变形增强筋与混凝土粘结性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构、构件中与混凝土协同工作,提高其承载能力的筋材统称为增强筋。混凝土结构增强筋使用筋材主要有:钢筋和纤维增强材料筋(FRP筋)。但是,增强筋混凝土理论还有一些不足,其中增强筋混凝土理论的基础-增强筋与混凝土的粘结还没有形成系统的理论,而这些不足制约着增强筋理论的发展和应用。正因如此,本文致力于增强筋与混凝土粘结系统理论的研究,介绍了增强筋与混凝土的粘结机理、受力过程、影响因素、粘结强度、本构关系和锚固长度等增强筋与混凝土粘结研究中的主要问题,着重研究并完成了以下工作:
     (1)通过对增强筋与混凝土粘结的宏观分析得到了增强筋与混凝土粘结极限荷载的理论计算方法;微观理论分析得到了增强筋与混凝土粘结极限强度的计算方法。并通过宏观和微观所得结果的综合,得到增强筋与混凝土粘结强度的理论计算方法。最后经过与试验数据的对比,发现理论值与试验结果是比较吻合的。
     (2)通过对增强筋与混凝土的粘结的微观分析得到增强筋与混凝土粘结的微观本构关系模型,之后通过理论分析和有限元分析得到增强筋与混凝土粘结-滑移关系和粘结应力的理论分布。最后,经过与试验数据的对比发现其与试验结果是比较吻合的。
     (3)为了推进增强筋理论的发展和在实际工程中的应用,通过中心点算法和验算点算法对增强筋与混凝土粘结的可靠度进行了分析,提出了符合现行规范要求安全水平的增强筋与混凝土锚固长度。
It is collectively referred to as reinforcing bar which is able to be in the cooperative work with concrete, and improve the bearing capacity of concrete structure and component. The reinforcing bar basically is:reinforcing steel bar and fiber reinforce plastic rebar (FRP rebar) in the reinforcing bar concrete structure. But, it is some insufficient in the reinforcing bar concrete theory. In especial, the basis of reinforcing bar concrete theory-the bond of reinforcing bar and concrete-is not formed the system theory, and these disadvantages limit the development and application. Because of these insufficient, it is obtained the system theory of the bond of reinforcing bar and concrete and introduced bond mechanism, stress process, influence factors, bond strength, bond length and constitutive relation and embedment length in this paper. And it is especially researched and completed as following works:
     (1) It is obtained the theoretical calculation methods of limit load via macro analysis of reinforcing bar and concrete, and theoretical calculation methods of ultimate bond strength of reinforcing bar and concrete via microscopic analysis of reinforcing bar and concrete. And it is synthesized the macroscopic and microscopic results, and obtained the practical calculation method of bond of reinforcing bar and concrete. Finally, it is contrasted the data of theoretical calculation and experiment, and found that experiment is consistent with theory.
     (2) It is obtained the theoretical calculation methods of bond-slip constitutive relation via microscopic analysis of reinforcing bar and concrete, and bond stress distribution and macro bond-slip constitutive relation via theoretical and finite element analysis. Finally, it is contrasted the data of theoretical calculation and experiment, and found that experiment is consistent with theory.
     (3) In order to promote the development of the theory and application in engineering of reinforcing bar concrete, it is obtained the reliability analysis via the center point algorithm and checking point algorithm and embedment length design suggestions according with existing code for safety level.
引文
[1]徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报,1994,15(3):26-37.
    [2]Makitani E,Irisawa I,Nishiura N. Investigation of bond in concrete member with fiber reinforced polymer bars. International symposium fiber-reinforced-plastic reinforce-ment for concrete structures,ACI SP-138,1993:315-331.
    [3]徐有邻,邵卓民,沈文都.钢筋与混凝土的粘结锚固强度[J].建筑科学,1988,4:8-14.
    [4]B. Tighiouart, B. Benmokrane, D. Gao. Investigation of bond in concrete member with fiber reinforced polymer (FRP) bars [J]. Construction and Building Materials,1998(12):453-462.
    [5]Zenon Achillides, Kypros Pilakoutas. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites For onstructure,2004,8(2):173-181.
    [6]高丹盈,B. Brahim纤维聚合物筋与混凝土粘结性能的影响因素[J].工业建筑,2001,31(2):9-14.
    [7]张启明.纤维聚合物筋与混凝土的粘结性能[J].河南科学,2001,19(4):390-392.
    [8]Belarbi A. and D.N.Richardson. Effect of contamination on reinforcing bar concrete bond[J]. Journal of Rerformence of Constructed Facilities,2010,24(3):206-214.
    [9]Malbar, J. L. Tensile and bond properties of GFRP reinforcing bars[J]. J. ACI Materials Journal,1995,92(3):276-285.
    [10]徐文峰,孙泽阳,吴刚.表面喷砂FRP筋与混凝土粘结性能试验研究[J].工业建筑,2009,39(433):118-121.
    [11]郝庆多,王言磊,侯吉林等.GFRP带肋筋粘结性能试验研究[J].工程力学,2008,25(10):158-165.
    [12]薛伟辰,郑乔文,杨雨等.黏砂变形GFRP筋粘结性能研究[J].土木工程学报,2007,40(12):59-68.
    [13]薛伟辰,刘华杰.新型FRP筋粘结性能研究[J].建筑结构学报,2004,25(2):104-109.
    [14]郑乔文,薛伟辰.粘砂变形CFRP筋的粘结滑移本构关系[J].工程力学,2008,25(9):162-169.
    [15]赵明,苏三庆,周希茂.钢筋混凝土粘结滑移相关问题[J].施工技术,2009,38(6):5-9.
    [16]Aiello, M. A and M. Leone. Bond performances of FRP rebars-reinforced concrete [J]. Journal of Materials in Civil Engineering,2007,19(3):205-213.
    [17]赵卫平,肖建庄.带肋钢筋与混凝土间粘结滑移本构关系模型[J].工程力学,2011,28(4):164-171.
    [18]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985.
    [19]薛伟辰,康青海.纤维塑料筋粘结锚固性能的试验研究[J].工业建筑,1999,29(12):5-7.
    [20]高丹盈, B. Brahim纤维聚合物筋混凝土的粘结机理及锚固长度的计算方法[J].水利学报,2000,11(11):70-78.
    [21]Mirza SM.Honde J Study of bond stress-slip relationship in reinforced concretc[J]. ACI,1970,76(1):19-46.
    [22]赵羽习,金伟良,钢筋与混凝土粘结本构关系的试验研究[J].建筑结构学报.2002,23(1):32-37.
    [23]Ehsani MR, Saadatmanesh H, Tao S. Design recommendation for bond of GFRP rebars to concrete[J]. Journal of Structure Engineering,1996,122(3):247-254.
    [24]Nilson AN. Internalmeasurement of bond-slip[J]. ACI,1972,69(7):439-441.
    [25]Eligehausen R., E. P. Popov, and V. V. Bertero. Local bond stress-slip relationships of deformed bars under generalized excitat ions[R]. Earthquake Engrg. Ctr. (EERC), Univ. of California, Berkeley, Calif,1982,4:69-80.
    [26]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报,1987,26(2):93-100.
    [27]宋启根.钢筋混凝土计算力学[M].南京:东南大学出版社,1996.
    [28]狄生林.钢筋混凝土梁的非线性有限元分析[J].南京工学院学报,1984,14(2):87-96.
    [29]Alunno R. V.,D. Galeota and M. M. Giammatteo. Local bond stress-slip relationships of glass fiber reinforced plastic bars embeded in concrete[J]. Materials and structures,1995,28(6):340-344.
    [30]Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete[J]. Journal of composites for construction,1997,1(2):40-51.
    [31]薛伟辰等.粘砂变形GFRP筋粘结滑移本构关系[J].工程力学,2008,25,(9):162-169.
    [32]高丹盈,朱海堂,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构关系模型[J].工业建筑,2003,33(7):41-44.
    [33]郝庆多,王言磊,欧进萍GFRP/钢绞线复合筋与混凝土粘结滑移本构关系模型[J].工程力学,2009,26(5):62-71.
    [34]郝庆多等GFRP带肋筋粘结性能试验研究[J].工程力学,2008,25(10):158-165.
    [35]王言磊,王勃,欧进萍GFRP/钢绞线复合筋混凝土结构粘结性能研究[J].工业建筑,2009,39(433):103-10.
    [36]李娟.纤维对GFRP筋与自密实混凝土基体粘结性能影响[D].大连:大连理工大学,2008:1-103.
    [37]吴芳.玄武岩纤维筋与混凝土粘结性能试验研究[D].大连:大连理工大学,2009:1-70.
    [38]中华人民共和国国家标准《混凝土结构设计规范》GB50010-2010.
    [39]中华人民共和国国家标准《纤维增强复合材料建设工程应用技术规范》GB50608-2010.
    [40]赵国藩.高等钢筋混凝士结构学[M].北京:机械工业出版社,2008:63-128.
    [41]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2006:82-130.
    [42]徐有邻.变型钢筋-混凝土粘结锚固性能的试验研究[D].北京:清华大学土木工程系,1990:1-112.
    [43]中冶建筑研究总院有限公司.细晶高强钢筋与混凝土粘结性能研究报告[R].北京:中冶建筑研究总院有限公司,2010:1-28.
    [44]郭恒宁.FRP筋与混凝土粘结锚固性能的试验研究和理论分析[D].南京:东南大学,2006:1-62.
    [45]刘卫国.MATLAB程序设计与应用[M].北京:高等教育出版社,2008:1-136.
    [46]住房和城乡建设部标准定额研究所.热轧带肋高强钢筋在混凝土结构中应用技术导则[M].北京:中国建筑工业出版社,2010:1-150.
    [47]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007:1-553.
    [48]中华人民共和国国家标准《建筑结构可靠度设计统一标准》GB50068-2001.
    [49]贡金鑫,魏巍巍.工程结构可靠性设计原理[M].北京:机械工业出版社,2007:1-325.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700