4):305-311.
    80. Cryns K, Orzan E, Murgia A, et al. A genotype-phenotype correlation forGJB2(connexin26) deafness. J Med Genet,2004,41(3):147-154.
    81. Snoeckx RL, Huygen PL, Feldmann D, et al. GJB2mutations and degree ofhearing loss: a multicenter study. Am J Hum Genet,2005,77(6):945-957.
    82. Oguchi T, Ohtsuka A, Hashimoto S, et al. Clinical features of patients withGJB2(connexin26) mutations: severity of hearing loss is correlated withgenotypes and protein expression patterns. J Hum Genet,2005,50(2):76-83.
    83. Green GE, Scott DA, Mcdonald JM, et al. Performance of cochlear implantrecipients with GJB2-related deafness. Am J Med Genet,2002,109(3):167-170.
    84.王国建,袁永一,李荣,等.不同听力学表型人群中常见耳聋基因突变检出率的分析.临床耳鼻咽喉头颈外科杂志,2011,25(10):445-448.
    85. Cohen-Salmon M, Ott T, Michel V, et al. Targeted ablation of connexin26inthe inner ear epithelial gap junction network causes hearing impairment andcell death. Curr Biol,2002,12(13):1106-1111.
    86. Djalilian AR, Mcgaughey D, Patel S, et al. Connexin26regulates epidermalbarrier and wound remodeling and promotes psoriasiform response. J ClinInvest,2006,116(5):1243-1253.
    87. Schutz M, Auth T, Gehrt A, et al. The connexin26S17F mouse mutantrepresents a model for the human hereditary keratitis-ichthyosis-deafnesssyndrome. Hum Mol Genet,2011,20(1):28-39.
    88. Mese G, Sellitto C, Li L, et al. The Cx26-G45E mutation displays increasedhemichannel activity in a mouse model of the lethal form ofkeratitis-ichthyosis-deafness syndrome. Mol Biol Cell,2011,22(24):4776-4786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700