肺段间平面的解剖学实质与CT表现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     肺段间平面是肺段的边界,它是一层插入相邻肺段间的组织间隔,虽然有学者提出邻接肺段之间有支气管交通支,但是普遍和经典的观点仍认为肺段间平面在形态和功能上分隔了相邻的肺段。目前对于该结构的解剖学及影像学研究并不充分,上世纪50年代起至今,对该结构的研究主要集中在肺表面及断面的表现。通过观察,发现它在肺表面呈锯齿状,而在断面上有肺段间静脉经过。虽然在2000年后出现了关于虚拟人的报道,但由于虚拟人数据是通过对整尸进行铣切,肺段没有灌注,所以目前还没有针对肺段间平面的三维重建报道,故而其三维形态也无从而知。另外,从组织学的角度出发,肺内其他结构研究得较为彻底,但是对肺段间平面的详细报道目前未见,只在部分文献中登载了其低倍光镜下的组织学表现。影像学关于肺段间平面的报道也较少,国外学者在对肺韧带的影像学研究中无意发现该结构伸入下叶位于左下肺静脉下方的部分形成介于内侧底段和后底段之间的段间平面,并研究了该段间平面的影像学表现。但该文献并未涉及其他位置的段间平面,也未阐明段间平面CT表现不恒定的原因。
     随着胸外科技术的快速发展,以肺段切除术为代表的一系列新手术方式运用于临床,其优越性主要体现在切除范围小、有利于保存术后肺功能、对患者创伤小、利于患者术后恢复等。胸外科医师投入大量精力发展了一系列术中定位肺段间平面的方法,临床对肺段间平面的研究在步步深入,而目前关于肺段间平面的解剖学及影像学研究已不能满足临床的发展。
     所以,本研究紧扣临床关注的问题,深入研究了肺段间平面的影像学表现及其解剖学实质。关于其影像学表现的研究可以指导医师术前定位段间平面,而关于其本质的研究可以帮助我们进一步了解该结构的作用,解释其影像学表现的原因,并设计新的使其显影的影像学方法。
     材料与方法:
     1.肺段间平面的解剖学实质研究。
     (1)肺段间平面的HE染色:取新鲜段间平面组织块经过常规脱水、石蜡包埋、组织切片和HE染色,光镜下下观察肺段间平面的组织结构。
     (2)透射电镜:常规组织前固定和后固定后行超薄切片,透射电镜观察。
     (3)扫描电镜:常规组织固定、叔丁醇梯度脱水干燥、喷金,行扫描电镜观察。
     (4) Micro-CT扫描,比较段间平面的厚度。球管电压49kV,电流100μA,空间分辨率8.9μm。原始图像大小4000×2672像素。原始图像经NRecon重建后获得二维平面图像。
     2.观察MSCT上肺段间平面的直接表现。从1075例临床胸部MSCT图像中,筛选出肺部没有明显异常的104份图像。扫描硬件参数:64排多层螺旋CT(GE,USA),球管电压,120kV;电流110mA;图像分辨率512×512;扫描层厚为0.625毫米。在相同的参数设置条件下(窗宽:1200Hu;窗位:-700Hu),用eFilm软件打开MSCT图像,观察段间平面直接的影像学表现。确定肺段间平面的标准(1、必须是线状高密度影;2、必须连接至肺段间静脉;3、必须在横矢冠三种平面都可见)。
     3.研究导致肺段间平面在MSCT上显示的直接原因。
     (1)首先是不同位置肺段间平面的厚度差异分析。我们根据在MSCT图像中是否可视为依据,将肺段间平面分为“可视”段间平面与“不可视”段间平面。前者以左肺S7-S10为代表,后者以S6-S7为代表。我们在新鲜尸体肺的以上位置分别切取10例和20例组织块,在染色干燥后行Micro-CT扫描,并测量两种肺段间平面的厚度。用independent-t检验来比较可视与不可视肺段间平面的厚度差异。
     (2)在明确厚度的差别后,我们又对胎儿肿行3.0T和7.0T磁共振扫描,目的是确定不同种类的肺段间平面的厚度差是否由先天因素造成。7.0T磁共振扫描仪(70/16pharma Scan, Bruker BiospinmbH, Germany),参数如下T1-weighted序列TR:384.4ms, TE:15.8ms, matrix size:512×512, NEX:1,OV:6×6cm, and the acquisition time:14m32s. T2-weighted:slice thickness:0.5mm, slice interval:0.5mm, and the parameters:R:17000.0ms, TE:50.0ms,matrix size:256×256,扫描次数4, FOV:6cm×6cm, and the acquisition time:28m15s.扫描层厚8mm,层间距0.8mm。3.0T磁共振扫描仪(General Electric, Milwaukee, USA)参数如下:T1-FLAIR序列:TR:2,580.0ms, TE:23.4ms, matrix size:512x512,扫描次数1; and T2-weighted序列:TR4600.0ms,TE111.6ms, matrix size:512×512, and扫描次数1,层厚2mm;层间距1.5mm。
     (3)确定年龄因素与肺段间平面的显示之间的关联。将104例MSCT图像根据年龄分为年轻组(平均29.6岁,年龄跨度23-47岁)和年老组(平均年龄68.1岁,年龄跨度62-81岁)。用卡方检验来比较两组人群肺段间平面出现率的差别,用直线回归法来确定每个MSCT图像中出现肺段间平面个数与年龄之间的关系。
     结果:
     1.肺段间平面的解剖学实质肺段间平面是由三层结构构成,周围为相邻两个肺段的肺泡壁,中间填充大量的胶原纤维。肺泡壁上皮细胞通过紧密连接相连,可防止肺泡内物质进出;胶原纤维的方向与肺段间平面的走行方向一致,而且胶原纤维就发自肺泡壁,胶原纤维间见成纤维细胞。
     2.肺段间平面的影像学表现
     (1)根据该标准我们发现,在MSCT中右肺的S1-S3,S4-S5和S7-S10,它们的出现率分别为71.2%,54.8%和70.2%:左肺的S1+2-S3,S4-S5,S7-S8and S7-S10,它们的出现率分别为39.4%,64.4%,18.3%和89.4%。肺段间平面的影像学表现可分为三类,第一类最多见,表现为高密度的线状影,连接段间静脉和肺的纵隔面;第二种情况少见,高密度线状影出现在肺中部,不连接肺的纵隔面;第三种情况,这种线状高密度影出现在肺底,右肺出现率为5.8%,左肺出现率为34.6%。通过连续层面追踪观察以及三维重建图像的证明,我们发现S7-S8之间的段间平面往往从两段的上部延续到肺底。该段间平面从左下肺静脉的下方出现,一直持续出现到肺底平面。
     (2)厚度是导致肺段间平面可视的根本原因。MSCT图像中可视段间平面的平均厚度为681.3±75.3μm,不可视段间平面的厚度为221.7±54.1μm,厚度差有统计学差异。
     (3)段间静脉的变异与段间平面的可视性关系密切,变异的主要类型是段间静脉的消失与位置过于靠近肺的纵隔面。
     (4)年龄因素与肺段间平面的可视性无关。
     (5)结果在7.0T-MRI图像中,左肺S7-S10的出现率类似于成年人MSCT表现,而右肺底S7-S8亦见肺段间平面,所以,先天因素是造成该平面厚度差的重要原因,但后天的发育、呼吸运动和体位因素也无法排除。同时,可证明在段间平面内有组织液的存在。该组织液与段间平面的厚度之间的关系不明,是组织液量增加使得段间平面变厚,还是本来段间平面较厚从而容纳了更多的组织液。
     结论:
     肺段间平面由三层结构构成,周围层为相邻肺段的肺泡壁,中间层为胶原纤维;在特定的位置肺段间平面厚度较厚,在MSCT图像表现为高密度线状影,厚度较薄的位置在MSCT无法显示。
Objectives:
     (1) To describe imaging appearances of pulmonary intersegmental planes (IPs) on thoracic computed tomographic (CT) scans and analyze the reasons leading to the visualization of IPs within normal lungs in terms of aging and anatomy.
     (2) To evaluate the substance of pulmonary intersegmental plane and uncover the cause accounting for the partial visualization of intetrsegmental plane on thoracic CT.
     Materials and Methods:
     (1) A retrospective review was undertaken of104multidetector thoracic CT scans of two groups (older group, over65years; younger group, under55years). The number, location and appearance rate of IPs were assessed. Group comparisons were made, and linear regression analysis was used to assess relationships between age and visualization of IPs.30lung samples (10×10×10mm3) from autopsy were scanned by micro-CT. The thicknesses of IPs were measured. The independent-t test was made to assess the significant difference of the thickness between visible and invisible IPs.5fetal specimens of17-21weeks gestational age (GA) were scanned by7.0T Magnatic Resonance (MR) to determine the congenital difference of thickness of IPs.
     (2) CT images from a fresh cadaver were reviewed to identify the visible intersegmental planes. Totally,32lung samples were excised on injected lungs.20of them (visible intersegmental plane=4; invisible intersegmental plane=16) were used for micro-CT scanning in order to acquire microanatomy of visible and invisible intersegmental plane. Another6,4and2specimens were for macroscopic observation, histology and electron microscopy individually. Micro-CT images were analyzed and measured by CTAn software. The three-dimensional visualization model was obtained with3Dmed software.
     Results:
     (1) Within the right lung, the visible IPs were seen at S1-S3, S4-S5and S7-S10, and their appearance rates were71.2%,54.8%, and70.2%individually. Within the left lung, they were visible at S1+2-S3, S4-S5, S7-S8and S7-S10, their appearance rates were39.4%,64.4%,18.3%and89.4%individually. Appearance rates of visible IPs on thoracic CT were of no significant differences between younger group and older group. The thicknesses of visible and invisible IPs were681.3±75.3μm and221.7±54.1μm individually. The thicknesses of visible IPs were significantly thicker than invisible IPs (P<0.05). Visible IPs were also seen on fetal lung7.0T MRIs.
     (2) Varied methods show that the intersegmental plane is composed of three layers. Alveolar wall and collagenous fibers serve as the coat layers and medial layer individually. Collagenous fibers constitute the main part of the plane and feature the intersegmental plane as a layer of loosen and low-density septum. The thickness of visible intersegmental plane is significantly larger than that of invisible different (P<0.05). The largest thickness of invisible and visible intersegmental plane is individually233.7±46.2μm and742.4+108.9μm. The smallest thickness of invisible and visible intersegmental plane is individually150.5±37.6μm and464.6±180.0μm.
     Conclusion:The thickness of IP and variation of intersegmental veins were closely related the visualization of IPs on thoracic CT scans. Aging was excluded as the possible reason. Micro-CT images show the microarchitecture of intersegmental plane clearly. The visible intersegmental plane is featured the thicker and looser medial layer, which contribute to the visualization of intersegmental plane on thoracic CT.
引文
1.Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 NO non-small cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg.1995;60:615-23.
    2.Yoshikawa K, Tsubota N, Kodama K, Ayabe H, Taki T, Mori T. Prospective study of extended segmentectomy for small lung tumors:the final report. Ann Thorac Surg. 2002;73:1055-9.
    3. Okada M, Koike T, Higashiyama M, Yamato Y, Kodama K, Tsubota N. Radical sublobar resection for small-sized non-small cell lung cancer:a multicenter study. J Thorac Cardiovasc Surg.2006; 132:769-75.
    4. Koike T, Yamato Y, Yoshiya K, Shimoyama T, Suzuki R. Intentional limited pulmonary resection for peripheral T1NOMO small-sized lung cancer. J Thorac Cardiovasc Surg.2003; 125:924-8.
    5. Harada H, Okada M, Sakamoto T, Matsuoka H, Tsubota N. Functional advantage after radical segmentectomy versus lobectomy for lung cancer. Ann Thorac Surg. 2005;80:2041-5.
    6. Sienel W, Dango S, Kirschbaum A, Cucuruz B, Horth W, Stremmel C, et al. Sublobar resections in stage IA non-small cell lung cancer:segmentectomies result in significantly better cancer-related survival than wedge resections. Eur J Cardiothorac Surg.2008;33:728-34.
    7. Yoshimoto K, Nomori H, Mori T, Kobayashi H, Ohba Y, Shibata H, et al. Quantification the impact of segmentectomy on pulmonary function by perfusion SPECT/CT. J Thorac Cardiovasc Surg.2009;137:1200-5.
    8. Yoshimoto K, Nomori H, Mori T, Kobayashi H, Ohba Y, Shibata H, et al. Prediction of pulmonary function after lung lobectomy by subsegments counting, computed tomography, single photon emission computed tomography and computed tomography:a comparative study. Eur J Cardiothorac Surg. 2009;35:408-13.
    9. Nomori H, Ikeda K, Mori T, Kobayashi H, Iwatani K, Kawanaka K, et al. Sentinel node navigation segmentectomy for c-TlNOMO non-small cell lung cancer. J Thorac Cardiovasc Surg.2007;133:780-5.
    10. Nomori H, Ohba Y, Shibata H, Shiraishi K, Mori T, Shiraishi S. Required area of lymph node sampling during segmentectomy for clinical stage IA non-small cell lung cancer. J Thorac Cardiovasc Surg.2010;139:38-42.
    11. Fukui T, Mitsudomi T. Small peripheral lung adenocarcinoma clinicopathological features and surgical treatment. Surg Today.2010;40:191-8.
    12.Leshnower B, Miller D, Fernandez F, et al:Video-assisted thoracoscopic surgery segmentectomy:A safe and effective procedure. Ann Thorac Surg 2010;89:1571-1576.
    13. Oizumi H, Kanauchi N, Kato H, et al:Total thoracoscopic pulmonary segmentectomy. Eur J Cardiothor Surg 2009;36:374-377.
    14. Schuchert M, Pettiford B, Pennathur A, et al:Anatomic segmentectomy for stage I non-small-cell lung cancer:Comparison of video-assisted thoracic surgery versus open approach. J Thorac Cardiovasc Surg 2009;138:1318-1325.
    15. Yamada S, Suga A, Inoue Y, et al:Use of multidetector rox angiography for the arrangement of video-asisted modified segmental resection. Eur J Cardiothor Surg 2009;36:727-730.
    16.Watanabe A, Ohori S, Nakashima S, et al:Feasability of video-assisted thoracoscopic surgery segmentectomy for selected peripheral lung carcinomas. Eur J Cardiothor Surg 2009;35:775-780.
    17.Gossot D, Ramos R, Brian E, Raynaud C, Girard P, Strauss C.A totally thoracoscopic approach for pulmonary anatomic segmentectomies. Interact Cardiovasc Thorac Surg 2011;12(4):529-32.
    18.Pardolesi A, Park B, Petrella F, Borri A, Gasparri R, Veronesi G.Robotic anatomic segmentectomy of the lung:technical aspects and initial results.Ann Thorac Surg 2012;94(3):929-934.
    19.Watanabe S, Arai K, Watanabe T. Koda W, Urayama H. Use of threedimensional computed tomographic angiography of pulmonary vessels for lung resections. Ann Thorac Surg 2003;75:388-92.
    20. Oizumi H, Endoh M, Takeda S, Suzuki J, Fukaya K, Sadahiro M. Anatomical lung segmentectomy simulated by computed tomographic angiography. Ann Thorac Surg 2010;90:1382-3.
    21. Shimizu K, Nakano T, Kamiyoshihara M, Takeyoshi I. Segmentectomy guided by three-dimensional computed tomography angiography and bronchography. Interact Cardiovasc Thorac Surg 2012; 15(2):194-6.
    22. Tsubota N. An improved method for distinguishing the intersegmental plane of the lung.Surg Today.2000;30(10):963-4.
    23.Matsuoka H, Nishio W, Sakamoto T, Harada H, Yoshimura M, Tsubota N Selective segmental jet injection to distinguish the intersegmental plane using jet ventilation.Jpn J Thorac Cardiovasc Surg.2003 Aug;51(8):400-1.
    24. Tsubota N. An improved method for distinguishing the intersegmental plane of the lung. Surg Today 2000;30(10):963-964.
    25. Misaki N, Chang SS, Gotoh M, Yamamoto Y, Satoh K, Yokomise H. A novel method for determining adjacent lung segments with infrared thoracoscopy. J Thorac Cardiovasc Surg 2009; 138(3):613-618.
    26. Noriyuki M, Sung SC, Hitoshi I, et al. New clinically applicable method for visualizing adjacent lung segments using an infrared thoracoscopy system. J Thorac Cardiovasc Surg 2010; 140(4):752-756.
    27.Sugimoto S, Oto T, Miyoshi K, Miyoshi S. A novel technique for identifi cation of the lung intersegmental plane using dye injection into the segmental pulmonary artery. J Thorac Cardiovasc Surg 2011; 141 (5):1325-1327
    28.Yoshimoto K, Nomori H, Mori T, et al. Comparison of postoperative pulmonary function and air leakage between pleural closure vs. mesh-cover for intersegmental plane in segmentectomy. J Cardiothorac Surg.2011; 25;6:61.
    29. Asakura K, Izumi Y, Kohno M, Ohtsuka T, Okui M, Hashimoto K, Nakayama T, Nomori H. Effect of cutting technique at the intersegmental plane during segmentectomy on expansion of the preserved segment:comparison between staplers and scissors in ex vivo pig lung.Eur J Cardiothorac Surg.2011 Jul; 40(1):e34-8.
    30. Oizumi H, Endoh M, Takeda S, Suzuki J, Fukaya K, Sadahiro M. Anatomical lung segmentectomy simulated by computed tomographic angiography. Ann Thorac Surg.2010 Oct;90(4):1382-3.
    31.Iwano S, Usami N, et al. Segmentectomy simulation using a virtual three dimensional safety margin. Ann Thorac Surg.2012; 93(2):e37-39.
    32. Welter S, Stocker C, et al. Lung segment geometry study:simulation of largest possible tumours that fit into bronchopulmonary segments. Thorac Cardiovasc Surg.2012; 60(2):93-100.
    33.王佑怀,李兴富,李勇,徐锐,汤桂成.中国临床解剖学杂志2003,21(2)152-155.
    34. Chicco P, Magnussen JS, et al. Determining the cross-sectional segmental anatomy of cadaveric human lungs. Clin Anat 2001; 14(1):10-14.
    35. Berkmen YM, Drossman SR, Marboe CC. Intersegmental (intersublobar) septum of the lower lobe in relation to the pulmonary ligament:anatomic, histologic, and CT correlations. Radiology 1992; 185(2):389-393.
    36. van Rikxoort EM, de Hoop B, van de Vorst S, et al. Automatic Segmentation of Pulmonary Segments From Volumetric Chest CT Scans. IEEE Trans Mmed Imaging 2009; 28:6-21.
    37.江家元.肺的临床解剖学.上海:科学技术出版社,1988.112-114
    38. Kang EY, Grenier P, Laurent F, Muller NL. Interlobular septal thickening:patterns at high-resolution computed tomography. J Thorac Imaging 1996; 11(4):260-264.
    39. Andreu J, Hidalgo A, Pallisa E, et al. Septal Thickening:HRCT Findings and Differential Diagnosis. Curr Probl Diagn Radiol 2004; 33(5):226-237.
    40. Markarian B, Dailey ET. Preparation of inflated lung specimens. In:Groskin SA, ed. Heitzman's the lung:radiologic-pathologic correlations.3rd ed. St. Louis, Mo:Mosby,1993:4-12
    41. Rydberg J, Buckwalter KA, Caldemeyer KS, et al. Multisection CT:scanning techniques and clinical applications. RadioGraphics 2000; 20 (6):1787-1806.
    42. Kozuka T, Johkoh T, Hamada S, et al. Detection of pulmonary metastases with multi-detector row CT scans of 5-mm nominal section thickness:autopsy lung study. Radiology 2003; 226 (1):231-234.
    43. Beigelman-Aubry C, Hill C, Guibal A, Savatovsky J, Grenier PA. Multi-detector row CT and postprocessing techniques in the assessment of diffuse lung disease. RadioGraphics 2005; 25 (6):1639-1652.
    44. Yanagawa M, Tomiyama N, Honda O, Kikuyama A, Sumikawa H, Inoue A, Tobino K, Koyama M, Kudo M. Multidetector CT of the lung: image quality with garnet-based detectors. Radiology 2010 Jun; 255(3):944-54.
    45. Janssens JP, Pache JC, Nicod LP. Physiological changes in respiratory function associated with ageing. Eur Respir J 1999; 13(1):197-205.
    46. Calabresi C, Arosio B, Galimberti L, et al. Natural aging, expression of fibrosis-related genes and collagen deposition in rat lung. Exp Gerontol 2007; 42(10):1003-1011.
    47. Mayer E, Blazsik C, Rappaport I. Emphysema and the lungs of the aged:a clinical Study-preliminary report. Dis Chest 1958; 34(3):247-256.
    48. Copley SJ, Wells AU, Hawtin KE, et al. Lung morphology in the elderly: comparative CT study of subjects over 75 years old versus those under 55 years old. Radiology 2009; 251(2):566-573.
    49. Zhai LD, Liu J, Li YSh, et al. Denonvilliers'Fascia in Women and Its Relationship with the Fascia Propria of the RectumExamined by Successive Slices of Celloidin-Embedded Pelvic Viscera. Disease of the Colon & Rectum 2009; 52(9):1564-1571.
    50. Zuo Yi-zhi. Liu Chao, Liu Shu-wei. Pulmonary intersegmental planes:Imaging appearance and possible reasons leading to their visualization. Radiology doi:10.1148/radiol.12121114. Epub 2013 January 7.
    51. Nakanishi K. Takeda Y, et al. Involvement of endothelial apoptosis underlying COPD-like phenotype in adiponectin-null mice:Implications for therapy. Am J Respir Crit Care Med.2011; 183(9):1164-1175.
    52. Wu TJ, Shiao JS, et al. A novel Doppler spectral index for differentiating benign from malignant lung tumors. J Clin Ultrasound.2011;39(5):256-62.
    53. Bouhemad B, Zhang M, et al.Clinical review:Bedside lung ultrasound in critical care practice. Crit Care.2007;11(1):205.
    54.Cutajar M, Clayden JD, et al. Test-retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects. Eur J Radiol.2011;80(3):e263-8.
    55. Tagliafico A, Rescinito G, et al. Diffusion tensor magnetic resonance imaging of the normal breast:reproducibility of DTI-derived fractional anisotropy and apparentdiffusion coefficient at 3.0 T. Radiol Med 2012;117(6):992-1003.
    56. Zhang Z, Chan Q, et al. Age-related diffusion patterns in human lumbar intervertebral discs:a pilot study in asymptomatic subjects. Magn Reson Imaging. 2012;30(2):181-8.
    57. Gurses B, Tasdelen N, et al. Diagnostic utility of DTI in prostate cancer. Eur J Radiol.2011;79(2):172-176.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700