芳香族二胺聚合物修饰电极测定痕量环境污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚萘二胺是继聚苯胺,聚吡咯,聚噻吩之后的又一类新型芳香族大π共轭结构的导电高聚物,因含有大量的氨基、亚氨基活性集团而具有许多新的功能,尤其对某些重金属离子具有高效的络合吸附作用。通过电化学聚合将其修饰于电极可以和某些重金属离子形成络合物,从而实现对重金属离子的富集与测定。本文就聚萘二胺修饰电极的制备、应用及国内外的研究进展做了介绍,并利用聚萘二胺对汞、银、铜离子的高效络合吸附作用,建立了分别测定环境中痕量汞、银、铜离子的新方法以及同时测定环境水样中痕量铜和汞的方法。
     实验采用循环伏安扫描的方法,制备了聚1,8-萘二胺修饰玻碳电极,讨论了聚萘二胺的电聚合条件(如反应介质、循环扫描电位、扫描速率、扫描时间等)及其电化学行为;研究了Hg2+、Ag+、Cu2+在聚1,8-萘二胺修饰电极上的伏安特性,通过“预富集-阳极溶出”建立了测定溶液中痕量Hg2+、Ag+、Cu2+的新方法。选择了最佳的富集底液和溶出底液,优化了各种实验参数(如富集底液的pH和浓度,富集时间,阳极溶出时的扫描范围,静止电位,静止时间,扫描速率等),并考察了其它离子的干扰影响。另外,对金属离子在修饰玻碳电极表面的电化学反应机理进行了初步探讨。
     实验发现,在最佳实验条件下阳极溶出时,汞在+0.07V获得一灵敏的溶出峰,在0.001~0.1mgL-1及0.1~5mgL-1浓度范围内与峰电流成良好的分段线性关系,检出限达0.0005mgL-1;银在0.0V获得一灵敏的溶出峰,在0.0008~0.1mgL-1浓度范围内与峰电流成良好的线性关系,检出限达0.0005mgL-1;铜在-0.25V及+0.40V处分别获得灵敏的溶出峰,在0.0008~0.1mgL-1及0.1~2mgL-1浓度范围内与峰电流成良好的分段线性关系,检出限达0.0005mgL-1;当同时测定环境水样中痕量的铜和汞时,在选定的实验条件下,Cu2+和Hg2+分别在0.001~0.2mgL-1及0.002~1mgL-1浓度范围内与峰电流呈良好的线性关系,检出限分别为0.0008mgL-1和0.001mgL-1。
     该电极制备简单快速,可重复使用,该法操作简便,灵敏度高,选择性好,抗干扰能力强,用于实际水样中痕量汞、银、铜的测定,效果良好,是传统测定方法的另一种选择。相信其在痕量物质的检测及传感器方面会有长足发展,有望发展成为性能优异的检测电极和传感器。
Polydiaminonaphthalene is a new type of conducting polymer withπ-bond following polyaniline, polypyrrole and polythiophene, which has many more new functions due to a large number of amino groups and imido groups, and it can form complexes with several heavy metal ions. This characteristic makes it possible for the electrodes to concentrate and detect the heavy metal ions in dilute solutions when polydiaminonaphthalene is modified on electrodes. This paper introduced the prepararation and application of polydiaminonaphthalene modified electrode according to the latest literature. Based on the highly adsorption charicteristic of poly(1,8-diaminonaphthalene), methods for the separate determination of trace Hg2+, Ag+, Cu2+ and the simultaneous determination of trace Cu2+ and Hg2+ in water sample were established.
     In this paper, poly(1,8-diaminonaphthalene) modified glassy carbon electrode was prepared by cyclic voltammetry. It discussed parameters of electropolymerization, such as reaction medium, scan potential, scan rate, scan time and so on, the electrochemical behavior of the polymer was also researched. Hg2+, Ag+, Cu2+ were firstly accumulated on the modified electrode, then the accumulated mercury, silver and copper were anodically stripped by differential pulse voltammetry separately. The volt-ampere characteristics of Hg2+, Ag+, Cu2+ were studied. Different parameters, such as the pH and concentration of the accumulating solution, preconcentration time were studied, the scan potential, rest potential, rest time, scan rate and so on were optimized when it was anodic stripping. It also studied the interference of other ions. In addition, the electrochemical reaction mechanism of the metal ions on the modified glassy carbon electrode were discussed preliminary.
     The conclusions of the experiment were as follows: at the optimum experiment condition, when anodically stripped by differential pulse voltammetry, a well-defined anodic peak of mercury was at +0.07V, the linear ranges were 0.001~0.1 mgL-1 and 0.1~5mgL-1 with a detection limit of 0.0005mgL-1; a well-defined anodic peak of silver was at 0.0V, the linear range was 0.0008~0.1mgL-1 with a detection limit of 0.0005 mgL-1; two anodic peaks of copper could be observed at -0.25V and +0.40V, the linear ranges were 0.0008~0.1 mgL-1 and 0.1~2 mgL-1 with a detection limit of 0.0005 mgL-1. When it was used for the simultaneous determination of trace Cu2+ and Hg2+, the linear range of copper was 0.001~0.2mgL-1, the detection limit was 0.0008mgL-1; the linear range of mercury was 0.002~1mgL-1, the detection limit was 0.001mgL-1.
     This method is easy, fast, anti-interference, the detector is having good selectivity, high sensitivity as well as low detection limit, the results were satisfied when it was used to detect trace Hg2+, Ag+ and Cu2+ in water sample, it can be regarded as an new alternative to the conventional method, the future high perfermance of these electrodes as potential detecting electrodes and sensors are foresee.
引文
[1]李启隆.电分析化学.北京师范大学出版社, 2007年
    [2]董绍俊,车广礼,谢远武.化学修饰电极.科学出版社, 1995年
    [3]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用.化学研究与应用, 2006, 18(4): 337-343
    [4]万梅香.导电高聚物的现状与挑战.中国基础科学-研究进展, 2000, 9: 24-25
    [5]陈炅,钟发春等.聚苯胺复合材料应用研究进展.化学推进剂与高分子材料, 2006, 4(4): 25-28
    [6]杨志建,蔡谨,袁中.导电聚合物生物传感器的研究进展, 2003, 22(10): 72-77
    [7]薛怀国,沈之荃,张一峰,李永舫.导电聚合物传感器的研究进展.化学通报, 2001, 7: 402-406
    [8]李永舫.导电聚合物的电化学性质.复旦学报(自然科学版), 2004, 43(4): 468-481
    [9]李永舫.导电聚合物的电化学制备和电化学性质研究.电化学, 2004, 10(4): 369-378
    [10]John D, Stenger S. Intrinsically electrically conducting polymers: synthesis Characterization, and their applications. Progr PolymSci, 1998, 23: 57-59
    [11]顾莉洁.共轭导电聚合物的发展和应用.大众科技, 2007, 97: 128-129
    [12]袁新华,徐红星,魏贤勇等.芳香族电子导电高分子的应用和进展.高分子材料科学与工程, 2001, 17(5): 25-29
    [13]袁新华,徐红星,秦志宏等.芳香族导电聚合物研究进展.化工进展, 2000, 4: 38-41
    [14]王东周,李光,江建明.导电高分子研究概述.合成技术及应用, 2001, 16(3): 36-39
    [15]邓建国,王建华,龙新平,彭宇行.聚苯胺复合材料研究进展.高分子通报, 2002, 3: 33-37
    [16]李永舫.导电聚吡咯的研究.高分子通报, 2005, 4: 51-57
    [17]任丽,王立新,赵金玲等.导电聚合物及导电聚吡咯的研究进展.材料导报, 2002, 16(2): 60-62
    [18]任丽,张雪峰,王立新等.化学氧化法聚吡咯导电性能与导电机理.半导体学报, 2007, 28(9): 1396-1401
    [19]孟晓荣,胡新婷,邢远清,张敏.噻吩类导电高聚物的研究进展.应用化工, 2006, 35(7): 549-553
    [20]胡玥,刘彦军.导电高分子聚噻吩及其衍生物的研究进展.材料导报, 2006, 1(20): 64-68
    [21]Turdean G L, Curulli A, Popescu I C, et al. Electropolymerized architecture entrapping a trilacunary Keggin-type polyoxometalate for assembling a glucose biosensor. Electro-analysis, 2002, 14: 1550-1556
    [22]朱泉峣,靳艾平,陈文.智能窗中电致变色材料的研究进展.国外建材科技, 2006, 27(1): 4-7
    [23]Murphy L J. Reduction of interference response at a hydrogen peroxide detecting electrode using electropolymerized films of substituted naphthalenes. Analytical Chemistry, 1998, 70: 2928-2935
    [24]马伟,孙登明.聚合物薄膜修饰电极的制备及应用.淮北煤炭师范学院学报. 2005, 26(4): 26-37
    [25]谭正德,柴永柱,宋明亮,欧阳坤.聚吡咯膜修饰电极的制备与应用.湖南工程学院学报. 2006, 16(2): 68-71
    [26]侯丽波,贾梦秋,胡刚.聚苯胺薄膜电极的制备及性能研究.北京化工大学学报, 2004, 31(4): 65-69
    [27]胡军福.聚合物复合修饰电极的电化学行为研究.沈阳农业大学学报, 2006, 37(1): 122-124
    [28]丛文博,张宝宏,喻应霞.聚苯胺修饰碳电极电容性能研究.哈尔滨工程大学学报. 2004, 25(6): 809-813
    [29]易德莲,秦晓蓉,刘娟等.聚苯胺修饰铂电极的研究.武汉科技大学学报(自然科学版), 2006, 29(1): 59-62
    [30]黄桂萍,钟平.聚苯胺修饰玻炭电极差示脉冲伏安法测定人体尿酸.化学分析计量, 2006, 15(1): 33-35
    [31]武克忠,王新东,张超星等.聚苯胺载铂电极对乙醇的电催化氧化.河北师范大学学报(自然科学版), 2005, 29(3):268-271
    [32]赵丹庆,孙占才.聚吡咯修饰电极测定抗坏血酸的研究.内蒙古民族大学学报(自然科学版), 2005, 20(1): 33-35
    [33]万其进,张学记,张春光等.过氧化聚吡咯膜修饰微电极的制备及其电化学特性.分析化学研究简报, 1997, 25(9): 1031-1033
    [34]程发良,吴剑,张敏等.硝苯地平在聚吡咯膜修饰电极上的电化学行为及电位溶出分析.分析测试学报, 2004, 23(6): 14-17
    [35]王胜天,秦玉华,翟剩勇等.阳极氧化铝膜修饰的杂多酸-聚吡咯纳米粒子玻碳电极的电化学性质研究.高等学校化学学报, 2004, 25(5): 841-843
    [36]王怀生,黄德乾,柳仁民.聚噻吩类导电聚合物修饰电极在分析化学中的应用研究进展.聊城大学学报(自然科学版), 2004, 17(3): 8-14
    [37]张占恩,张丽君.电化学聚合N,N-二甲基苯胺固定过氧化物酶生物传感器.苏州城建环保学院学报, 1999, 12(3): 17-22
    [38]汪振辉,李志果,周漱萍.咖啡因和茶碱在聚合物修饰电极上的电化学行为.分析化学研究报告, 2004, 32(3): 305-308
    [39]吕元琦,邬春华,袁倬斌.去甲肾上腺素在聚-2,3-吡啶二羧酸修饰玻碳电极上的电化学行为.分析化学研究简报, 2004, 32(8): 1016-1018
    [40]甘新民,王欣,谭氏裕.镧系金属高氯酸盐与1,8-萘啶氮氧化物配合物的合成、性质和结构.化学学报, 1989, 47: 19-44
    [41]Lee J W, Park D S, Shim Y B, et al. Electrochemical characterization of poly (1,8-diaminonaphthalene):a functionalized polymer. J. Electrochem. Soc., 1992, 139: 3507-3514
    [42]黄美荣,李新贵,李圣贤.聚萘二胺的合成及其对重金属离子的高效反应吸附.化学进展, 2005, 17(2): 299-309
    [43]Azzem M A, Yousef U S, Limosin D, et al. Electropolymerization of 1,5-diaminonaphthalene in acetonitrile and in aqueous solution. Synth. Met., 1994, 63: 79-81
    [44]Ohsake T, Watanabe T, Kitamura F. Electrocatalysis of poly (2,3-diaminonaphthalene) film electrodes for reduction of oxygen. J. Electrochem. Soc. Chem. Commun., 1991: 138: 487-489
    [45]Palys B J, Skompskam, Jackowskak. Sensitivity of poly 1,8-Diaminonaphthalene to heavy metal ions-electrochemical and vibrational spectra studies. J Electroanal Chem, 1997, 433: 41-48
    [46]李新贵,易辉,黄美荣.聚萘二胺修饰电极对痕量物质的检测.理化检验-化学分册, 2005, 41(9): 697-701
    [47]黄美荣,刘睿等.芳香族二胺聚合物修饰电极对痕量重金属离子的络合与探测.分析测试学报, 2005, 24(2): 109-113
    [48]Jin C S, Shim Y B, Park S M. Electropolymerization and spectroelectrochemical characterization of poly (1,5- diaminonaphthalene). Synth. Met., 1995, 69: 561-562
    [49]Majid S, Rhazi M E, Amine A, et al. . Carbon paste electrode bulk-modified with the conducting polymer poly(1,8-Diaminonaphthalene): application to lead determination, 2003, 143: 195-204
    [50]Imane Adraoui, Mama El Rhazi, Aziz. Amine, Laila Idrissi, Antonella Curulli, Giuseppe Palleschi. Lead determination by anodic stripping voltammetry using a p-PHenylenediamine modified carbon paste electrode. Electroanalysis, 2005, 17: 685-693
    [51]章家立,黄美荣等.循环伏安法制聚(1,5-萘二胺)膜及其对紫外可见光吸收的研究.高分子学报, 2006, 12(9): 1094-1099
    [52]Xingui Li, Meirong Huang, Shengxian Li. Facile synthesis of poly (1,8-diaminonaphthalene) microparticles with a very high silver ion adsorbability by a chemical oxidative polymerization. Acta Materialia, 2004, 52: 5363-5374
    [53]黄美荣,王琳等. 1,8-萘二胺共聚物对铜离子的吸附性.环境科学学报, 2007, 27(8): 1317-1319
    [54]Sana Majid, Mama El Rhazi, Aziz Amine, Christopher M.A. Brett. An amperometric method for the determination of trace mercury(II) by formation of complexes with l-tyrosine. Analytica Chimica Acta, 2002, 464: 123-133
    [55]Pham M C, Oulahyane M, Mostefai M, et al. Multiple internal reflection FT-IR spectroscopy (MIRFTIRS) study of the electrochemical synthesis and the redox process of poly (1,5-diamino naphthalene). Synth. Met., 1998, 93: 89-96
    [56]A. Kudelski, J. Bukowska, K. Jackowska. Trapping of Cu~(2+) and VO~(2+) ions in conducting polymer matrices - EPR studies . Journal of Molecular Structure, 1999, 482-483: 291-294
    [57]A. Nasalska, M. Skompska. Removal of toxic chromate ions by the films of poly (1,8-diaminonaphthalene). Journal of Applied Electrochemistry, 2003, 33: 113-119
    [58]Mi-Sook Won, Jang-Hee Yoon, Yoon-Bo Shim. Determination of selenium with a poly (1,8-diamino-naphthalene) modified electrode. Electroanalysis, 2005, 21: 1952-1958
    [59]Tomoyuki W., Hitoshi H., Takao Y.. Successive determination of platinum (2+) and selenium(4+) with 1,4-dibromo-2,3-diaminonaphthalene in aqueous Micellar solutions. Analytical Sciences, 2001, 17: 859-863
    [60]F. Yakuphanoglua, M. Sekercib. Determination of the optical constants of Co(II) complex of chiff base obtained from 1,8-diaminonaphthalene thin film by infrared spectra. Journal of Molecular Structure, 2005, 751: 200-203
    [61]Muharrem Kaya, Cengiz Yenikaya, ?brahim Demir , Orhan Murat KalfaSynthesis. Synthesis and characteristics of N -(glyoxyldioxime)- N′- (2-hydroxybenzylidene) -1,4- diaminonaphthalene and its metal complexes. Russian Journal of General Chemistry, 2008, 78(5): 939-945
    [62]Badea M, Amine A, Palleschi G, et al. New electrochemical sensors for deterction of nitrites and nitrates. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 2001, 509: 66-72
    [63]Murphy L J. Reduction of interference response at a hydrogen peroxide detecting electrode using electropolymerized films of substituted naphthalenes. Analytical Chemistry, 1998, 70: 2928-2935
    [64]Hyun Park, Tae-guen Kwon, Deog-Su Park, and Yoon-Bo Shim. Electrocatalytic reduction of molecular oxygen at poly (1,8-diaminonaphthalene) and poly (Co(II)-(1,8-diaminonaphthalene)) coated electrodes. Bull. Korean Chem. Soc, 2006, 27(11): 1763-1768
    [65]Vidal J C, Garcia-Ruiz E, Espuelas J, et al. Comparison of biosensors based on entrapment of cholesterol oxidase and cholesterol esterase in electropolymerized films of polypyrrole and diaminonaphthalene derivatives for amperometric determinatio. Analytical and Bioanalytical Chemistry , 2003, 377: 273-280
    [66]Shim Y B, Park J H. Humidity sensor using chemical synthesized poly(1,5-diaminonaphthalene) doped with carbon . J. Electrochem. Soc. 2000, 147: 381-385
    [67]李新贵,华轶敏,黄美荣.功能性氮杂环芳胺聚合物的合成及应用.工程塑料应用, 2004, 32(1): 41-44
    [68]Skompska M, Hillman A R. Electrochemical quartz crystal microbalance studies of the electropolymerization, electroactivity and complexing properties of poly(1,8-diaminonaphthalene) films . J. Chem. Soc, 1996, 92: 4101-4108
    [69]于艳秋,张笑竹,刘娟.重金属污染对人体的危害.企业标准化, 2008, 1: 16-17
    [70]王俊荣.冷原子吸收法测定汞过程中的质量控制.环境科学与技术, 2005, 28 (06): 22-23
    [71]朱玉强.荧光光度法测定汞及其它重金属离子研究进展.中国食品添加剂. 2006, 5: 163-168
    [72]堵锡华,冯长君.分光光度法连续测定汞、铜和镍.化工环保, 2001, 21(2): 113-115
    [73]梁榕源.共振光散射测定汞.环境科学与技术, 2006, 29(3): 41-42
    [74]Azzem M A, Yousef U S, Limosin D, et al. Electro-oxidative oligomerization of 1,5-diaminonaphthalene in acetonitrile medium . J. Electroanal. Chem., 1996, 417: 163-173
    [75]Abdel-Azzem M, Yousef U S, Pierre G. A cyclic voltammetric and coulometric study of a modified electrode prepared by electrooxidative polymerization of 1,5-diaminonaphthalene in aqueous acidic medium . Eur. Polym. J., 1998, 34: 819-826
    [76]Abdul-Rahman Al-Betar, Ali El-Rayyes, Uwe K. A. Klein. Ground and excited states proton transfer reactions of 1,8-diaminonaphthalene in perchloric acid solutions. Journal of Fluorescence, 2005, 15(5): 689-696
    [77]何荣桓,王建华.配体交换动力学法测定痕量银的研究.稀有金属材料与工程, 1999, 28(1) : 60-63
    [78]王智敏,申屠超,李成平等. (2,6-二溴-4-硝基苯)-3-(4-硝基苯)-三氮烯与银(I)的显色反应及其应用分析科学学报, 2006, 26(5): 585-587
    [79]于惠芬,孙桂清.痕量银的液膜富集与原子吸收法测定.分析试验室, 2000, 19(3) : 28-30
    [80]孙建民,徐鹏,韩雪涛等.壳聚糖富集-火焰原子吸收法测定痕量银.光谱学与光谱分析, 2005, 25(2) : 290-292
    [81]黄美荣,王海燕,李新贵.高效金离子吸附剂.同济大学学报(自然科学版), 2008, 01: 14-17
    [82]Hong S Y, Park S M. . Electrochemistry of Conductive Polymers XXVIII. Electrochemical Preparation and Characterization of Poly.1,5-diaminonaphthalene. as a Functional Polymer. Electrochem Soc, 2003, 150 : 360- 365
    [83]Allen J Bard, Larry R Faulkner.电化学方法原理和应用.邵元华,朱果逸,董献堆,等译.北京:化学工业出版社, 2005: 163-166
    [84]金根娣,杨阿喜.修饰碳纤维电极为工作电极-溶出伏安法测定银离子.理化检验-化学分册, 2008, 44(12): 1155-1158
    [85]Jackowska K, Bukowska J, Jamkowski M. Synthesis, electroactivity and molecular structure of poly(1,5-diaminonaphthalene) . J. Electroanal. Chem., 1995, 388: 101-108
    [86]Khoo S B, Guo S X. . Rapidly renewable and reproducible electropolymerized surface at a monomer modified carbon paste electrode. Electroanal. Chem. 1999, 465: 102-113
    [87]蔡慧华,彭速标.痕量汞的测定方法进展.理化检验-化学分册, 2008, 34(4): 385-390
    [88]谢红旗,李益恒,胡朝晖.茜素修饰碳糊电极吸附伏安法测定痕量铜.分析试验室, 2001, 20(1):39-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700