数字电视音频子系统设计与音频处理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字音频已经成为数字电视产品的重要部分,因为声音是影响电视观众主观感受的关键。随着集成电路的发展,数字电视解码系统已可以集成在SoC芯片中。然而,更低的功耗和成本,更多功能的集成,仍然是数字电视SoC系统设计的挑战,音频子系统也不例外。
     本文以数字电视系统中的数字音频技术为研究对象。从传统的数字电视SoC系统的解复用及音频子系统设计出发,深入讨论了新一代数字电视的多标准音频解码与处理平台的设计。在此基础上研究了多种数字音频处理技术,并且根据数字电视音频标准大多采用变换编码方式传输这一特点,提出在变换域进行低复杂度的音频处理。这些算法非常适合在数字电视SoC系统中实现。
     本文取得的创新性成果包括:
     1,在传统的数字电视SoC系统中实现了解复用和音频子系统的设计,并提出了一种有效的音视频同步方法。作为国产首款集成DVB-S的数字电视接收一体化SoC芯片中的重要模块,解复用和音频子系统都通过了芯片量产考验。
     2,提出了一种MDCT域的正弦参数提取方法。该方法通过分析MDCT域最大值及其周围系数的符号,简化了判断正弦信号频率整数部分的方法,另外本文的补充判定方法,有效提升了频率分数部分的精确度。与同类方法相比具有复杂度低,频率判定准确率高的优点。
     3,提出了一种MDCT域音频错误隐藏方法。在正弦与噪声模型的基础上,本文提出了正弦频率估计方法判断正弦分量MDCT系数的符号,可以有效改善主观听觉质量,并且运算复杂度较低。适合实时性要求高且处理能力受限的数字电视SoC系统。
     4,提出了一种基于HRTF频谱特征的MDCT域滤波优化方法。较以往的MDCT域滤波方法,本文运算复杂度降低明显且主观质量一致。在此基础上,提出了本文MDCT域的虚拟环绕处理方法。各项实验结果表明,较频域滤波以及以往的MDCT域滤波方法,本文提出的MDCT域虚拟环绕处理方法,可以在较低的运算复杂度情况下,获得较好的主观感受。
Digital Audio is a core component in DTV,because audio is central to perceived quality of DTV product.With the development of integrated circuits.DTV can be integrated in the system-on-chip.The chanllenge of DTV SoC design is to integrated more features with lower cost.The audio subsystem design is of no exception.
     This thesis makes research on the field of Digital Audio Technique in DTV decoding SoC.Based on the design of demultiplexer and audio subsystem,a RISC-based audio processor is adopted for multi-standard decoding and processing in a new gerneration DTV SoC.On its basis,serveal efficient audio processing algorithms are proposed in MDCT domain,which is the dominant transform method of high quality audio coding in DTV.The achievements are as follows:
     1,Proposed an efficient Audio-video synchronization method in the design of demultiplexer and audio subsystem in the DTV SoC.As an important part in SoC chip of DVB-S demodulator and MPEG-2 decoder,all the design was verified by ASIC and mass production.
     2,Proposed an accurate low complexity algorithm for frequency estimation in MDCT domain,The algorithm extracts integer part of frequency by estimating combinations of local maximum and neighbor of MDCT coefficients.And the fractional part of the frequency achieves accurate results by complementing method. The algorithm is superior to previous method in Sinusoid modeling of MDCT domain.
     3,Proposed an efficient audio packet loss concealment method in MDCT domain. Based on Sinusoid and noise model,MDCT coefficients are divided into two groups, noise and sinusoid component.The sign of MDCT coefficients of sinusoidal component in the lost packets are reconstructed by frequency estimation.The method can improve the subjective listening quality with quite low computational cost,so can be used in DTV receiver with limited computation capacity.
     4,Proposed an efficient filtering approach in MDCT domain base on the spectrum character of HRTF.On its basis,realized a virtual surround processing method in MDCT domain.Compared with previous frequency and MDCT domain methods,the proposed virtual surround processing achieves low complexity with the same quality,both in objective and subjective test.
引文
[1]ISO/IEC 11172-3.Coding of moving pictures and associated audio for digital storage media at up to 1.5Mbit/s-Part 3:Audio.1993.
    [2]DAVIS P.A Tutorial on MPEG/Audio Compression[J].IEEE MultiMedia.1995,2(2):60-74.
    [3]BEALE R.Designing all-digital audio systems for HDTVs.http://www.audio designline.com/howto/192500290.
    [4]LINCOLN B.Modified Discrete Cosine Transform(MDCT).http://ccrma -www.stanford.edu/~bosse/proj/node27.html.
    [5]YE W,MIIKKA V.Modified Discrete cosine Transform-Its Implications for Audio Coding and Error Concealment[J].Journal Audio Engineering Society,2003,51(No.1/2):52-61.
    [6]PRINCEN J,BRADLEY A.Analysis/Synthesis filter bank design based on time domain aliasing cancellation[J].Acoustics,Speech and Signal Processing,IEEE Transactions on,1986,34(5):1153-1161.
    [7]PRINCEN J,JOHNSON A,BRADLEY A.Subband/Transform coding using filter bank designs based on time domain aliasing cancellation[C].Acoustics,Speech,and Signal Processing,IEEE International Conference on ICASSP '87.,1987,12:2161-2164.
    [8]ISO/IEC 13818-3 Information technology—Generic coding of moving pictures and associated audio information—Part 3:Audio.1994.
    [9]ATSC A/52-Digital Audio Compression(AC-3).1995.
    [10]ISO/IEC 13818-7 Information technology—Generic coding of moving pictures and associated audio information:Advanced Audio Coding(AAC).1997
    [11]ISO/IEC 14496-3.Information technology—Coding of audio-visual objects—Part 3:Audio.2005.
    [12]3GPP TS 26.401 General audio codec audio processing functions;Enhanced aacPlus general audio codec;General description 2006.
    [13]MICROSOFT.Windows Media Audio Codecs.http://www.microsoft.com/win -dows/windowsmedia/forpros/codecs/audio.aspx.
    [14]GB/T 20090.3 信息技术 先进音视频编码 第三部分:音频 2005.
    [15]XIPH.ORG.Vorbis.http://www.vorbis.com/.
    [16]ITU-R BS.775-1.Multichannel stereophonic sound system with and without accompanying picture.2006.
    [17]KIMIO H,TOSHIYUKI N,REIKO O,et al.A 22.2 Multichannel Sound System for Ultrahigh-Definition TV(UHDTV)[J].SMPTE motion imaging journal,2008,117:40-49.
    [18]KARNOFSKY K.Speeding DSP algorithm design[J].Spectrum,IEEE,1996,33(7):79-82.
    [19]MUZZI M G.Improvement of the audio quality of a parametric coder Philips Digital System Laboratories - Eindhoven 2003.
    [20] PURNHAGEN H, MEINE N. HILN-the MPEG-4 parametric audio coding tools [C]. Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, 2000, 3: 201-204 vol.3.
    [21] XIAOSHU Q, YINONG D. A phase interpolation algorithm for sinusoidal model based music synthesis [C]. Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on, 1997, 1: 451-454 vol.1.
    [22] SHIRAZI J, GHAEMMAGHAMI S. Audio classification based on sinusoidal model: A new feature [C]. TENCON 2008 - 2008, TENCON 2008. IEEE Region 10 Conference, 2008: 1-5.
    [23] JANG H K, JU SUNG P. Multiresolution sinusoidal model with dynamic segmentation for timescale modification of polyphonic audio signals [J]. Speech and Audio Processing, IEEE Transactions on, 2005,13 (2): 254-262.
    [24] MCAULAY R, QUATIERI T. Speech analysis/Synthesis based on a sinusoidal representation [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1986, 34 (4): 744-754.
    [25] SERRA X. A System for Sound Analysis/Transformation/Synthesis based on a Deterministic plus Stochastic Decomposition [D]. Stanford University, Ph.D, 1989.
    [26] KEILER F, MARCHAND S. Survey On Extraction Of Sinusoids In Stationary Sounds [C]. Proc. DAFx-02 Digital Audio Effects Conference, 2002: 51-58.
    [27] RIFE D, BOORSTYN R. Single tone parameter estimation from discrete-time observations [J]. Information Theory, IEEE Transactions on, 1974, 20 (5): 591-598.
    [28] QUINN B G. Estimation of frequency, amplitude, and phase from the DFT of a time series [J]. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on], 1997,45 (3): 814-817.
    [29] THOMSON D J. Spectrum estimation and harmonic analysis [J]. Proceedings of the IEEE, 1982, 70 (9): 1055-1096.
    [30] LEVINE S N. Effects Processing on Audio Subband Data [C]. International Computer Music Conference, 1996.
    [31] ANANTHARAMAN B. Compressed Domain Processing of MPEG Audio [D]. BANGALORE: Indian Institute of Science, Master, 2001.
    [32] LEVINE S N. Audio representations for data compression and compressed domain processing [D]. Stanford: Stanford University, Doctor, 1999.
    [33] DAUDET L, SANDLER M. MDCT analysis of sinusoids: exact results and applications to coding artifacts reduction [J]. Speech and Audio Processing, IEEE Transactions on, 2004,12 (3): 302-312.
    [34] MERDJANI S, DAUDET L. Direct Estimation Of Frequency From Mdct-Encoded Files [C]. Proceedings of 6th International Conference on Digital Audio Effects, 2003.
    [35] WANG Y, VILERMO M. A compressed domain beat detector using MP3 audio bitstreams [C]. ACM international conference on Multimedia, 2001: 194-202.
    [36] GRUBER J, STRAWCZYNSKI L. Subjective Effects of Variable Delay and Speech Clipping in Dynamically Managed Voice Systems [J]. Communications, IEEE Transactions on, 1985 33 (8): 801-808.
    [37] JAYANT N, CHRISTENSEN S. Effects of packet losses in waveform coded speech and improvements due to an odd-even sample-interpolation pro-cedure [J]. Communications, IEEE Transactions on, 1981, 29 (2): 101-109.
    [38] POWERS G L, WILCOX J C. Intelligibility of temporally interrupted speech with and without intervening noise [J]. Journal of the Acoustical Society of America, 1977, 61(1): 195-199.
    [39] WASEM O J, GOODMAN D J, DVORAK C A, et al. The effect of waveform substitution on the quality of PCM packetcommunications [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1988, 36 (3): 342-348.
    [40] SANNECK H, STENGER A, BEN YOUNES K, et al. A new technique for audio packet loss concealment [C]. Global Telecommunications Conference, 1996. GLOBECOM '96, 1996: 48-52.
    [41] ZAVAREHEI E, VASEGHI S. Interpolation of Lost Speech Segments Using LP-HNM Model With Codebook Post-Processing [J]. Multimedia, IEEE Transactions on, 2008,10 (3): 493-502.
    [42] ESQUEF P A A, BISCAINHO L W P. An Efficient Model-Based Multirate Method for Reconstruction of Audio Signals Across Long Gaps [J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2006, 14 (4): 1391-1400.
    [43] GUOQIANG Z, KLEIJN W B. Autoregressive model-based speech packet-loss concealment [C]. Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, 2008: 4797-4800.
    [44] LINDBLOM J, HEDELIN P. Packet loss concealment based on sinusoidal extrapolation [C]. Acoustics, Speech, and Signal Processing, 2002. Proceedings. (ICASSP '02). IEEE International Conference on, 2002, 1: I-173-I-176 vol.1.
    [45] PERKINS C, HODSON O, HARDMAN V. A survey of packet loss recovery techniques for streaming audio [J]. Network, IEEE, 1998,12 (5): 40-48.
    [46] DWIGHT W B. Role of the Pinna in Localization: Theoretical and Physiological Consequences [M] // Ciba Foundation Symposium - Hearing Mechanisms in Vertebrates. 2008:234-243.
    
    [47] BEGAULT D R. 3-D Sound for Virtual Reality and Multimedia [M]. 2000.
    [48] SRS Labs. TruSurround XT. http://www.srslabs.com/content.aspx?id=417.
    [49] GAJJAR S. A 3D stereo sound system [C]. Audio and Music Technology: The Challenge of Creative DSP (Ref. No. 1998/470), IEE Colloquium on, 1998: 15/1-15/7.
    [50] OFIR H. Packet Loss Concealment for Audio Streaming [D]. Haifa: Israel Institute of Technology, Master, 2006.
    [51] SHENGQI Y, WENPING W, TIEHAN L, et al. Case Study of Reliability-Aware and Low-Power Design [J]. Very Large Scale Integration (VLSI) Systems,IEEE Transactions on.2008,16(7):861-873.
    [52]Qsound Labs.QXpander(?) QX2020 http:www.qsound.com/products/qxpand er-qx2020.htm.
    [53]Dolby Labs.Dolby Virtual Speaker.http:www.dolby.com/consumer/technolo gy/virtual_speaker.html.
    [54]Dolby Labs.Dolby Headphone.http://www.dolby.com/consumer/technology/headphone.html.
    [55]AM3D Inc.Zirene(?)-Audio Enhancement.http://www.am3d.com/pdf/zirene.pdf.
    [56]ZHENG Z,MENGYAO Z,LIANGHAO W,et al.Design and implementation of twin transport stream demultiplexor in HDTV decoder[C].ASIC,2007.ASICON '07.7th International Conference on,2007:729-732.
    [57]黄智杰.卫星数字电视信道解调及信源解码的技术研究与芯片设计[D].杭州:浙江大学,博士,2007.
    [58]ISO/IEC 13818-1 Information technology—Generic coding of moving pictures and associated audio information:Systems.2000.
    [59]CHUNRONG Z,SHIBAO Z,FENG W,et al.Design and implementation of transport stream demultiplexer in HDTV decoder SoC[J].Consumer Electronics,IEEE Transactions on,2005,51(2):642-647.
    [60]黄晓伟.数字电视信源解码中视频同步和SDRAM接口的实现[D].杭州:浙江大学,硕士,2006.
    [61]ZHU M Y,ZHANG M,CHEN X L,et al.A hierarchical key distribution scheme for conditional access system in DTV broadcasting[C].International Conference on Computational-Intelligence and Security,2006,Springer-Verlag Berlin:839-846.
    [62]ETSI EN 300 472 V1.3.1,Digital Video Broadcasting(DVB) Specification for conveying ITU-R System B Teletext in DVB bitstreams 2003.
    [63]ETSI EN 300 706 V1.2.1,Enhanced Teletext specification 2003.
    [64]ETSI EN 300 468 V1.5.1,Digital Video Broadcasting(DVB) Specification for Service Information(SI) in DVB systems.2003.
    [65]高成伟.移动多媒体技术:标准、理论与实践[M].北京:清华大学出版社,2006:258.
    [66]王燕.基于OpenRISC的音频解码器软硬件协同设计[D].杭州:浙江大学,硕士,2007.
    [67]张瑾.基于DVB标准的MPEG音频解码器设计研究与实现[D].杭州:浙江大学,硕士,2006.
    [68]IEC 60958-3-2006.Digital audio interface-Part 3:Consumer applications IEC60958.2006.
    [69]ITU-R BT.1359-1,Relative Timing of Sound and Vision for Broadcasting.Jan 1,1998.
    [70]ATSC IS-191,ATSC Implementation Subcommittee Finding:Relative Timing of Sound and Vision for Broadcast Operations 26 June 2003.
    [71]NING K,YI G,GENTILE R.Achieve proper audio-video synchronization in digital broadcast,http://www.eetasia.com/ART_8800470429_499501_NP_54d b6784.HTM.
    [72]梁坚,庞智博,朱梦尧.视音频同步方法:中国,[P].
    [73]CHUN-NAN L,TSUNG-HAN T.SoC platform based design of MPEG-2/4AAC audio decoder[C].Circuits and Systems,2005.ISCAS 2005.IEEE International Symposium on,2005:2851-2854 Vol.3.
    [74]TSUNG-HAN T,HSING-CHUANG L,WEI-CH1N C,et al.A platform-based SoC design for a multi-standard audio decoder[C].Communications,Circuits and Systems,2008.ICCCAS 2008.International Conference on,2008:758-761.
    [75]张轩磊,窦维蓓,董明.面向SoC的数字音频解码系统设计方法[J].电声技术,2008,32(8):72-76.
    [76]DAJIANG Z,PEILIN L,JI K,et al.An SoC based HW/SW co-design architecture for multi-standard audio decoding[C].Solid-State Circuits Conference,2007.ASSCC'07.IEEE Asian,2007:200-203.
    [77]CEVA Inc.CEVA-Audio音频平台.http://www.ceva-dsp.cn/products/platfor ms/ceva-audio.php.
    [78]Tensilica Inc.330HiFi Audio Processor http://www.tensilica.com/products/au dio/330HiFi/.
    [79]ARC Inc.ARC Sound Subsystem.www.arc.com/upload/download/ARC_Sou nd_pb.pdf
    [80]OpenRISC 1200 IP Core Specification.http://www.opencores.org.
    [81]SURESH K,SREENIVAS T V.Linear filtering in DCT Ⅳ/DST Ⅳ and MDCT/MDST domain[J].Signal Processing,2009,89(6):1081-1089.
    [82]程佩青.数字信号处理教程[M].清华大学出版社,2001.
    [83]TODD C C,DAVIDSON G A,DAVIS M F,et al.AC-3:Flexible Perceptual Coding for Audio Transmission and Storage[C].96th Convention of the Audio Engineering Society,1994.
    [84]BROADHEAD M A,OWEN C B.Direct Manipulation of MPEG Compressed Digital Audio[C].Proceedings of the third ACM international conference on Multimedia 1995:499-507.
    [85]GOODWIN M.Transforming between MDCT and DFT signal representations.http://www.atc.creative.com/users/mgoodwin/Publications/Drafts/mdct.pdf.
    [86]GOODWIN M M,WOLTERS M,SRIDHARAN R.Post-processing and Computation in Parametric and Transform Audio Coders[C].22nd International Conference:Virtual,Synthetic,and Entertainment Audio,2002.
    [87]夏田,窦维蓓.一种面向高采样率音频信号的参数音频编码系统[J].电声技术,2005:44-48.
    [88]MENG-YAO Z,WEI Z,DONG-XIAO L,et al.An accurate low complexity algorithm for frequency estimation in MDCT domain[J].Consumer Electronics,IEEE Transactions on,2008,54(3):1022-1028.
    [89]FERREIRA A,SINHA D.Accurate and robust frequency estimation in the ODFT domain[C].Applications of Signal Processing to Audio and Acoustics,2005.IEEE Workshop on,2005:203-206.
    [90]FERREIRA A J S.Accurate estimation in the ODFT domain of the frequency, phase and magnitude of stationary sinusoids [C]. Applications of Signal Processing to Audio and Acoustics, 2001 IEEE Workshop on the, 2001: 47-50.
    [91] VIRTANEN T. AUDIO SIGNAL MODELINGWITH SINUSOIDS PLUS NOISE [D]. Tampere: TAMPERE UNIVERSITY OF TECHNOLOGY, Master, 2001.
    [92] QUATIERI T F. Discrete-Time Speech Signal Processing: Principles and Practice [M]. 2004.
    
    [93] D. ARFIB F K U Z. Source-filter Processing [M] // DAFX. 2002:299-372.
    [94] SPERSCHNEIDER R, LAUBER P. Error Concealment for Compressed Digital Audio [C]. 111st AES Convention, 2001.
    [95] 3GPP TS 26.402 General audio codec audio processing functions; Enhanced aacPlus general audio codec; Additional decoder tools. 2007.
    [96] HUANG Y, GOUBRAN R, SCHULZ D. Packet loss compensation method using injection of spectrally shaped noise, [P].
    [97] PARIKH V N, JUIN-HWEY C, AGUILAR G. Frame erasure concealment using sinusoidal analysis-synthesis and its application to MDCT-based codecs [C]. Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on, 2000, 2: II905-II908 vol.2.
    [98] RYU S-U, ROSE K. A Frame Loss Concealment Technique for MPEG-AAC [C]. 120th AES Convention 2006.
    [99] SANG-UK R, ROSE K. An MDCT Domain Frame-Loss Concealment Technique for MPEG Advanced Audio Coding [C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP '07), 2007, 1:1-273-1-276.
    [100] NUGGEHALLY S J, NOLL P. Digital Coding of Waveforms: Principles and Applications to Speech and Video [M]. Prentice Hall Professional Technical Reference, 1990.
    [101] BRITANAK V. A unified fast computation of the evenly and oddly stacked MDCT/MDST [C]. Video/Image Processing and Multimedia Communications, 2003. 4th EURASIP Conference focused on, 2003,1: 233-238 vol.1.
    [102] WANG Y, VILERMO M, YAROSLAVSKY L. Energy Compaction Property of the MDCT in Comparison with Other Transforms [C]. 109th AES Convention, 2000.
    [103] VLADIMIR B, HUIBERT J L A, NS. Fast computational structures for an efficient implementation of the complete TDAC analysis/synthesis MDCT/MDST filter banks [J]. Signal Process., 2009, 89 (7): 1379-1394.
    [104]张贤达.矩阵分析与应用[M].清华大学出版社出版,2004
    [105] WRIGHT K. Notes on Ogg Vorbis and the MDCT. http://www.free-comp- shop.com/vorbis.pdf.
    [106] GODSILL S J, RAYNER P J W. Digital Audio Restoration - A Statistical Model-Based Approach [M]. 1998.
    [107] HERRE J, EBERLEIN E. Evaluation of Concealment Techniques for Compressed Digital Audio [C]. 94th AES Convention, 1993.
    [108] WEN-TSAI L, JENG-CHUN C, MING-SYAN C. Adaptive recovery techniques for real-time audio streams[C].INFOCOM 2001.Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies.Proceedings.IEEE,2001,2:815-823 vol.2.
    [109]OFIR H,MALAH D,COHEN I.Audio Packet Loss Concealment in a Combined MDCT-MDST Domain[J].Signal Processing Letters,IEEE,2007,14(12):1032-1035.
    [110]JEROEN B,STEVEN VAN DE P,ARMIN K.et al.Parametric coding of stereo audio[J].EURASIP J.Appl.Signal Process.,2005,2005(1):1305-1322.
    [111]Rec.ITU-R BS.1534-1.Method for the subjective assessment of intermediate quality level of coding systems.2003.
    [112]ITU-R BS.1387-1:Method for objective measurements of perceived audio quality.2001.
    [113]ITU-R BS.1116-1.Methods for the Subjective Assessment of Small Impairments in Audio Systems Including Multichannel Sound Systems.1997.
    [114]VINCENT E.MUSHRAM:A MATLAB interface for MUSHRA listening tests.http://www.elec.qmul.ac.uk/people/emmanuelv/mushram/.
    [115]LANCIANI C A,SCHAFER R W.Subband-domain filtering of MPEG audio signals[C].Acoustics,Speech,and Signal Processing,1999.ICASSP'99.Proceedings.,1999 IEEE International Conference on,1999,2:917-920 vol.2.
    [116]TOUIMI A B.A GENERIC FRAMEWORK FOR FILTERING IN SUBBAND-DOMAIN[C].IEEE 9th Workshop on Digital Signal Processing,2000.
    [117]YU R,ROBINSON C,CHENG C.Low-Complexity Binaural Decoding Using Time/Frequency Domain HRTF Equalization[M]// Advances in Multimedia Modeling.2006:545-556.
    [118]谢菠荪,钟小丽,丹饶,et al.头相关传输函数数据库及其特性分析[J].中国科学G辑:物理学、力学、天文学,2006,36(5):464-479
    [119]GARDNER B,MARTIN K.HRTF measurements of a KEMAR dummy-head microphone.MIT Media Lab Perceptual Computing.1994.
    [120]王生九.虚拟听觉空间和虚拟环绕声技术的研究及其DSP实现[D].南京:东南大学,硕士,2006.
    [121]KAWANO S,TAIRA M,MATSUDAIRA M,et al.Development of the virtual sound algorithm[J].Consumer Electronics,IEEE Transactions on,1998,44(3):1189-1194.
    [122]詹曦.若干语音、音频信号处理算法研究及实现[D].中国科学技术大学,硕士,2006.
    [123]张淑君.Study of Spatial Audio Modeling and its Digital Implementaion[D].成功大学,硕士,2002.
    [124]BREEBAART J,SCHUIJERS E.Phantom Materialization:A Novel Method to Enhance Stereo Audio Reproduction on Headphones[J].IEEE Transactions on Audio Speech and Language Processing,2008,16(8):1503-1511.
    [125]IRWAN R,AARTS R M.Two-to-five channel sound processing[C].19th AES international Conference,2001,Audio Engineering Soc:914-926.
    [126] AVENDANO C, JOT J M. A frequency-domain approach to multichannel upmix [J]. Journal of the Audio Engineering Society, 2004, 52 (7-8): 740-749.
    [127] BAI M R, GENG-YU S. Upmixing and Downmixing Two-channel Stereo Audio for Consumer Electronics [J]. Consumer Electronics, IEEE Transactions on, 200". 53 (3): 1011-1019.
    [128] HENRIQUE S M. Signal Processing with Lapped Transforms [M]. Artech House, Inc., 1992.
    [129] SMITH J O. Spectral Audio Signal Processing, March 2007 Draft [M]. http://ccrma.stanford.edu/~ios/sasp/, March 2007 Draft.
    [130] TOUIMI A B, MOUHSSINE A. Efficient conversion method between subband domain representations [C]. Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on, 2005:4 pp.
    [131] USHER J, BENESTY J. Enhancement of spatial sound quality: A new reverberation-extraction audio upmixer [J]. IEEE Transactions on Audio Speech and Language Processing, 2007, 15 (7): 2141-2150.
    [132] SCHROEDER M R, LOGAN B F. "Colorless" artificial reverberation [J]. Audio, IRE Transactions on, 1961, 9 (6): 209-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700