青枯劳尔氏菌PopW蛋白生物学特性及其抗病功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌性青枯病是一种由青枯劳尔氏菌(Ralstonia solaanacearum, E F Smith)引起的毁灭性土传病害,发病植物茎叶萎蔫下垂直至全部枯死,是世界上危害最大、分布最广、造成损失最严重的植物病害之一。青枯劳尔氏菌R. solaanacearum可侵染200多种植物,其中包括生产中重要的作物,如番茄、马铃薯、烟草、花生和香蕉。青枯病菌是一个复杂的群体,有明显的生理分化,不同地区和不同寄主来源的菌株,在寄主范围、致病力、生化型、血清型等细菌学特性上差异很大,因此增加了对此病害防治的难度。近几年来许多科研工作者从不同角度、用不同方法对青枯劳尔氏菌进行了多方面的研究。
     Harpin蛋白是由革兰氏阴性植物病原细菌Hrp (hrp, hypersensitive response and pathogenity)基因簇中hrp基因编码的、性质和功能相似的一类蛋白质,富含甘氨酸,缺少半胱氨酸,对蛋白酶敏感,对热稳定,大多对寄主植物具有毒性,导致寄主发病,能在非寄主植物上引起过敏反应。
     本研究以青枯劳尔氏菌(Ralstonia solanacearum) ZJ3721的基因组DNA为模板,成功克隆了全长为1143bp的popW基因以及popW(1-159)和popW(160-366)两个基因片段,并把这三个基因连接到表达载体pET30a(+)进行了原核表达。在1mM异丙基硫代-β-D-半乳糖昔的诱导下(IPTG),这三个基因都能在Escherichia coli BL21(DE3)中成功表达。通过对PopW表达条件的优化发现IPTG的最佳浓度为0.01 mM。运用镍柱纯化获得了高纯度的PopW融合蛋白。另外运用同源重组的方法我们还构建了青枯劳尔氏菌popW基因的插入突变体ZJ3722。
     我们从青枯劳尔氏菌ZJ3721中鉴定了一个39.79 KDa的新胞外蛋白PopW,它同以前报道的harpin类物质具有相同的性质,酸性,富含甘氨酸和丝氨酸,缺少半胱氨酸并且是一种耐热蛋白。能在非寄主植物烟草上引起过敏性反应。在一级结构上,PopW是由两个结构域组成,包括N-末端159个氨基酸的harpin结构和C-末端207个氨基酸组成的果胶酶的结构域,他们之间由富含甘氨酸和丝氨酸的短肽连接起来。PopW的harpin结构域也能引起烟草发生HR反应。虽然PopW具有果胶酶结构域,但并没有果胶酶活性。另外,我们从其它十九个不同遗传多样性的青枯劳尔氏菌中都扩增到了popW基因,这说明popW是广泛存在于青枯劳尔氏菌的。把popW和绿色荧光蛋白(GFP)构成融合基因,连接至植物转基因载体pBI121,在土壤杆菌的介导下转入洋葱表皮细胞。荧光显微镜观察结果表明,PopW蛋白是定位在植物的细胞壁上。因此,我们推测PopW在青枯劳尔氏菌与寄主互作的过程中起帮助定殖的作用。通过popW的缺失突变体菌株的接种实验发现popW对非寄主植物烟草的HR反应和寄主植物的致病过程中不起决定作用。综上所述,PopW (39.79 KDa)是青枯劳尔氏菌中广泛存在的一个定位于寄主细胞壁上,受hrpB基因的调控,通过三型泌出系统分泌到胞外的且不影响菌株对寄主致病性的新harpin。
     对青枯劳尔氏菌(Ralstonia solanacearum) ZJ 3721中表达的PopW蛋白诱发烟草系统获得抗性进行了研究。以25 gg/mL PopW溶液处理三生烟草叶片24 h后,在处理叶片及其上、下各2片叶片接种TMV,结果显示处理叶及其上、下各2片叶片上的病斑数显著少于只接种水和TMV的对照叶片。同时PopW处理的烟草叶片中还伴随着H202的迸发,在处理后24h时,累积量达到了最大为1.972μM/gFW。另外在此过程中,烟草中还有防御酶系PAL,POD和PPO的时序变化,PAL酶活在12h达到了峰值1215.33U/g,POD和PPO在24h和10h到达了最大值,分别是1110.5U/g和863.67U/g。PopW还能诱导野生型烟草和拟南芥中PR-1基因的表达,而二者转nahG基因的突变体植株却没有该基因的表达。所以PopW能够诱导植物产生系统抗性,并且该抗性属于水杨酸介导的SAR。
     茄子黄萎病是一种严重的土传维管束病害,本研究发现PopW蛋白能够诱导茄子产生抗性从而防止黄萎病菌的侵染。同时我们从353株茄子根围细菌中筛选到一株产几丁质酶的生防细菌CH2。根据16S rRNA基因序列和生理生化实验确定其为蜡状芽孢杆菌。它能在以几丁质为唯一碳源的培养基上生长,经SDS-PAGE和特异性底物验证确定其可以向胞外为分泌15KDa的几丁质酶。通过平板实验我们发现,该菌的悬浮液、上清液及其产生的浓度为0.005%几丁质酶液可以有效的抑制黄萎病菌分生孢子的萌发。该菌产生几丁质酶的最适pH值是7.1,最佳温度为40℃。在温室试验中,CH2菌悬液的防效可达69.69%,25μg/mL的PopW蛋白溶液,CH2上清液及0.01%的几丁质酶液的防效分别为57.46%,54.04%和53.13%。所以CH2菌株具有很好的防治茄子黄萎病潜力。
Ralstonia solanacearum is a major soil-borne plant pathogen in subtropical and tropical areas that naturally infects roots and multiplies in xylem vessels which has an unusually wide host range since plant species susceptible to the pathogen have been observed to occur in more than 200 plant species belonging to approximately 50 botanical families. Huge economic losses are caused annually by this pathogen in China and many other countries R. solanacearum is a very complex community with dishtingushed physiological characterization. It is difficult to control because strains from different regions and host have significant difference in pathogenicty, biovar and serology. Many scientists have done some researchs about R. solanacearum using many methods from different aspects.
     Harpins are extracellular proteins encoded by Gram-negative bacterial hrp (hypersensitive response and pathogenity) gene cluster. They are a major class of proteins that travel the pathway, elicit the HR (hypersensitive reaction) when infiltrated into the apoplast of leaf tissue. They are heat stable, rich in Gly and/or Ser, lack Cys, and differ in their primary sequences.
     popW(1143 bp in length) and its dervivates,popW(1-159)and popW(160-366) were cloned from Ralstonia solanacearum ZJ3721. The three genes were liagased to expression vector pET30a (+) and expressed successfully in Escherichia coli BL21 (DE3) induced by 1mM IPTG. The optimum concentration of IPTG for the expression of PopW is 0.01 mM. The fused PopW protein was purified from supernatant of its host by Ni column. Finally, the popW-deficient mutant of Ralstonia solanacearum was construced by homolougous recombination.
     This study identified a new extracellular bacterial protein, PopW, from R. solanacearum ZJ3721. PopW, like other known harpins, is acidic, rich in glycine and serine, and lacks cysteine. When infiltrated into plants, PopW induced rapid tissue collapse on tobacco (non-host). This hypersensitive reaction (HR)-eliciting activity of PopW was heat stable and protease sensitive. PopW of R. solanacearum consists of two domains connected by a Pro-and Ser-rich sequence. The N-terminal domain (amino acids 1 to 159) alone was able to elicit the HR, while its C-terminal region (amino acids 160 to 366) is homologous to pectate lyases (PLs). Neither this C-terminal fragment nor the full-length PopW showed PL activity. PopW was widely distributed in other R. solanacearum strains from different genetic diversity by PCR amplification identification. The subcellular location analysis via transfering popW and GFP fused gene to onion epimdermal meideated by Agrobacterium tumefaciens revealed that PopW targeted plant cell wall. PopW did not affect the virulence of R. solanacearum because popW-deficient mutants retained the wild-type ability to elicit HR on non-host plants and to cause disease on tomato host plants. Thus, we concluded that PopW is a cell-wall associated,hrpB-dependent,39.79 kilodaltons new harpin which is widely distributed in different R. solanacearum strains and has no influence on the pathogenicity of this pathogen.
     We have investigated the tobacco systemic acquire resistance induced by PopW protein from R. solanacearum. Nicotiana tobacum cv. Sam sun NN tobacco leaves were treated by 25μg/mL PopW followed by the infection of TMV onto these leaves, and the upper and lower two leaves of each one. The Lesion number infected by TMV is significantly less than blank control treated with sterile water and TMV. H2O2 bursted in the leaves sprayed by PopW, which reached the maximum of 1.972μM/g FW (fresh weight) 24h after the tobacco was treated. The activities of defence enzyme (PAL, POD and PPO) were also changed. The activity of PAL reached the climax of 1215.33 U/g 12h after treatment. POD and PPO achieved the peak activities 10h and 24h after treatment, which were 863.67 U/g and 1110.5 U/g, separately. The PR-1 gene in tobacco and Arabidopsis were up-expressed after PopW treatment, while the PR-1 did not express in transgenic nahG tobacco and Arabidopsis. In conclusion, plant resistance induced by PopW is systemic acquired resistance meditaed by salicylic acid.
     Verticillium wilt on eggplant is a devastating soilbrone disease. PopW was found effectively inhibiting Verticillium daliae infection by inducing eggplant acquired resistance. A chitinase-secreting strain CH2 was selectef from 353 strains isolated from rhizosphere of eggplant. This strain was identified to be of Bacillus cereus based on 16S rRNA gene sequence alignment and biochemical and physiological characteristics. The strain can live on chitin-Ayers (CA) medium which only has chitin as the carbon resource, the evaluation of its activity, combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), showed it can secreted a 15.0 KDa chitinase. On glass slides, germination of the fungal spores was effectively suppressed by the bacterial suspension, supernatant from the suspension, and 0.005%solution of chitinase extracted from the strain CH2. The optimum pH for chitinase was 7.1 and optimum temperature was 40℃. At that temperature, high-level chitinolytic activity was retained for 10 days. In greenhouse experiments, suspension of the cells of the CH2 strain reduced the severity of Verticillium wilt on eggplant by 69.69%,25μg/mL PopW solution, CH2 supernatant by 57.46 and 54.04%, and the enzyme diluted to 0.01% strength by 53.13% in 14 days. Strain CH2 and its chitinase have good commercial potential in controlling Verticillium wilt.
引文
1. Abd-Allah E. F.2001. Streptomyces plicatus as a model biocontrol agent. Folia Microbiol (Praha), 46(4):309-314
    2. Aldon D., Brito B., Boucher C., Genin S.2000. A bacterial sensor of plant cell contact contros the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J,19(10): 2304-2314.
    3. Alfano J.R., Collmer A.1996. Bacterial Pathogens in Plants:life up against the wall. Plant Cells, 8:1683-1698.
    4. Allen C., Prior. P., Hayward, A. C.2005. Bacterial wilt disease and the Ralstonia solanacearum species complex. APS Press. St. paul. Minnesota, USA. P510.
    5. Allen C.A., Gay J., Simon-Buela L.1997. A regulatory locus, pehSR, controls poly galacturonaes production and other virulence functionsin Ralstonia solanacearum. Mol Plant-Microbe Interact,9: 1054-1064.
    6. Alvarez M.E., Pennell R.I., Meijer P.J., Ishikawa A., Dixon R.A., Lamb C.1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92:773-784.
    7. Arlat M. F., Van Gijsegem J. C., Huet J. C., Pernollet J. C., Boucher C. A.1994. PopA, a protein which induces a hypersensitive-like response on specific petunia genotypes, is secreted via the Hrp pathway of Peudomonas solanacearum. EMBO J,13:543-553.
    8. Bauer D. W., Wei Z. M., Beer S. V., Collmer A.1995. Erwinia chrysanthemi harpinEch:an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol Plant-Microbe Interact, 8:484-491.
    9. Berg G., Fritze A., Roskot N., Smalla, K.2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol,91:963-971.
    10. Berg G., Krechel A., Ditz M., Sikora R. A., Ulrich, A., Hallmann J.2005. Endophytic and ectophytic potatoassociated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol,51:215-229.
    11. Berg G., Ballin G. 1994. Bacterial antagonists to Verticullium dahliae Kleb. J Phytopathol,141: 99-110.
    12. Bi Y.M., Kenton P., Mur L., Darby R., Draper J.1995. Hydrogon peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J,8:235-245.
    13. Bletsos F., Thanassoulopoulos C., Roupakias D.1999. Water stress and Verticillium wilt severity on eggplant (Solanum melongena L.). J Phytopathol,147:243-248.
    14. Blocker, A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Allaoui P., Allaoui A.2001. Structure and composition of the Shigella flexneri "needle complex", a part of its type Ⅲ secreton. Mol Microbiol,39:652-663.
    15. Blocker, A., Komoriya K., Aizawa S.2003. Type Ⅲ secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci USA,100:3027-3030.
    16. Bogdanove A. J., Kim J.F., Wei Z., Kolchinsky P., Charkowski A.O., Conlin A.K., Collmer A., Beer S.V.1998. Homology and function of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pv tomato. Proc Natl Acad Sci USA,95:1325-1330
    17. Bogdanove A.J., Wei Z. M., Zhao L., Beer S.V.1996. Erwinia amylovora secretes harpin via a type III pathway and contains a homolog of yopN of Yersinia spp. J Bacteriol,178:1720-1730.
    18. Boller T.1985. in Cellular and Molecular Biology of Plant Stress (Key, J. L., and Kosuge, T., eds), pp.247-262, Alan R. Liss Inc., New York.
    19. Boucher C., Barberis P., Arlat M.1988. Acridine orange selects for deletion of hrp genes in all races of Pseudomonas solanacearum. Mol Plant Microbe Interact,1:282-288.
    20. Bradbury J. F.1986. Guide to the plant pathogenic bacteria. CAB International, Wallingford, UK.
    21. Brito B., Aldon D., Barberis P., Boucher C., Genin S.2002. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Mol Plant-Microbe Interact,15:109-119.
    22. Brito B., Marenda M., Barberis P., Boucher C., Genin S.1999. prhJ and hrpG, two new components of the plant signal-dependent regulatory cascade controlled by PrhA in Ralstonia solanacearum. Mol Microbiol,31(1):237-251.
    23. Brumley S. M., Carney B. F, Denny T. P.1993. Phenotype conversion in Pseudomonas solanacearum due to spontaneous in activation of phcA, a putative LysR transcriptional regulator. J Bacteriol,175:5477-5487.
    24. Buddenhagen, I. W., Sequeira, L., and Kelman, A.1962. Designation of races in Pseudomonas solanacearum. Phytopathology,52:726.
    25. Buner D., Bonas U.2006. Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Cuur Opin Microbiol,9:193-200.
    26. Chamnongpol S.,Willekens H., Moeder W., Langebartels C., Sandremann H.J., Van Montagu M., Inze D., Van Camp W.1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA,95:5818-5823.
    27. Charkowski A. O., Alfano J. R., Preston G., Yuan J., He S.Y., Collmer A.1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol,180:5211-5217.
    28. Chen Z., Klessig D.1991. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease resistance response. Proc Natl Acad Sci USA,88: 8179-8183.
    29. Chen Z., Ricigliano J.W., Klessig D. F.1993. Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA,90:9533-9537.
    30. Clough S. J., Flavier A. B., Schell M. A., Denny T. P.1997. Differential expression of virulence genes and motilityin Ralstonia (Pseudomonas) solanacearum during exponential growth. Appl Environ Microbiol,63:844-850.
    31. Cody R. M., Davis N. D., Lin J., Shaw D.1990. Screening microorgan-isms for chitin hydrolysis and production of ethanol from amino sugars. Biomass,21:285-295
    32. Conrath U., Chen Z., Ricigliano J.W., Klessig D.1995. Two inducers of plant defense responses,2, 6-dichoroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci USA,92:7143-7147.
    33. Cook D., Barlow E., Sequeira L.1989. Genetic Diversity of Pseudomonas solanacearum:Detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Mol Plant-Microbe Interact,2:113-121.
    34. Cunnac S., Boucher C., Genin S.2004. Characterization of the cis-Acting Regulatory Element Controlling HrpB-Mediated Activation of the Type Ⅲ Secretion System and Effector Genes in Ralstonia solanacearum. J Bacteriol,186(8):2309-2318.
    35. Dalal S., Hanson P. I.2001. Membrane traffic:what drives the AAA motor? Cell,104:5-8.
    36. Dangl J L., Dietrich R. A., Richberg M. H.1996. Death don't have no mercy:Cell death programs in plant-microbe interactions. Plant Cell1,8:1793-1807.
    37. Daniell S. J., Takahashi N., Wilson R., Friedberg D., Rosenshine I., Booy F.P., Shaw R.K., Knutton S., Frankel G., Aizawa S.2001. The filamentous type Ⅲ secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol,3:865-871.
    38. Davies G., Henrissat B.1995. Structures and mechanisms of glycosyl hydrolases. Structure, 3:853-859.
    39. Delaney T. P.1997.Genetic dissection of acquired resistance to disease.Plant Physiol,113:5-12.
    40. Denny T. P.2006. Plant pathogenic Ralstonia species. Pages 573-644 in:Plant-Associated Bacteria.
    S. S. Gnanamanickam, ed. Springer Publishing, Dordrecht, The Netherlands.
    41. Desikan R., Clarke A., Atherfold P., Hancock J. T., Neill S. J.1999. Harpin induces mitogen-activated protein kinase activity during defence responses in Arabidopsis thaliana suspension cultures. Planta,210:97-103.
    42. Dong H. P., Yu H., Bao Z., Guo X., Peng J., Yao Z., Chen G., Qu S., Dong H.2005. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta,221:313-327.
    43. Dong H., Delaney T. P, Beer S.V.1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J, 20:207-215.
    44. Du H., Klessig D.1997. Identification of a soluble,high-affinity salicylic acid-binding protein in tobacco. Plant Physiol,113:1319-1327.
    45. Dun-Chuan L. I., Chen S., Jing L. U.2005. Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia,159(2):223-229
    46. Durner J., Klessig D. F.1995. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid,two inducers of plant defense responses.Proc Natl Acad Sci USA,92: 11312-11316.
    47. Elphinstone J. G.1996. Survival and possibilities for extinction of Pseudomonas solanacearum (Smith) Smith in cool climates. Potato Res,39:403-410.
    48. Elphinstone J. G.2005. The current bacterial wilt situation:A global overview. P9-28 InAllen, C., Prior, P., and Hayward, A. C. (ed.), Bacterial Wilt:The Disease and the Ralstonia solanacearum Species Complex. American Phytopathological Society Press, St. Paul, MN, U.S.A.
    49. Elphinstone J. G., Stanford H., Stead D. E.1998. Detection of Ralstonia solanacearum in potato tubers, Solanum dulcamara and associated irrigation water. P133-139. In Prior, P., Allen C., and Elphinstone J. G. (ed.), Bacterial wilt disease:molecular and ecological aspects. Springer-Verlag, Berlin.
    50. Fahima T., Henis Y.1995. Quantitative assessment of the interaction between the antagonistc fungus Talaromyces flavus and the wilt pathogen Verticillium dahliae on eggplant roots. Plant and Soil,176,129-137.
    51. Fegan M., and Prior P.2005. How complex is the Ralstonia solanacearum species complex? P449-461. In Allen, C., Prior, P., and Hayward, A. C. (ed.), Bacterial Wilt:The Disease and the Ralstonia solanacearum Species Complex. American Phytopathological Society Press, St. Paul, MN, U.S.A.
    52. Fogliano V., Ballio A., Gallo M., Woo S., Scala F., Lorito M.2002. Lipodesipeptides and fungal cell well-degrading enzymes act synergistically in biological control. Mol Plant Microbe Interact, 15(4):323-333.
    53. Fravel D. R.1987. Viability of microsclerotia of Verticillium dahliae reduced by metabolite produced by Talaromucyes flavus. Phytopathology,77:616-619.
    54. French E. R., Aley P., Torres, E., Nydegge U.1993. Diversity of Pseudomonas solanacearum in Peru and Brazil. P70-77. In Hartman, G. L., and Hayward, A. C. (ed.), Bacterial Wilt. Aust Cent Int Agric Res Proc,45.
    55. French E. R., Sequeira L.1968. Bacterial wilt or moko of plantain in Peru. Fitopatologia,3:27-38.
    56. Friedrich L., Lawton K., Ruess W, Masner P., Specker N., Rella M.G., Uknes S., Metraux J.P., Kessmann H., Ryals J.1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J,10:61-70.
    57. Galan J. E., Collmer A.1999. Type Ⅲ seeretion maehines:baeterial device for Protein delivery into host cells. Seienee,284:1322—1328.
    58. Gaudriault S., Brisset M. N., Barny M. A.1998. HrpW of Erwinia amylovora, a new Hrp-secreted protein. FEBS Lett,428:224-228.
    59. Genin S., Boucher C.2002. Ralstonia solanacearum:secrets of a major pathogen unveiled by analysis of its genome. Mol Plant Pathol,3:111-118.
    60. Gijzen M., Kuflu K., Qutob D., Chernys J.T.2001. A class I chitinase from soybean seed coat, J Exp Bot,52:2283-2289.
    61. Gooday G. W.1990. The ecology of chitin degradation. Adv Microbiol Ecol,11:387-430.
    62. Gopalan S., Bauer D.W, Alfano J. R., Loniello A.O., He S.Y., Collmer A.1996. Expression of the Pseudomonas syringae avirlence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp)secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell,8:1095-1105
    63. Greenberg J. T., Guo A., Klessig D. F., Ausubel F.M.1994. Programmed cell death in plants:A pathogen-triggered response activated coordinately with multiple defense functions. Cell, 77:551-563.
    64. Grey B. E., Steck T. R.2001. The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl Environ Microbiol,67:3866-3872.
    65. Hallmann J., Quadt-Hallmann A., Rodriguez-Kabana R., Kloepper J. W.,1998. Interactions between meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil biology Bio-chemistry,30(7):925-937.
    66. Hayward A. C.1964. Characteristics of Pseudomonas solanacearum. J Appl Bacteriol,27:265-277.
    67. Hayward A. C.1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol,29:65-87.
    68. Hayward A. C.1994b. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria. P123-135. In Hayward, A. C., and Hartman, G. L. (ed.), Bacterial wilt:the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, United Kingdom.
    69. Hayward A.C.1994a. The hosts of Pseudomonas solanacearum. P9-24. In Hayward, A. C., and Hartman, G. L. (ed.), Bacterial wilt:the disease and its causative agent, Pseudomonas solanacearum. CAB International, Wallingford, UK.
    70. He L. Y., Sequeira L., Kelman A.1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis,67:1357-1361.
    71. He S. Y., Huang H. C, Collmer A.1993. Pseudomonas syringae pv. syringae harpinPss:a protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell, 73:1255-1266.
    72. Henrissat B.1991. A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem J,280:309-316.
    73. Henrissat B., Bairoch A.1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem J,293:781-788.
    74. Hikichi Y., Yoshimochi T., Tsujimoto S., Shinohara R., Nakaho K., Kanda A., Kiba A., Ohnishi K. 2007. Global regulation of pathogenicity mechanism of Ralstonia solanacearum. Plant Biotechnol, 24:149-154.
    75. Hoiczyk E., Blobel G.2001. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci USA,98:4669-4674.
    76. Hoyos A. E., Stanley C. M., He S. Y, Pike S., Pu X. A. Novcky A.1996. The interaction of harpinPss with plant cell walls. Mol Plant-Microbe Interact,9:608-616
    77. Hu W., Yuan J., Jin Q.L., Hart P., He S.Y 2001. Immunogold labeling of Hrp pili of Pseudomonas syringae pv.tomato assembled in minimal medium and in planta. Mol Plant-Microbe Interact,14: 234-241
    78. Huang C. J., Wang T. K., Chung S.C., Chen C.Y.2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol,38(1):82-8.
    79. Huang J., Yindeeyoungyeon W., Garg R. P., Denny T. P., Schell M. A.1998. Joint Transcriptional Control of xpsR, the Unusual Signal Integrator of the Ralstonia solanacearum Virulence Gene Regulatory Network, by a Response Regulator and a LysR-Type Transcriptional Activator. J Bacteriol,180:2736-2743.
    80. Hueck C. J.1998. Type Ⅲ protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev,62:379-433.
    81. Ikegami T., Okada T., Hashimoto M., Seino S., Watanabe T., and Shirakawa M.2000. Solution structure of the chitin-binding domain of Bacillus circulans WL-12 chitinase Al, J Biol Chem,275: 13654-13661.
    82. Janse J. D.1996. Potato brown rot in Western Europe-History, presence, occurrence and some remarks on possible origin, epidemiology and control strategies. EPPO Bull,26:679-985.
    83. Jeong E. L., Timmis J. N.2000. Novel insertion sequence elements associated with genetic heterogeneity and phenotype conversion in Ralstonia solanacearum. J Bacteriol,182:4673-4676.
    84. Karasuda S., Tanaka S., Kajihara H., Yamamoto Y., Koga D.,2003. Plant chitinase as a possible biocontrol agent for use instead of chemical fungicides. Biosci Biotechnol Biochem,67(1):221-224.
    85. Kelman A.1953. The bacterial wilt caused by Pseudomonas solanacearum. A literary review and bibliography. P194.Technical Bulletin of North Carolina Agricultural Experiment Station No.99.
    86. Kelman A.1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology,44:693-695.
    87. Kim J. F., Beer S. V.2000. hrp genes and harpins of Erwinia amylovora:A deeade of diseover, Pages141—162 in:Fire Blight and Its Causative Agent, Erwinia amylovora.J. L.Vanneste, ed.CAB International, Wallingford, UK.
    88. Kim J. F., Beer S.V.1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologues to pectatelyases of a distinct class. J. Bacteriol,180:5203-5210.
    89. Kim J. F., Charkowski A. O., Alfano J. R., Collmer A., Beer S. V.1998. Sequences related to transposable elements and bacteriophages flank avirulence genes of Pseudomonas syringae. Mol. Plant-Microbe Interact,11:1247-1252.
    90. Kim J.G., Park B. K., Yoo C. H., Jeon, J. Oh E., Hwang I.2003. Characterization of the Xanthomonas axonopodis pv. glycines Hrp pathogenicity island. J Bacteriol,185:3155-3166.
    91. Kim K. K., Fravel D. R., Papavizas G. C.,1990. Production, purification and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus. Can J Microbiol,36:199-205.
    92. Kim K. K., Fravel, D. R., Papavizas G. C.1988. Identification of a metabolite produced by Talaromgces flavus as glucoseoxidize and its role in the biocontrol of Verticillium dahliae. Phytopathology,78:488-492.
    93. Kogo D., Isogai A., Sakuda S., Matsumoto S., Suzuki A., Kimura S., Ide A.1987. Specific inhibition of Bombyx mori chitinase by allosamidin. Agric Biol Chem,51:471-476.
    94. Krishnan H. B.2002. NolX of Sinorhizobium fredii USDA257, a type Ⅲ-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J Bacteriol,184:831-839.
    95. Krishnan, H. B., Lorio J., Kim W.S., Jiang G., Kim K.Y., M. DeBoer S.G.2003. Pueppke, Extracellular proteins involved in soybean cultivarspecific nodulation are associated with pilus-like surface appendages and exported by a type Ⅲ protein secretion system in Sinorhizobium fredii USDA257. Mol Plant-Microbe Interact,16:617-625.
    96. Kubori T., Sukhan A., Aizawa S. I., Galan J. E.2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci USA,97:10225-10230.
    97. Lawton K.A., Friedrich L., Hunt M., Weymann K., Delaney T., Kessmann H., Staub T., Ryals J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J,10:71-82.
    98. Lee J., Klessig D. F., Nurnberger T.2001a A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell,13:1079-1093.
    99. Lee J., Klusener B., Tsiamis G., Stevens C., Neyt C., Tampakaki A. P., Panopoulos N. J., Noller J., Weiler E. W., Cornelis G. RMansfield. J. W., Nurnberger T.2001b. HrpZ (Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ionconducting pore in vitro. Proc Natl Acad Sci USA,98:289-294.
    100. Li C. M., Haapalainen M., Lee J., Nurnberger T., Romantschuk M., Taira S.2005. Harpin of Pseudomonas syringae pv. phaseolicola harbors a protein binding site. Mol Plant Microbe Interact, 18(1):60-66.
    101. Li R., Fan Y.1999. Reduction of lesion growth rate of late blight plant disease in transgenic potato expressing harpin protein. Sci. China (Ser. C),42:96-101.
    102. Liu R.1995. Effort of Vesicular-arbuscular mycorrhial on Verticillium wilt of cotton. Mycorrhiza,5: 293-297.
    103. Liu S., Tang W.1996. The study on endophytic Dtreptomyces of Cotton. In Advances in Biological Control of Plant Disease. Tang, W., Cook, R.J., Rovira, A. eds. Chinese Agriculture University Press 212-213.
    104. Lorito M., Woo S.L., Garcia-Fernandez I., Colucci G., Harman G.E., Pintor-Toro J.A., Filippone E., Muccifora S., Lawrence C., Zoina A., Tuzun S., Scala F.1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Pro Nat Aca Sci USA,95:7860-7865.
    105. Malamy J., Sanchez-Casas P., Hennig J., Guo A., Klessig D.F.1996. Dissection of the salicylic acid signaling pathway in tobacco.Mol Plant-Microbe Interact,9:474-482.
    106. Marenda M., Brito B., Callard D., Genin S., Barberis P., Boucher C., Arlat M.1998. PrhA controls a novel regulatory pathway required for the specific induction of Ralstonia solanacearum hrp genes in the presence of plant cells. Mol Microbiol,27(2):437-453.
    107. Martini M., Lee, J. M., Stefani, E.2006. PCR-RFLP and multiplex PCR assays for the specific detection of Ralstonia solanacearum race 3/biovar 2. The 4th International Bacterial Wilt Symposium, posters,91.
    108. Mauch-Mani B., Slrenko A. J.1996. Production of salicylic acid precursors is major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8:203-212.
    109. Mole B. M., Baltrus D. A., Dangl J. L., Grant S. R.2007. Global virulence regulation networks in phytopathogenic bacteria. Trends microbial,15:363-371.
    110. Muzzarelli R. A. A.1993. Advances in N-acetyl-β-D-Glucosaminidases. P.357-373. In A.A. Muzzarelli (ed.), Chitin enzymology. European Chitin Society, Ancona, Italy.
    111. Nawrath C., Metraux J. P.1999. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell,11: 1393-1404.
    112. Ohnishi K., Ohto Y., Aizawa S. I., Macnab R.M., lino T.1994. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol,176:2272-2281.
    113. Pallas J.A., Paiva N. L., Lamb C., Dixon R. A.1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J,10:281-293.
    114. Pegg K., Moffet M.1971. Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust J Exp Agric Anim Husb,11:696-698.
    115. Peng J. L., Bao Z. L., Ren H. Y., Wang J. S., Dong H. S.2004. Expression of harpin in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology, 94:1048-1055.
    116. Penninckx I. A., Thomma B. P., Buchala A., Metraux J. P., Broekaert W. F.1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell,10:2103-2113.
    117. Perrakis A., Tews I., Dauter Z., Oppenheim A. B., Chet I., Reese E.T., Maguire A.H., Parrish F.W. 1968. Glucosidases and exoglucanases. Can J Microbiol,46:25-34.
    118. Persley G. J.1986. Bacterial wilt disease in Asia and the South Pacific. Proceedings of an International Workshop held at PCARRD, Los Banos, Philippines,8-10 October 1985. ACIAR Proceedings,13:145.
    119. Peters J.M., Walsh M.J., Franke W.W.1990. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF, EMBO J,9:1757-1767.
    120. Pickard B.G 1994. Contemplating the plasmalemmal control center model. Protoplasma,182:1-9.
    121. Preston G., Huang H. C, He S.Y, Collmer A.1995. The HrpZ proteins of P.syringae pv.syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not in soybean. Mol Plant-Microbe Interact,8:717-732.
    122. Poueymiro M., Genin S.2009a. Secreted proteins from Ralstonia solanacearum:a hundred tricks to kill a plant. Curr Opin Microbiol,12:44-52.
    123. Qiu D., Wei Z. M., Bauer D. W., Beer S. V.1997. Treatment of tomato seeds with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology,87: S80.
    124. Racape J., Belbahri L., Engelhardt S., Lacombe B., Lee J., Lochman J., Marais A., Nicole M., Nurnberger T., Parlange F., Puverel S., Keller H.2005. Ca2+-dependent lipid binding and membrane integration of PopA, a harpin like elicitor of the hypersensitive response in tobacco. Mol Microbiol. 58(5):1406-20.
    125. Regev A., Keller M., Strizhov N., Sneh B., Prudovsky E., Chet I., Ginzberg I., Konczkalman Z., Koncz C., Schell J., Zilberstein A.1996. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spotoptera littoralis larvae. Appl Environ Microbiol,62:3581-3586.
    126. Russmann H., Kubori T., Sauer J., Galan J.E.2002. Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein. Mol Microbiol,46:769-779.
    127. Ryals J., Lawton K.A., Delaney T. P., Friedrich L., Kessmann H., Neuenschwander U., Uknes S., Vernooij B., Weymann K.1995. Signal transduction in systemic acquired resistance.Proc.Natl. Acad.Sci.USA,92:4202-4205.
    128. Salanoubat M., Genin S., Artiguenave F., Gouzy J., Mangenot S., Arlat M., Billault A., Brottier P., Camus J. C., Cattolico L., Chandler M., Choisne N., Claudel-Renard C., Cunnac S., Demange N., Gaspin C., Lavie M., Moisan A., Robert C., Saurin W., Schiex T., Siguier P., Thebault P., Whalen M., Wincker P., Levy M., Weissenbach J., Boucher C. A.2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature,415:497-502.
    129. Schell M. A.2000. Control of virulence and pathogenioity genes of Ralstonia solanacearum by an elaborate sensory network, Annu Rev Phytopathol,38:263-292.
    130. Sekiya K., Ohishi M., Ogino T., Tamano K., Sasakawa C., Abe A.2001. Supermolecular structure of the enteropathogenic Escherichia coli type Ⅲ secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci USA,98:11638-11643.
    131. Staskawicz B. J.2001. Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol,125:73-76.
    132. Strobel R. N., Gopalan J. S., Kuc J. A., He S. Y.1996. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZpss protein. Plant J,9:431-439.
    133. Sukhan A., Kubori T., Wilson J., Galan J. E.2001.Genetic analysis of assembly of the Salmonella enterica serovar typhimurium type Ⅲ secretion-associated needle complex. J Bacteriol, 183:1159-1167.
    134. Takei N., Nakazaki T., Tsuchiya T., Kowyama Y., Ikehashi H.2000. Isolation of expression of a pistil-specific chitinase gene in rice (Oryza sativa L.), Breed Sci,50:225-228.
    135. Tampakaki A. P., Panopoulos N. J.2000. Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced in planta. Mol Plant-Microbe Interact,13:1366-1374.
    136. Tang X. Y, Xiao Y. M., Zhou J. M.2006. Regulation of the type Ⅲ secretion system in phytopathogenic bacteria. Mol Plant-Microbe Interact,19:1159-1166.
    137. Tjamos E. C.2000. Strategies in developing methods and applying techniques for the biological control of Verticullium dahliae-short review. In:Advances in Verticillium researches and disease management. Tjamos, E.C., eds. American Phytopathological Society. St Paul MN,227-231.
    138. Toyoda H., Matsuda Y., Ramaga T., Ikeda S., Morita M., Tamai T., Ouchi S.1991. Suppression of the powdery mildew pathogen by chitinase microinjection into barley coleoptile epidermal cells. Plant Cell Rep,10:217-220.
    139. Tracy, M. V.1957. Rev Pure Appl Chem,7:1-14.
    140. Trudel J., Asselin A.1989. Detection of chitinase activity after polyacrylamide. gel electrophoresis. Anal Biochem,178:362-366.
    141. Vaidya R. J., Macmil S. L. A., Vyas P. R., Chhatpar H. S.2003. The novel method for isolating chitinolytic bacteria and its application in screening for hyperchitinase producing mutant of Alcaligenes xylosoxydans. Lett Appl Microbiol,36:1-6.
    142. Valls M., Genin S., Boucher C.2006. Integrated regulation of the Type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 2(8):e82. DOI: 10.1371/journal.ppat.0020082.
    143. Van Elsas J. D., Kastelein P., de Vries P. M., Overbeek L. S.2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv.2 in irrigation water. Can J Microbiol, 47:842-854.
    144. Van Elsas J. D., Kastelein P., Van Bekkum P., van der Wolf J. M., Vries P. M., van Overbeek L. S. 2000. Survival of Ralstonia solanacearum Biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology,90:1358-1366.
    145. Van Gijsegem F., Gough C., Zischek C., Niqueux E., Arlat M., Genin S., Barberis P., German S., Castello P., Boucher C.1995. The hrp locus of Pseudomonas solanacearum, which controls production of a type Ⅲ secretion system, encodes eight proteins related to components of bacterial flagellar biogenesis complex. Mol Microbiol,15:1095-1114.
    146. Volcani Z., Palti J.1960. Pseudomonas solanacearum in Israel. Plant Dis Reporter,44:448-449.
    147. Wei Z. M., Beer S. V 1996. Harpin from Erwinia amylovora induces plant resistance. Acta Hortic, 411:223-225.
    148. Wei Z. M., Laby R. J., Zumoff C. H., Bauer D W., He S. Y, Collmer A., Beer S. V.1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 257:85-88.
    149. Wei Z.M., Qiu D., Kropp M.J., Schading R. L.1998. Harpin, an HR elicitor, actives both defense and growth systems in many commercially important crops. Phytopathology,88:S96.
    150. Wengelnik K., Bonas U.1996. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol,178:3462-3469.
    151. Williamson L., Nakaho K., Hudelson B., Allen C.2002. Ralstonia solanacearum race 3, biovar 2 strains isolated from geranium are pathogenic on potato. Plant Dis,86:987-991.
    152. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y.1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia General Nov:Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov, Ralstonia solanacearum (Smith 1896) comb. Nov and Ralstonia eutropha (Davis 1969) comb. Nov. Mocrobiol Immunol,39:897-904.
    153. Yabuuchi E., KosakoY., Oyaizu H.1992. Proposal of Barkholderiagen.nov.and transfer of seven species of the genus Pseudomonas group Ⅱ to the new genus with the type species Burkholderia cepacia (PalleroniandHolmes1981) comb.nov. Mocrobiol Immunol,36:1251-1275.
    154. Zachos D. G. 1957. The brown rot of potatoes in Greece. Annales de l'Institut Phytopathologique Benaki New Series,1:115-117.
    155. Zehr E. I.1969. Studies of the distribution and economic importance of Pseudomonas solanacearum in certain crops in the Philippines. Philippine Agriculturist,53:218-223.
    156. Zhou J., Zhang H., Yang Y., Zhang Z., Hu X., Chen J., Wang X. C., Huang R.2008. Abscisic acid regulates TSRF1-mediated resistance to Ralstonia solanacearum by modifying the expression of GCC box-containing genes in tobacco. J Exp Bot,59: 645-652.
    157. Zhang H., Yang Y., ZhangZ., Chen J., Wang X. C., Huang R.2008. Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Planta,228:777-787.
    158. Zhou N., Tootle T. L., Tsui F., Klessig D. F., Glazebrook J.1998. PAD4 functions upstream of salicylic acid to control defense responses in Arabidopsis. Plant Cell,10:1021-1030.
    159.曹君,高智谋,潘月敏,李静,纪文飞,李秀丽.2005.枯草芽孢杆菌BS菌株和哈茨木霉TH-1菌株对棉花枯黄萎病的拮抗作用.植物病理学报,35(6):170-172。
    160.陈坚,林营之,刘建,胡鸢雷,林忠平.2008.青枯菌hrp基因的研究进展.生物技术通报,1:47-51.
    161.陈捷胤,戴小枫.2005.棉花对黄萎病的抗病机制研究进展[J].分子植物育种,3(3):427-435.
    162.董宏平,李明立,彭建令等.2004. HarpinEa促进烟草和番茄生长和诱导抗虫的信号通路.高技术通讯,12:29-32.
    163.傅正擎,夏正俊,吴蔼民,杨永宾,郑勤,顾本康.1999.内生菌防治棉花黄萎病机理.江苏农业学报,15(4):211-215.
    164.何礼远,康耀卫.1995.植物青枯菌致病机理[A].植物病虫害研究进展[C].3~12.
    165.李杜增,鹿秀云,马平,高胜国,刘杏中,刘.2005.防治棉花黄萎病的生防细菌NCD22的田间效果评价及其鉴定[J].植物病理学报,35(5):451-455.
    166.李明.2005. HarpinX蛋白的纯化、抗体制备及转hrfx基因棉花的研究.南京农业大学博士论文.
    167.李平.2002.水稻黄单胞菌(Xanthomonas oryzae)无毒基因avrXa3的克隆与鉴定以及过敏性反应激发子Hrf蛋白遗传多样性和功能域的研究.南京农业大学博士论文.
    168.李术娜,杜红方,袁洪水,张元亮,朱宝成.2006.棉花黄萎病拮抗细菌LC-04菌株的抗菌蛋白产生条件研究.棉花学报,18(4):233~237.
    169.刘爱新.2003. Harpin_(Xoo)诱发植物过敏反应和抗病性信号传导解析.山东农业大学博士论文.
    170.刘润进,裘维藩.1994.对棉花生长和产量的影响.北京农业大学学报,20(1):89-91.
    171.刘润进,裘维藩.1995.一种新的棉花苗期黄萎病病情指标.植物病理学报,25(3):259-264.
    172.卢同.1999.我国作物细菌性青枯的研究进展.福建农业学报,13:33-40.
    173.陆家云,龚龙英.1982.南京地区黄瓜疫病菌的鉴定及生物学特性的研究[J].南京农业大学学报,3:27-38.
    174.孟凡红邵敏,王金生.2004.转hrfAX00基因水稻对白叶枯病的抗性.南京农业大学学报,27:36~40.
    175.孟娜,汤斌,黄晓东,叶生梅,阚清华.2007.4种木霉菌对棉花黄萎病菌抑制作用的测定.生物学杂志,4(24):58-60。
    176.宋晓妍,陈秀兰,孙彩云,解树涛,张玉忠.2005.棉花黄萎病菌拮抗木霉的筛选及其抑菌机制的研究.山东大学学报,6(40):98-102。
    177.王金生.2000.植物病原细菌学.北京:中国农业出版社.
    178.王军.2005.青枯菌对植物的致病机制及其调节.林业科学,4(3):142-147.
    179.王立新,陆家云,方中达.1987.几种植物黄萎病病原菌的鉴定[J].南京农业大学学报,1:48-52.
    180.王未名,陈建爱,孙永堂,曾昭海,时香玉.1999.六种士传病原真菌被木霉抑制作用机理的初步研究.中国生物防治,15(3):142-143。
    181.闻伟刚,邵敏,陈功友,王金生.2003.水稻白叶枯病菌蛋白质激发子诱导植物的防卫反应.农业生物技术学报,11:192-197.
    182.闻伟刚,王金生.2001.水稻白叶枯病菌harpin基因的克隆与表达.植物病理学报,31:295-300.
    183.夏正俊,顾本康,吴蔼民,傅正擎.1997.棉株植物内生菌诱导棉花抗黄萎病过程中同工酶活性的变化.江苏农业学报,13(2):99-101。
    184.夏正俊,顾本康,吴蔼民.1996.植物内生及根际土壤细菌诱导棉花对大丽轮枝菌抗性的研究.中国生物防治,12(1):7-10.
    185.姚革.1989.细菌性青枯病的研究进展.植物保护,1:31-33.
    186.易金鑫,陈静华,杨起英.1998.茄子苗期耐低温性鉴定方法初步研究.江苏农业科学,5:51-53.
    187.于国平,罗宽,廖晓芸,周志成.1996.湖南省青枯病菌生理小种和生化变种的研究.湖南农业大学学报,22:371-374.
    188.张升,缪卫国,努尔孜亚,李锦辉,金伟,谭志环.2004.新型生物制剂对棉花黄枯萎的病田间防治研究.石河子大学学报,22:71-73.
    189.赵立平,梁元存,刘爱新等.1997表达harpin基因的大肠杆菌DH5α(pCPP430)诱导植物抗病性研究.高技术通讯,7(9):1-4.
    1. Abd-Allah E. F.,2001. Streptomyces plicatus as a model biocontrol agent. Folia Microbiol (Praha), 46(4),309-341.
    2. Alexander D., Goodman R. M., Gut-Rella M., Glascock C., Weymann K., Friedrich L., Maddox D., Ahl-Goy P., Luntz T., Ward E., Ryals J.1993. Increased resistance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Natl Acad Sci USA,90: 7327-7331.
    3. Alfano J. R., Collmer A.1996. Bacterial pathogens in plants:life up against the wall. Plant Cell, 8:1683-1698.
    4. Alscher R. G., Donahue J. L., Cramer C. L.1997. Reactive oxygen species and antioxidants: relationship in green cells. Plant Physiol,100:224-233.
    5. Andreeva A. V., Kutuzov M. A.2001. Nuclear localization of plant protein Ser/Thr phosphatase PP7. Mol Cell Biol Res Commun,4:345-352.
    6. Arlat M. F., Van Gijsegem F., Huet J. C., Pernollet J. C., Boucher C. A.1994. PopAl, a protein which induces a hypersensitive-like response on specific petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J,13:543-553.
    7. Backman P.A., Brannen P.M., Mahaffee W. F.1994. Plant response and disease control following seed inoculation with Bacillus subtilis. Adelaide, Aust.:CSIRO, Div. Soils pp.3-8.
    8. Baker C. J., Orlandi E. W.1995. Active Oxygen in Plant Pathogenesis. Annual Review of Phytopathology,33:299-321.
    9. Balasubramanian R., Manocha M. S.1992. Cytosolic and membrane-bound chitinase of two mucoraceous fungi:a comparative study. Can J Microbiol,38:331-338.
    10. Barny M.A.1995. Erwinia amylovora hrpNmutants, blocked in harpin synthesis, express a reduced virulence on host plants and elicit variable hypersensitive reactions on tobacco. Eur J Plant Pathol, 101:333-340.
    11. Barras F., Van Gijsegem F., Chatterjee A. K.1994. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol,32:201-234.
    12. Berger F., Hong L., White D., Frazer R., Leifert, C.1996. Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cotl in high humidity fogging glasshouses. Phytopathology,86,429-433.
    13. Bestwick C. H. S., Brown I. R., Mansfield J. W.1998. Localised changes in peroxidase activity
    accompany hydrogen peroxide generation during the development of a nonhost hypersensitive rection in lettuce. Plant Physiol,118:1067-1078.
    14. Bhat R. G, Subbarao K. V.2001. Reaction of broccoli to isolates of Verticillium dahliae from various hosts. Plant Dis,85:141-146.
    15. Bogdanove A. J., Beer S. V., Bonas U., Boucher C. A., Collmer A., Coplin D. L., Cornelis G. R., Huang H. C. S. Hutcheson W., Panopoulos N. J., Van Gijsegem F.1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol,20:681-683.
    16. Bonnet P., Bourdon E., Ponchet M., Blein J. P., Ricci P.1996. Acquired resistance triggered by elicitins in tobacco and other plants. Eur J Plant Pathol,102:1812192.
    17. Chamnongpol S., Willekens H., Moeder W., Langebartels C., Sandermann H., Montagu M. V., Inze D., Camp W. V.1998. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA,95:5818-23.
    18. Charkowski A.O., Alfano J.R., Preston G, Yuan J., He S.Y. Collmer A.1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol,180 (19):5211-5217.
    19. Chernin L. S., De la Fuente L., Sobolev V., Haran S., Vorgias C. E., Oppenheim A. B., Chet I.1997. Molecular cloning, structural analysis and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol,63(3):834-839.
    20. Chivasa S., Murphy A. M., Naylor M., Carr J. P.1997. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylic hydroxamic acid sensitive mechanism. Plant Cell,9: 547-557.
    21. Cohen-Kupiec R., Chet I.1998. The molecular biology of chitin digestion, Curr. Opin. Biotechnol, 9:270-277.
    22. Collmer A., Keen N. T.1986. The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol,24:383-409.
    23. Colson-Hanks E. S., Deverall B. J.2000. Effect of 2,6-dichloroisonicotinic acid, its formulation materials and benzothiadiazole on systemic resistance to Alternaria leaf spot in cotton. Plant Pathol, 49:171-178.
    24. Conroy J. J., Green R. J., Ferris J. M.1972. Interaction of Verticillium albo-atrum and the root lesion nematode, Pratylenchus penerrans, in tomato roots at controlled inoculum densities. Phytopathology,62:362-366.
    25. Dat J., Vandenabeele S., Vranova E., van Montagu M., Inze D., van Breusegem F.2000. Dual action of the active oxygen species during plant stress response. Cell Mol Life Sci,57:779-95.
    26. Denny T.P.2000. Ralstonia solanacearum-a plant pathogen in touch with its host. Trends Microbiol,8 (11):486-489.
    27. Devergne J. C., Bonnet P., Panabieres F., Blein J. P., Ricci P.1992. Migration of the fungal protein cryptogein within tobacco plants. Plant Physiol,99:8432847.
    28. Dong H. P., Peng J. L., Bao Z. L., Meng X.D., Bonasera J. M., Chen G.Y., BeerS. V., DongH. S.2004. Downstream divergence of ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant physiol,136:3628-3638.
    29. Dong H. P., Peng J., Bao Z., Meng X., Bonasera J. M., Beer S. V., Dong H.2004. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol,136:3628-3638.
    30. Dong H. P., Yu H., Bao Z., Guo X., Peng J., Yao Z., Chen G., Qu S., Dong H.2005. The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta,221:313-327.
    31. Dong H. S., Delaney T. P., Bauer D. W., Beer S.V.1999. Harpin induces disease resistanee in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIMI gene. Plant J,20:207-215.
    32. Dong H., Delaney T. P., Bauer D. E., Beer S. V.1999. Harpin induces disease resistance in Arabid-opsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J,20:207-215.
    33. Dorey S., Baillieul F., Pierrel M. A., Saindrenan P., Fritig B., Kauffmann S.1997. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor[J]. Mol Plant Microbe Interact,10: 646-655.
    34. Esposito N., Ovchinnikova O. G., Barone A., Zoina A., Holst O., Evidente A.2008. Host and non-host plant response to bacterial wilt in potato:role of the lipopolysaccharide isolated from Ralstonia solanacearum and molecular analysis of plant-pathogen interaction. Chem Biodivers,5:2662-2675.
    35. Faulkner L. R., Bolander W. J., Skotland C. B.1970. Interaction of Verticillium dahliae and Pratylenchus minyus in Verticillium wilt of peppermint:Influence of the nematode as determined by a double root technique. Phytopathology,60:100-103.
    36. Felse P. A., Panda T.1999. Regulation and cloning of microbial chitinase genes. Appl Microbiol
    Biotechnol,51:141-151.
    37. Fernando W. G. D., Nakkeeran S., Zhang Y., Savchuk S.2007. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot,26: 100-107.
    38. Fitzell R., Evans G., Fahy P. C.1980. Studies on the colonization of plant roots by Verticillium dahliae with use of immuno fluorescent staining. Aust J Bot,28:357-368.
    39. Flach J., Pilet P.E., Jolles P.1992. What's new in chitinase research? Experientia,48:701-716.
    40. Gan Y., Zhang L., Zhang Z., Dong S., Li J., Wang Y., Zheng X.2009. The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. New Phytol.2009; 181 (1):127-46.
    41. Gaudriault S., Malandrin L., Paulin J. P., Barny M. A.1997. DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via Hrp secretion pathway in a DspB-dependent way. Mol Microbiol,26:1057-1069
    42. Genin S., Brito B., Denny T. P., Boucher C.2005. Control of the Ralstonia solanacearum Type III secretion system (Hrp) genes by the global virulence regulator PhcA. FEMS letters,579:2077-2081.
    43. Gerik J. S., Huisman O. C.1988. Study of fieldgrown cotton roots infected with Verticillium dahliae using an immunoenzymatic staining technique. Phytopathology,78:1174-1178.
    44. Graham L. S., Sticklen M. B.1994. Plant chitinases. Can J Bot,72:1057-1083.
    45. Gueneron M., Timmers A.C., Boucher C., Arlat M.2000 Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the hrp-secretion apparatus of Ralstonia solanacearum. Mol Microbiol, 36(2):261-277.
    46. Hayward A. C.,1964. Characteristics of Pseudomonas solanacearum. J Appl Bacteriol,27: 265-277.
    47. Hayward A.C.1994. The hosts of Pseudomonas solanacearum. In Bacterial Wilt:the Disease and its Causative Agent, Pseudomonas solanacearum. Hayward, A.C., and Hartman, G.L. (eds). Wallingford:CAB International, pp.9-25.
    1. He S.Y., Huang H. C., Collmer A.1993. Pseudomonas syringae pv. syringae harpinpss:a protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell,73: 1255-1266.
    48. Helisto P., Aktuganov G., Galimzianova N., Melentjev A., Korpela T.2001. Lytic enzyme complex of an antagonistic Bacillus sp. X-b:isolation and purification of components. J Chromatogr B,758: 197-205.
    49. Hoekema A., Hirsch P. R., Hooykaas P. J. J., Schilperoort R. A.1983. A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid, Nature, (303); 179-180.
    50. Hoell I. A., Klemsdal S. S., Vaaje-Kolatad G., Horn S. J., Eijsink V.G. H.2005. Overexpression and characterization of a novel chitinase from Trichoderma atovirid Strain P1. Biochimica et biophysica Acta,1748:180-190.
    51. Huang C. J., Wang T.K., Chung S.C., Chen C.Y.2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol:38(1):82-88.
    52. Huang J. L., Li H. L., Yuan H. X.2006. Effect of organic amendments on Verticillium wilt of cotton. Crop Prot,25:1167-1173.
    53. Jiang Z. Q., Guo Y. H., Li S. M., Qi H. Y, Guo J. H.2006. Evaluation of biocontrol efficiency of different Bacillus preparation and field application methods against Phytophthora blight of bell pepper. Biol Control,36:216-223.
    54. Jones D. T.1999. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol,292:195-202.
    55. Karasuda S., Tanaka S., Ksjihara H.,Yamamoto Y, Koga D.2003. Plant Chitinase as a Possible Biocontrol Agent for Use Instead of Chemical Fungicides. Biosci Biotechnol Biochem,67(1): 221-224.
    56. Keller H., Blein J. P., Bonnet P., Bourdon E., Panabieres F., Ricci P.1994. Responses of tobacco to elicitins, protein from Phytophthora spp. Eliciting acquired resistance [A]. DAN IEL S M Advances in Molecular Genetics of Plant Microbe Interactions.v.3 [C].Do rdrech t:Kluwer A cadem ic Publishers,327-332.
    57. Kim J. F., Beer S. V.1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol,180:5203-5210.
    58. Kim J. F., Beer S.V.2000. hrp gene and harpins of Erwinia amylovora:A decade of discovery, in Fire Blight and Its Causative Agent, Erwinia amylovora (Vanneste, JL, ed). CAB International, Wallingford, pp 141-162.
    59. Kim J. F., Wei Z. M., Beer S. V.1997. The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. J Bacteriol,179:1690-1697.
    60. Kim J.F., Beer S.V.1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J Bacteriol,180:5203-5210.
    61. Kim J.G., Jeon E., Oh J., Moon J.S., Hwang I.2004. Mutational analysis of Xanthomonas harpin HpaG identifies a key functional region that elicits the hypersensitive response in nonhost plants. J
    Bacteriol,186:6239-6247.
    62. Kitten T., Willis D. K.1996. Suppression of a sensor kinase-dependent phenotype in Pseudomonas syringae by ribosomal proteins L35 and L20. J. Bacteriol,178:1548-1555.
    63. Klessig D. F., Durner J., Noad R., Navarre D. A., Wendehenne D., Kumar D., Zhou J. M., Shah J., Zhang S. Q., Kachroo P., Trifa Y., Pontier D., Lam E., Silva H.2000. Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA,97:8849-55.
    64. Korsten L., De Villiers E. E., Weimer F. C., Kotz J.M.1993. A review of biological control of postharvest diseases of subtropical fruits, In:Champ B.R., Highley, E.Johnson G..I. (Eds), Postharvest handling of tropical fruits. Proceedings of an International conference held at Chiang Mai, Thailand. Watson, Ferguson and Company, pp.172-185.
    65. Lamb C. J., Lawton M. A., Dron M., Dixon R. A.1988. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell,56:8632867.
    66. Lamb C., Dixon R.1997. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol,48:251-75.
    67. Lee Y. S., Park I. H., Yoo J. S., Chung S. Y, Lee Y. C., Cho Y S., Ahn S. C., Kim C. M., Choi Y L. 2007. Cloning, purification, and characterization of chitinase from Bacillus sp. DAU101 Bioresource Technol,98:2734-741.
    68. Levin A. G., Lavee S., Tsror L.2003. Epidemiology of Verticillium dahliae on olive (cv. Picual) and its effect on yield under saline conditions. Plant Pathol,52:212-218.
    69. Levine A., Tenhaken R., Dixon R., Lamb C.1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell,79:583-93.
    70. Li D. C., Chen S., Jing L. U.2005. Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia,159:223-229.
    71. Liu F., Liu H., Jia Q., Wu X., Guo X., Zhang S., Song F., Dong H.2006. The Internal Glycine-Rich Motif and Cysteine Suppress Several Effects of the HpaGXooc Protein in Plants. Phytopathology, 96:1052-1059.
    72. Liu H., Zhang S., Schell M. A., Denny T. P.2005. Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant-Microbe Interact,18:1296-1305.
    73. Marchler-Bauer A., Anderson J. B., Derbyshire M. K., DeWeese-Scott C., Gonzales N. R., Gwadz M., Hao L., He S., Hurwitz D. I., Jackson J. D., Ke Z., Krylov D., Lanczycki C. J., Liebert C. A., Liu C., Lu F., Lu S., Marchler G. H., Mullokandov M., Song J. S., Thanki N., Yamashita R. A., Yin J. J., Zhang D., Bryant S. H.2007. CDD:a conserved domain database for interactive domain family analysis. Nucleic Acids Res,35:(D)237-240.
    74. Mathivannan N., Kabilan V., Murugesan K.,1998. Purification, characterization, and antifungal activity of chitinase from Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Can J Microbiol,44:646-652.
    75. McGuffin L. J., Bryson K., Jones D. T.2000. The PSIPRED protein structure prediction
    76. Mercado-Blanco J., Rodriguez-Jurado D., Hervas A., Jimenez-Deaz R. M.2004. Suppression of verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol Control,30:474-486.
    77. Miller J. H.,1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A.
    78. Millis A. A. S., Platt H. W., Hurta R. A. R.2004. Effect of salt compounds on mycelial growth, sporulation and spore germination of various potato pathogens. Postharvest Biol Technol,34: 341-350.
    79. Murage E. N., Masuda M.1997. Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes. Sci Hortic,70:269-279.
    80. Murashige T., Skoog F.1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant,15:473-497.
    81. Mukaihara T., Tamura N.2009.Identification of novel Ralstonia solanacearum type III effector proteins through translocation analysis of hrpB-regulated gene products. Microbiology, in press.
    82. Nannipieri P., Klug M.T., Reddy C.A.1984. Microbial Biomass and Activity Measurement in Soils: Ecological Significance. American Society for Microbiology, Washington.
    83. Naosekpam S. A. A., Rajni V., Shanmugam V.2006. Extracellular chitinase of fluorescent Pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Curr Microbiol,52:310-316.
    84. Naylor M., Murphy A. M., Berry J. O., Carr J. P.1998. Salicylic acid can induce resistance to plant virus movement. Mol Plant Microbe Interact,11:860-868.
    85. Niu X. G., Chen Q. J., Liu Q., Wang X. C.2005. Cloning, Subcellular Localization and Expression A nalysis ofan Inositol 1,3,4-trisphosphate 5/6-kinase-like Gene in Oryza sativa. J Agric Biotechnol,13 (6):815-816.
    86. Parameswaran B., Tunde P., Viviana N., Chandran S.,George S., Istvan P., Ashok P.2004. Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129
    under solid-state fermentation. Enzyme Microb Technol,36:880-887.
    87. Pasqualini S., Piccioni C., Reale L., Ederli L., Torre G. D., Ferranti F.2003. Ozoneinduced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol,133:1122-34.
    88. Paulitz T.C., Belanger R. R.2001. Biological control in greenhouse systems. Annu Rev Phytopathol, 39:103-133.
    89. Peng J. L., Dong H. S., Dong H. P., Delaney T. P., Bonasera J. M., Beer S. V.2003. Harpin-elieited hypersensitive cell death and Pathogen resistance requires the NDRI and EDSI genes.Physiol Mol Plant Patho,162:317-326.
    90. Peng J., Bao Z., Ren H., Wang J., Dong H.2004. Expression of HarpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology,94: 1048-1055.
    91. Perry J. W., Evert R. F.1983. The effect of colonization by Verticillium dahliae on the root tips of Russet Burbank potatoes. Can J Botany,61:3422-3429.
    92. Pleban S., Chermin L., Chet I.1997. Chitinolytic activity of an endophytic of Bacillus cereus. Lett Appl Microbiol,25:284-288.
    93. Poueymiro M., Cunnac S., Barberis P., Deslandes L., Peeters N., Cazale-Noel A. C., Boucher C., Genin S.2009b. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol Plant Microbe Interact,22:538-550.
    94. PUhler A., Arlat M., Becker A., GOttfert M., Morrissey J. P., O'Gara F.2004. What can bacterial genome research teach us about bacteria-plant interactions? Curr Opin Plant Biol,7:137-147.
    95. Qiu D., Wei Z. M., Bauer D. W, Beer S. V.1997. Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology, 87:S80.
    96. Rao M. V., Davis K. R.1999. Ozone induced cell death occurs via two distinct mechanisms in Arabidopsis:the role of salicylic acid. Plant J,17:603-14.
    97. Rhodes M. J. C., Wooltorton L. S. C.1971. The effect of ethylene on the respiration and on the activity of phenylalanine ammonia lyase in Swede and Parship root tissue. Phytochemistry,10: 1989-1997.
    98. Roberts D. P., Denny T. P., Scbell M. A.1988. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity, J Bacteriol,170:1445-1451.
    99. Salanoubat M., Genin S., Artiguenave F., Gouzy J., Mangenot S., Arlat M., Billault A., Brottier P., Camus J. C., Cattolico L., Chandler M., Choisne N., Claudel-Renard C., Cunnac S., Demange N., Gaspin C., Lavie M., Moisan A., Robert C., Saurin W., Schiex T., Siguier P., Thebault P., Whalen M., Wincker P., Levy M., Weissenbach J., Boucher C. A.2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature,415:497-502.
    100. Schonfeld J., Heuer H., Van Elsas J. D., Smalla K.2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification offliC fragments. Appl Environ Microbiol,69:7248-7256.
    101. Shternshis, M. V., Beljaev, A. A., Shpatova, T. V., Bokova, J. V., Duzhak, A. B.,2002. Field testing of BACTICIDE, PHYTOVERM and CHITINASE for control of the raspberry midge blight in Siberia. Biocontrol,47:697-706.
    102. Sietsma J. H., Wessels J.G. H.1979. Evidence for covalent linkages between chitin and β-glucan in a fungal cell wall. J Gen Microbiol,114:99-108.
    103. Soaresa A. G., Trugob L. C., Botrela N., Silva L. F.2005. Reduction of internal browning of pineapple fruit(Ananas comusus L.) by preharvest soil application of potassium. Postharvest Biol Technol,35 (2):201-207.
    104. Stabb E.V., Johnson L., Handelsman J.1994. Zwittermycin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol,60:4404-4412.
    105. Storey G. W., Evans K.1987. Interactions between Globodera pallida juveniles, Verticillium dahliae and three potato cultivars, with descriptions of associated histopathologies. Plant Pathol, 36:192-200.
    106. Strobel K. N., Gopalan J. S., KueJ A., He S. Y.1996. Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZpss protein. Plant J,9:431-439.
    107. Tang W. H.1994. Yield-increasing bacteria (YIB) and biocontrol of sheath blight of rice. Adelaide, Aust.:CSIRO. Div. Soils,267-273.
    108. Tans-Kersten. J., Huang H., Allen C.2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol,183:3597-3605.
    109. Thanassoulopoulos C. C., Biris D. A., Tjamos E. C.1979. Survey of Verticillium wilt of olive trees in Greece. Plant Dis Reptr,63:936-940.
    110. Tronsmo A., Harman G.E.1993. Detection and quantification of N-Acetyl-β-D-glucosaminidase, chitiobiosidase, and endochitinase in solutions and on gels. Anal Biochem,208:4-79.
    111.Turner M., Jauneau A., Genin S., Tavella M. J., Vailleau F., Gentzbittel L., Jardinaud M. F.2009. Dissection of bacterial wilt on Medicago truncatula revealed two type Ⅲ
    secretion system effectors acting on root infection process and disease development. Plant Physiol, in press.
    112. Vranova E, Inze D, Van Breusegem F.2002. Signal transduction during oxidative stress. J Exp Bot, 53:1227-36.
    113. Wang Y. C., Hu D. W., Zhang Z. G., Ma Z. C., Zheng X. B., Li D. B.2003. Purification and immuno cytolocalization of a novel Phytophthora boehmeriae protein inducing the hypersensitive response and systemic acquired resistance in tobacco and Chinese cabbage. Physiol Mol Plant Pathol,63:223-32.
    114. Watanabe T., Oysnsgi W., Suzushi K., Tsnsks H.1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J Bacteriol,172:74-79.
    115. Wei Z. M., Beer S. V.1996. Harpin from Erwinia amylovora induces plant disease resistance. Acta Hortic,411:633-644.
    116. Wei Z. M., Laby R. G., Zumoff C. H., Bauer D. W., He S. Y., Collmer A., Beer S. V.,1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 257:85-88.
    117. Wei Z. M., Lacy R. J., Zumoff C. H., Bauer D. W., He S. Y, Collmer A., Beer S. V.1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 257:85-88.
    118. Wei Z. M., Qiu D., Kropp M. J., Schading R. L.1998. Harpin, an HR elicitor, activates both defense and growth systems in many commercially important crops. Phytopathology,88:S96.
    119. Weller D. M.1988. Biological control of soilborne plant pathogens In the rhizosphere with bacteria. Annu Rev Phvtopathol,26:379-407.
    120. Wersberg W. G, Brans S. M., Pelletier D. A., Lane D. J.1991.16S Ribosomal DNA amplification for phytogenetic study. J Bacteriol,173(2):697-7
    121. Wojtaszek P.1997. Oxidative burst:an early plant response to pathogen infection. Biochem J, 322:681-92.
    122. Wu G, Shortt B. J., Lawrence E. B., Levine E. B., Fitzsimmons K. C., Shah D. M.1995. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell,7:1357-1368.
    123. Yangrae C., Joshua W. D., Kwang H. K., Juan W., Qi H. S., Robert A. C., Christopher B. L.2006. A high throughput targeted disruption method for Alternatia brassicicola functional genomics using linear minimal element (LME) comtructs. Mol Plant-Microbe Interact,19:7-15.
    124.Yasuda M., Ishikawa A., Jikumaru Y., Seki M., Umezawa T., Asami T., Maruyama-Nakashita A., Kudo T., Shinozaki K., Yoshida S., Nakashita H.2008. Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell,20:1678-1692.
    125. Yin Y. N., Heuer H., Xue Q.Y., Guo J.H., Smalla K.2007. Repeat domain diversity of avrBs3/pthA-like genes in Ralstonia solanacearum strains and association with host preferences in the field. Appl Environ Microbiol,73:4379-4384.
    126. Zhou S., Liu W., KongL., Wang M.,2008. Systemic PCD occurs in TMV-tomato interaction. Sci China C Life Sci,51:1009-1019.
    127. Zitter T. A., Beer S. V.1998. Harpin for insect control. Phytopathology,88:S104-105.
    128.方忠达.1998.植病研究法(第三版).中国农业出版社.
    129.马庆生,张梅芳,樊妙姬,刘涛.1987.青枯假单胞菌(Pseudomonas solanacearum)中的一条多拷贝质粒.广西农业生物科学,2:33-36.
    130.欧阳光察,薛应龙.1988.植物苯丙烷类代谢的生理意义及调控.植物生理学通迅,3:9-16.
    131.王金生.1999.分子植物病理学.北京:农业出版社.
    132.王钧.1995.诱导植物产生过敏反应的病原蛋白harpin和elicitin[J].植物生理学通讯,31(6):451-454.
    133.闻伟刚,邵敏,陈功友,王金生.2003.水稻白叶枯病菌蛋白质激发子Harpinxoo诱导植物的防卫反应.农业生物技术学报,11(2):192-197.
    134.闻伟刚,王金生.2001.水稻白叶枯病菌Harpin基因的克隆与表达.植物病理学报,31:295-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700