金纳米溶胶与蛋白质相互作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是一类极为重要的生物大分子,是生命物质的基础,在研究纳米材料与生物大分子的相互作用以及由此所产生的纳米生物学效应时,通常选择蛋白质作为研究对象。研究蛋白质-纳米材料相互作用有助于确定出可能产生有害影响的纳米材料的性质,从而促进纳米材料的安全设计,同时对其相互作用的理解是研究纳米材料与生物体内的细胞、组织、器官甚至生物体相互作用的基础。
     纳米金以其良好的稳定性以及独特的表面效应、小尺寸效应、光学效应、生物亲和性,在生物分析化学、生物医药、工业催化、食品安全快速检测等领域得到人们的青睐。因此,研究金纳米粒子的生物毒性显得尤为重要。目前报道的研究纳米金-蛋白分子相互作用主要是定性研究,定量报道很少,主要原因是金溶胶的浓度不易精确测定。
     对于理想溶液,我们根据范特霍夫方程和唐南平衡,得到了大分子溶液浓度、电解质浓度和溶液渗透压之间的分析表达式。并进一步将该表达式应用到3nm谷胱甘肽-稳定的金纳米溶胶中。根据渗透压数据得到了金溶胶的浓度为4.14×10-5mol L-1,每个金颗粒表面的平均净电荷数为5.50。同时,结合原子吸收分光光度计得到的金溶胶的金含量,我们确定出每个3nm谷胱甘肽-稳定的金颗粒所含的平均金原子数为479个。
     在生理条件下运用紫外、荧光光谱法研究了浓度值精确测定的金纳米溶胶与胰蛋白酶、卵清蛋白分子的相互作用。根据光谱数据拟合得到的纳米粒子-蛋白体系的结合常数为107~108L mol-1。目标蛋白分子与纳米粒子结合过程的Hill系数(m>1)的确定,表明结合过程具有高的协同性,结合同步荧光和紫外光谱的研究,我们推测金纳米粒子与目标蛋白分子之间很可能形成了蛋白-金纳米粒子集合体(protein-Au nanoparticleaggregates),其在很大程度上改变了蛋白分子的结构。这些研究将是进一步探讨金溶胶在生物体内的纳米毒性效应的基础。
Protein is one kind of extremely important biomacromolecule and is the basic of living things. Usually,when we desire to have further understanding about the interaction of nanomaterials andbiomacromolecules and the resulting nanobiological implications of these interactions, protein is chosen asthe research subject To clarify the interaction of proteins and nanomaterials is helpful to determine theproperties of nanomatetials, which will probably cause undesired impacts and promote the safe designs ofnanomaterials. Furthermore, the understanding of the interaction is the basic of the research for theinteraction of nanomaterials and the cells, tissues, organs in organisms even the organisms.
     People focus on gold nanoparticles for their excellent stability, special properties, such as, surfaceeffects, small-scale effects, optical effects, biocompatibility and their promise in diverse field, includingbioanalytical chemistry, biomedicine, industrial catalysis and fast test in food safety. Therefore, it is veryimportant to research the biotoxicity of gold nanoparticles. Presently, amounts of techniques are used tostudy the interaction of biomacromolecule and gold nanomaterials qualitatively. That is becausequantitative research should need the accurate concentration of the gold nanoparticles colloid which hasbeen yet hard to obtain.
     In this paper, an analytical expression among macromolecule concentration, electrolyte concentrationand the solution osmotic pressure is obtained on the basis of van't Hoff equation and Donnan equilibrium.The expression was further applied to a colloid solution of3nm glutathione-stabilized gold nanoparticles.The concentration of the colloid solution and the average net ion charge number for each gold nanoparticlewere determined with the measured osmotic pressure data. The values were4.14×10-5mol L-1and5.50respectively. Meanwhile, combining the gold contents of the solutions obtained by means of atomicabsorption spectrophotometer, we determined the value for the average number of gold atoms per3nmgold nanoparticle synthesized in our work was479.
     The interactions of3nm glutathione-stabilized gold nanoparticles colloid with trypsin, ovalbuminhave been investigated by UV spectra, fluorescence spectra under physiological conditions. The bindingconstants of gold nanoparticles-proteins fitted from the spectral data in our work are between107~108L mol-1. We combine the values of Hill constants (m>1) which show the high degree of cooperativity ofparticle-proteins binding with the Synchronous Fluorescence and UV spectra researches to speculate thatthe interaction between proteins studied and gold nanoparticles at physiological pH results in the formationof extended gold nanoparticles-proteins aggregates, which has altered the structures of proteins largely.These studies provided basis for further studies on the biotoxicity of gold nanoparticles.
引文
[1]曾琦斐.纳米金的制备及其应用研究[J].嘉应学院学报,2011,29(5):54-59.
    [2] Marie-Christine Daniel, Didier Astruc. Gold Nanoparticles: Assembly, Supramolecular Chemistry,Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J].Chem. Rev.2004,104(1):293-346.
    [3] Loo, C., Lowery, A., Halas, N., et al. Immunotargeted Nanoshells for Integrated Cancer Imaging andTherapy[J]. Nano Lett.2005,5(4):709–711.
    [4] Hurst, S. J., Han, M. S., Lytton-Jean, A. K. R., et al. Screening the Sequence Selectivity ofDNA-Binding Molecules Using a Gold Nanoparticle-Based Colorimetric Approach[J]. Anal. Chem.2007,79(18):7201–7205.
    [5] Linse, S., Cabaleiro-Lago, C., Xue, W. F., et al. Nucleation of Protein Fibrillation by Nanoparticles[J].Proc. Natl. Acad. Sci. U.S.A..2007,104(21):8691–8696.
    [6] Lacerda, S. H. De Paoli, Park, J.-J., Meuse, C., et al. Interaction of Gold Nanoparticles with CommonHuman Blood Proteins[J]. ACS Nano2010,4(1):365–379.
    [7] Faraday, M. Experimental Relations of Gold (and other Metals) to Light[J]. Philos.Trans.1857,147:145-181.
    [8] Fendler, J. H., Meldrum, F. C. The Colloidal Chemical Approach to Nanostructured Materials[J]. Adv.Mater.1995,7:607-632.
    [9] Matijevic, E. Controlled Colloid Formation[J]. Curr. Opin. Colloi. Interface Sci.1996,1:176-183.
    [10] Fendler, J. H. Self-Assembled Nanostructured Materials[J]. Chem. Mater.1996,8:1616-1624.
    [11] Schmid, G. Large Clusters and Colloids[J]. Chem. Rev.1992,92:1709-1727.
    [12] Schmid, G., Chi, L. F. Metal Clusters and Colloids[J]. Adv. Mater.1998,10:515-527.
    [13] Bethell, D., Brust, M., Schiffrin, D. J., et al. From Monolayers to Nanostructured Materials: AnOrganic Chemist’s View of Self-Assembly[J]. J. Electroanal. Chem.1996,409:137-143.
    [14] Brust, M., Kiely, C. J. Some Recent Advances in Nanostructure Preparation from Gold and Silver: AShort Topical Review[J]. Colloids Surf. A: Physicochem. Eng. Asp.2002,202:175186.
    [15] Frens, G. Controlled nucleation for the Regulation of the Particle Size in Monodisperse GoldSuspensions[J]. Nature1973,241(1):20-22.
    [16] Muhlpfordt, H. The preparation of colloidal gold particles using tannic acid as an additional reducingagent[J]. Experientia1982,38:1127-1128.
    [17] Brust, M., Walker, M., Bethell, D. Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phaseLiquid-Liquid System[J]. J. Chem. Soc., Chem. Commun.1994:801-802.
    [18] Natan, M. J., Lyon, L. A. Surface Plasmon Resonnance Biosensing with Colloidal Au Amplification.In Metal Nanoparticles-Synthesis, Characterization and Applications[M]. NewYork: Marcel Dekker,2002:183-205.
    [19] Thanh, N. T. K., Rosenzweig, Z. Development of an Aggregation Based Immunoassay forAnti-Protein A Using Gold Nanoparticles[J]. Anal. Chem.2002,74(7):1624-1628.
    [20] Mirkin, C. A., Letsinger, R. L., Mucic, R. C., et al. DNA Based Method for Rationally AssemblingNanoparticles into Macroscopic Materials[J]. Nature1996,382:607-609.
    [21] Storhoff, J. J., Mirkin, C. A. Programmed Materials Synthesis with DNA[J]. Chem. Rev.1999,99:1849-1862.
    [22] Cha, D.Y., Parravano, G. Surface Reactivity of Supported Gold I. Oxygen Transfer Between CarbonMonoxide and Carbon Dioxide[J]. J. Catal.1970,18:200-211.
    [23] Parravano, G. Surface Reactivity of Supported Gold. II. Hydrogen Transfer Between Benzene andCyclohexane[J]. J. Catal.1970,18:320-328.
    [24] Schwank, J., Galvano, S., Parravano, G. Isotopic Oxygen Exchange on Supported Ruthenium and GoldCatalysts[J]. J. Catal.1980,63:415-424.
    [25] Galvagno, S., Parravano, G. Chemical Reactivity of Supported Gold. IV. Reduction of Nitric Oxide byHydrogen[J]. J.Catal.1978,55:178-190.
    [26] Haruta, M., Yamada, N., Kobayashi, T., et al. Gold Catalysts Pre pared by Coprecipitation forLow-Temperature Oxidation of Hydrogen and of Carbon Monoxide[J]. J. Catal.1989,115:301-309.
    [27] Haruta, M. Size-and Support-Dependency in the Catalysis of Gold[J]. Catal. Today1997,36:153-166.
    [28] Andreeva, D., Tabakova, T., Idakiev, V., et al. Au Fe2O3Catalyst for Water-Gas Shift ReactionPrepared by Deposition Precipitation[J]. Appl. Catal. A1998,169:9-14.
    [29]夏其昌,曾嵘,蛋白质化学与蛋白质组学[M].北京:科学出版社,2004:6-7.
    [30]杨频,高飞,生物无机化学[M].北京:科学出版社,2002:22-27.
    [31]阎隆飞,孙之荣,蛋白质分子结构[M].北京:清华大学出版社,2000:4-25.
    [32]徐国恒.蛋白质分子的结构与功能[J].生物学通报,2010,45(3):24-25.
    [33]刘翠然,张平之,生物化学[M].河南:河南大学出版社,1993:23-25.
    [34] Hamaguhi K., The Protein Molecule Conformation Stability and Folding[M]. Tokyo: Japan ScientificSocieties Press,1992:71-84.
    [35] Schulz G. E., Schirmer S., Principle of Protein Structure[M]. New York: Elsevier Press,1981:237-296.
    [36]王镜岩,生物化学[M].第三版.北京:高等教育出版社,2007.
    [37] Asuri, P., Bale, S. S., Karajanagi, S. S., et al.The Protein Nanomaterial Interface[J]. Curr. Opin.Biotechnol.2006,17:562–568.
    [38] Lundqvist, M., Stigler, J., Elia, G., et al. Nanoparticle Size and Surface Properties Determine theProtein Corona with Possible Implications for Biological Impacts[J]. Proc. Natl. Acad. Sci. U.S.A.2008,105:14265–14270.(This work contains many further references on this topic)
    [39] Rahban M., Divsalar A., Saboury A. A., et al. Nanotoxicity and Spectroscopy Studies of SilverNanoparticle: Calf Thymus DNA and K562as Targets[J]. J. Phys. Chem. C2010,114(13):5798–5803.
    [40] Rocker C., Potzl M., Zhang F., et al. A quantitative fluorescence study of protein monolayer formationon colloidal nanoparticles[J]. Nat. Nanotechnol.2009,4:577-580.
    [41] Peng J. J., Liu S. P., Yan S. G., et al. A study on the interaction between CdTe quantum dots andchymotrypsin using optical spectroscopy[J]. Colloid Surface A.2010,359(1):13–17.
    [42] Jiang X. U., Jiang J. G., Jin Y. D., et al. Effect of Colloidal Gold Size on the Conformational Changesof Adsorbed Cytochrome c: Probing by Circular Dichroism, UV Visible, and Infrared Spectroscopy[J].Biomacromolecules2005,6(1),46-53.
    [43] Zhang D. M., Neumann O., Wang H., et al. Gold Nanoparticles Can Induce the Formation ofProtein-based Aggregates at Physiological pH[J]. Nano Letters2009,9(2):666-671.
    [44] Li N., Zeng S., He L., et al. Probing Nanoparticle Protein Interaction by Capillary Electrophoresis[J].Anal. Chem.2010,82(17):7460-7466.
    [45] Calzolai L., Franchini F., Gilliland D. et al. Protein Nanoparticle Interaction: Identification of theUbiquitin Gold Nanoparticle Interaction Site[J]. Nano Letters2010,10(8):3101-3105.
    [46] Tsai D.-H., DelRio F. W., Keene A. M., et al. Adsorption and Conformation of Serum Albumin Proteinon Gold Nanoparticles Investigated Using Dimensional Measurements and in Situ SpectroscopicMethods[J]. Langmuir2011,27(6),2464-2477.
    [47] Xiao J. B., Chen T. T., Chen L. S., et al. CdTe quantum dots (QDs) improve the affinities of baicaleinand genistein for human serum albumin in vitro[J]. J. Inorg. Biochem.2010,104(11):1148–1155.
    [48] Xiao J. B., Chen L. S., Yang F., et al. Green, yellow and red emitting CdTe QDs decreased theaffinities of apigenin and luteolin for human serum albumin in vitro[J]. J. Hazard. Mater.,2010,182(1):696–703.
    [49] Hu Y. J., Liu Y., Jiang W., et al. Fluorometric investigation of the interaction of bovine serum albuminwith surfactants and6-mercaptopurine[J]. J. Photoch. Photobio. B2005,80(3):235–242.
    [50] Ghali M. Static quenching of bovine serum albumin conjugated with small size CdS nanocrystallinequantum dots[J]. J. Lumin.2010,130(7):1254–1257.
    [51] Chakraborty S., Joshi P., Shanker V., et al. Contrasting Effect of Gold Nanoparticles and Nanorodswith Different Surface Modifications on the Structure and Activity of Bovine Serum Albumin[J].Langmuir2011,27(12):7722-7731.
    [52] Sahoo D., Bhattacharya P., Patra H. K., et al. Gold nanoparticle induced conformational changes inheme protein[J]. J. Nanopart. Res.2011,13(12):6755-6760.
    [53] Liu, X., Atwater, M., Wang, J. H., et al. Extinction coefficient ofgold nanoparticles with different sizesand different capping ligands[J]. Colloid Surface B2007,58(1):3–7.
    [54] Zhang, L. D., Mou, J. M. Nano-building block. In Nanomaterials and nanostructures[M]. Beijing:China Academic Press Inc,2001:23-24.
    [55] Haiss, W., Thanh, N. T. K., Aveyard, J., et al. Determination of Size and Concentration of GoldNanoparticles from UV-Vis Spectra[J]. Anal. Chem.2007,79():4215-4221.
    [56] Thomas C. R., George S., Horst A. M., et al. Nanomaterials in the Environment: From Materials toHigh-Throughput Screening to Organisms[J]. ACS Nano,2011,5(1):13-20.
    [57] Zolghadri S., Saboury A. A., Golestani A., et al. Interaction between silver nanoparticle and bovinehemoglobin at different temperatures[J]. J. Nanopart. Res.,2009,11(7):1751-1758.
    [58] Iosina M., Toderasa F., Baldeckb P.L., et al. Study of protein–gold nanoparticle conjugates byfluorescence and surface-enhanced Raman scattering[J]. J. Mol. Struct.,2009,924:196-200.
    [59]查隽,何华,刘铁兵,等.荧光光谱法研究共存碳纳米管对牛血清白蛋白与加替沙星相互作用的影响[J].光谱学与光谱分析,2011,31(1):149-153.
    [60] Monteiro-Riviere N. A., Inman A. O. Challenges for assessing carbon nanomaterial toxicity to theskin[J]. Carbon2006,44(6):1070-1078.
    [61] Karata. F., Sezgin E., Ayd n., et al. Interaction of gold nanoparticles with mitochondria[J].Colloid Surface B2009,71(2):315-318.
    [62] Tapasi S., Sadananda M., Haldar S., et al. Interaction of Gold Nanoparticle with Human SerumAlbumin (HSA) Protein Using Surface Energy Transfer[J]. J. Phys. Chem. C2011,115(49):24037-24044.
    [63] Lu Y., Wang Y. L., Gao S. H. et al. Interaction of quercetin with ovalbumin: Spectroscopic andmolecular modeling studies[J]. J. Lumin.2009,129(9):1048-1054.
    [64] Hou H. N., Qi Z. D., OuYang Y. W., et al. Studies on interaction between Vitamin B12and humanserum albumin[J]. J. Pharmaceut. Biomed.2008,47(1):134-139.
    [65] Clayton A. H. A., Sawyer W. H. Site-Specific Tryptophan Fluorescence Spectroscopy as a Probe ofMembrane Peptide Structure and Dynamics.[J]. Eur. Biophys. J. Biophys. lett.2002,31(9):9-13.
    [66] Callender R., Deng H. Annu.Rev.Biophys. Biomol. Struct.1994,23:215.
    [67] Thomas G. J. Jr. Annu.Rev.Biophys.Biomol.Struct.1999,28:1.
    [68] Karajanagi S. S., Vertegel A. A., Kane R. S., et al. Structure and Function of Enzymes Adsorbed ontoSingle-Walled Carbon Nanotubes[J]. Langmuir2004,20(26):11594-11599.
    [69] Mandal H. S., Kraatz H. B. Effect of the Surface Curvature on the Secondary Structure of PeptidesAdsorbed on Nanoparticles[J]. J. Am. Chem. Soc.2007,129(20):6356-6357.
    [70] Xiao, Q., Huang, S., Qi, Z.-D., et al. Conformation, thermodynamics and stoichiometry of HSAadsorbed to colloidal CdSe/ZnS quantum dots[J]. Biochim. Biophys. Acta, Proteins Proteomics2008,1784(7):1020-1027.
    [71] Peng Z. G., Hidajat K., Uddin M. S. Adsorption of bovine serum albumin on nanosized magneticparticles[J]. J. Colloid Interface Sci.2004,271(2):277-283.
    [72] Shen X. C., Liou X. Y., Ye L. P., et al. Spectroscopic studies on the interaction between humanhemoglobin and CdS quantum dots[J]. J. Colloid Interface Sci.2007,311(2):400-406.
    [73] Hong R., Fischer N. O., Verma A., et al. Control of protein structure and function through surfacerecognition by tailored nanoparticle scaffolds[J]. J. Am. Chem. Soc.2004,126:739-743.
    [74] You C. C., De M., Han G., et al. Tunable inhibition and denaturation of α-chymotrypsin with aminoacid-functionalized gold nanoparticles[J]. J.Am.Chem.Soc.2005,127(37):12873-12881.
    [75] Hellstrand E., Lynch I., Andersson A. et al. Complete high-density lipoproteins in nanoparticlecorona[J]. FEBS J.2009,76(12):3372-3381.
    [76] Murdock R. C., Braydich-Stolle L., Schrand A. M., et al. Characterization of Nanomaterial Dispersionin Solution Prior to In Vitro Exposure Using Dynamic Light Scattering Technique [J]. Toxicol. Sci.,2008,2(101):239-253.
    [77] Ipe B. I., Shukla A., Lu H. et al. Dynamic Light‐Scattering Analysis of the Electrostatic Interactionof Hexahistidine‐Tagged Cytochrome P450Enzyme with Semiconductor Quantum Dots[J].ChemPhysChem2006,7(5):1112-1118.
    [78] You C. C., De M., Rotello V. M. Monolayer-protected nanoparticle–protein interactions[J]. Curr. Opin.Chem. Bio.2005,9(6):639–646.
    [79] Bhattacharya J., Choudhuri U., Siwach O, et al. Interaction of hemoglobin and copper nanoparticles:implications in hemoglobinopathy[J]. Nanomedicine: NBM2006,2(3):191-198.
    [80] Inomoto N., Osaka N., Suzuki T., et al. Interaction of nanogel with cyclodextrin or protein: study bydynamic light scattering and small-angle neutron scattering[J]. Polymer2009,50(2):541-546.
    [81] Tessier P. M., Jinkoji J., Cheng Y. C., et al. Self-Interaction Nanoparticle Spectroscopy: ANanoparticle-Based Protein Interaction Assay[J]. J. Am. Chem. Soc.2008,130(10):3106-3112.
    [82] Steigerwald M. L., Brus L. E. Semiconductor crystallites: a class of large molecules[J]. Acc.Chem.Res.1990,23(6):183-188.
    [83] Durr N. J., Larson T., Smith D. K., et al. Two-Photon Luminescence Imaging of Cancer Cells UsingMolecularly Targeted Gold Nanorods[J]. Nano Letters2007,7(4):941-945.
    [84] Rozhkov S. P., Goryunov A. S., Sukhanova G. A., et al. Protein interaction with hydrated C60fullerenein aqueous solutions[J]. Biochem. Biophys. Res. Commun.2003,303:562-566.
    [85] Cedervall T., Lynch I., Lindman S. et al. Understanding the nanoparticle-proteincorona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proc.Natl. Acad. Sci. U.S.A.2007,104:2050-2055.
    [86] Rezwan K., Studart A. R., V r s J. et al. Change of ζ Potential of Biocompatible Colloidal OxideParticles upon Adsorption of Bovine Serum Albumin and Lysozyme[J]. J. Phy. Chem. B2005,109(30):14469-14474.
    [87]杨鹏军,金邦坤,朱平平,等.分子动力学模拟碳纳米管与蛋白质中功能基团的相互作用[J].中国科学技术大学学报,2010,40(4):353-357.
    [88]赵宇亮,柴之芳.纳米生物效应研究进展[J].中国科学院院刊,2005,20(3):194-199.
    [89] Vilker V., Colton C., Smith K. The Osmotic Pressure of Concentrated Protein Solutions: Effect ofConcentration and pH in Saline Solutions of Bovine Serum Albumin J. Colloid Interf. Sci.1981,79(2),548-566.
    [90] Moon Y. U., Anderson C. O., Blanch H. W., et al. Osmotic pressures and second virial coefficients foraqueous saline solutions of lysozyme[J]. Fluid Phase Equilibr.12000,68:229–239.
    [91] Goldstein D. A., Solomon A. K. Determination of Equivalent Pore Radius for Human Red Cells byOsmotic Pressure Measurement[J] J. Gen. Physiol.1960,44:1-17.
    [92] Brinas R. P., Hu M. H., Qia L. P., et al. Gold Nanoparticle Size Controlled by Polymeric Au(I)Thiolate Precursor Size[J]. J. Am. Chem. Soc.2008,130(3):975-982.
    [93] Balasubramanian S. K., Yang L. M., Yung L.-Y. L., et al. Characterization, puri cation, and stability ofgold nanoparticles[J]. Biomaterials2008,8,1-8.
    [94] Lu, Y., Chen, D. J., Wang, G. K., et al. Study of Interactions of Bovine Serum Albumin in Aqueous(NH4)2SO4Solution at25°C by Osmotic Pressure Measurements[J]. J. Chem. Eng. Data.2009,54(7),1975–1980.
    [95] Yang, T., Li, Z., Wang, L., et al. Synthesis, Characterization, and Self-Assembly of Protein LysozymeMonolayer-Stabilized Gold Nanoparticles[J]. Langmuir2007,23(21):10533-10538.
    [96] Qian, H. F., Jin, R. C. Controlling Nanoparticles with Atom Precision: The Case of Au144(SCH2CH2Ph)60[J].Nano Lett.2009,9,4083-4087.
    [97] Ackerson, C. J., Jadzinsky, P. D., Sexton J. Z., et al. Synthesis and Bioconjugation of2and3nm-Diameter Gold Nanoparticles[J]. Bioconjugate Chem.2010,21,214–218.
    [98]倪逸声,张龙翔.胰蛋白酶工程研究进展[J].生物工程进展,1992,12(1):1-8.
    [99] Wang G. K., Wang L. X., Tang W., et al. Binding of Quercetin to Lysozyme as Probed bySpectroscopic Analysis and Molecular Simulation[J]. J. Fluoresc.2011,21:1879-1886.
    [100] Lu Y., Lv J., Zhang G. S., et al. Interaction of an anthracycline disaccharide with ctDNA:nvestigation by spectroscopic technique and modeling studies[J]. Spectrochim. Acta, Part A2010,75(5):1511-1515.
    [101] Gao D. J., Tian Y., Bi S. Y., et al. Studies on the interaction of colloidal gold and serum albumins byspectral methods[J]. Spectrochim. Acta A2005,62(4):1203-1208.
    [102] De La Cruz E. M. Cofilin Binding to Muscle and Non-Muscle Actin Filaments: Isoform-DependentCooperative Interactions[J]. J.Mol.Biol.2005,346:557-564.
    [103] Ikeda Y., Taniguchi N., Noguchi T. Dominant Negative Role of the Glutamic Acid ResidueConserved in the Heterotropic Allosteric Effect Involving Fructose-1,6-Bisphosphate[J]. J. Biol.Chem.2000,275:9150-9156.
    [104] Jain P. K., Huang W. Y., El-Sayed M. A. On the Universal Scaling Behavior of the Distance Decayof Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation[J]. Nano Lett.2007,7:2080–2088.
    [105] Hill A.V. The Combinations of Haemoglobin with Oxygen and Carbon Monoxide, and the Effects ofAcid and Carbon Dioxide[J]. Biochem. J.1921,15:577–586.
    [106] Wang Y. L., Wang H. F. Acta Scientiaum Naturalium Universitatis (北京大学学报),2002,38(2):159.
    [107] M.Yoshinori. Laster light scattering study on the heat-induced ovalbumin aggregates related to itsgelling property[J]. J. Agric. Food Chem.1996,44,2086-2090.
    [108]王公轲.卤素离子与蛋白质相互作用的研究[D].新乡:河南师范大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700