百合sHsp16.45的异源表达及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在遭受高温,低温或干旱等胁迫时,可产生热激蛋白(Hsp),其中分子量为12~42kD的被统称为小热激蛋白(sHsp)。这类蛋白在结构上的共同特点是具有保守的ACD结构域。热激蛋白做为分子伴侣,在逆境胁迫中可保护生物体内的功能性蛋白免遭不可逆转的变性,维持蛋白的正常折叠,促进已错误折叠和解聚的蛋白质恢复正确构象或引导其降解。植物小热激蛋白在抗逆境胁迫中的作用近几年已成为植物抗逆的一个重要研究方向。
     本研究通过将百合小热激蛋白LimHsp16.45进行异源表达,发现该小热激蛋白能够有效提高大肠杆菌在受到高温或低温胁迫后的菌细胞活性,并在高温处理下检测到此蛋白的积累量增多。在拟南芥中,LimHsp16.45定位在内膜系统,不但可以响应热刺激,形成典型的热激颗粒(HSGs),还能提高拟南芥在高盐胁迫下的萌发率和对氧化胁迫的耐受。而且在高盐胁迫下,可观察到类HSGs的广泛存在,推测LimHsp16.45对于盐胁迫的响应可能也是通过形成寡聚体发挥生理功能的。
Suffering from the high temperature, low temperature or drought stress, the plant can produce heat shock protein (Hsp). The protein whose molecular weight is among12~42kD is called small heat shock protein (sHsp). Almost all kind of Hsp always has a conservative ACD domain on the structure. Heat shock protein, one kind of molecular chaperones in adversity stress, can protect the functional proteins from irreversible degeneration, maintain the folding structure of natural protein and promote the proteins that have already folded in wrong way or depolymerized from the right protein conformation to recovery or degradation. The role of small heat shock protein in plant has become one of the most important research directions in recent years.
     Our research made use of Lily small heat shock protein-LimHsp16.45for heterologous expression. We found that LimHsp16.45can improve the cell activity of E.coli effectively under high or low temperature stress. And we also observed the accumulation of this sHsp increased after heat treatment. In Arabidopsis, LimHsp16.45is located on inner membrane system. It can not only respond the heat stimulus and form typical heat shock Granules (HSGs), but also improve seed germination ratio in high-salt-stress. LimHsp16.45can increase the tolerance against oxidative stress. We observed that HSGs also exist when seedlings of Arabidopsis grow in high-salt-stress. So we speculate that LimHsp16.45in salt stress response also play the physiological function by forming oligomers.
引文
[1]Cherian S., Reddy M.P. (2003). Evaluation of NaCl tolerance in the callus cultures of Suaeda nudiflora Moq, Biol.Plant.46:193-198.
    [2]Pinheiro C., Passarinho J.A., Ricardo C.P. (2004). Effect of drought and rewatering on the metabolism of Lupinus albus organs, J.Plant Physiol.161:1203-1210.
    [3]Cherian S., Reddy M.P., Ferreira R.B. (2006). Transgenic plants with improved dehydration-stress tolerance:progress and prospects, Biol.Plant.50:481-495.
    [4]Sachin Kotak, Elizabeth Vierling, Helmut Ba umlein, and Pascal von Koskull-Doring. (2007). A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis, The Plant Cell.19:182-195.
    [5]朱玉贤,李毅.现代分子生物学(第2版).北京:高等教育出版社.7:281-283.
    [6]Ritossn F. (1962). A new puffing pattern induced by temperature shock an.dDNP in Drosop-hila, Experientia.18:571-573.
    [7]Tisseres A, Mitchell A K. (1974). Some new proteins induced by temperature shock in droso-phils, Mol.Boil.84:389-398.
    [8]Milton J. Schlesinger. (1986). Heat Shock Proteins:The Search for Functions, The Journal of Cell Biology,103:321-325.
    [9]Kelley PM, Schlesinger MJ. (1978). The effect of amino-acid analogues and heat shock on gene expression in chicken embryo fibroblasts, Cell.15:1277-1286.
    [10]Lemaux PG, Herendeen SL, Bloch PL and Neidhardt FC. (1978). Transient rates of synthesis of individual polypeptides in E.coli following temperature shifts, Cell.13:427-434.
    [11]Fink K and E Zeuther. (1978). Heat shock proteins in Tetrahymena. ICN-UCLA Symposium, Molecular Cell Biolology.12:103-115.
    [12]Nover L, Scharf KD, Neumann D. (1983). Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves, Molecular and Cellular Biology.3:1648-1655.
    [13]Lin C.-Y., Roberts J.K., Key J.L. (1984). Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization, Plant Physiol.74:152-160.
    [14]Vierling E. (1991). The role of heat shock proteins in plants, Annu. Rev. Plant Phys.42: 579-620.
    [15]Horwitz J. (1992). Alpha-crystallin can function as a molecular chaperone, Proc Natl Acad Sci USA.89:10449-10453.
    [16]Katiyar-Agarwal S, Agarwal M, Grover A. (2003). Heat-tolerant basmati rice engineered by over-expression of hsplOl, Plant Mol Biol.51:677-686.
    [17]Yamada K., Fukao Y., Hayashi M., Fukazawa M., Suzuki I., Nishimura M. (2007). Cytosolic HSP90 Regulates the Heat Shock Response That Is Responsible for Heat Acclimation in Arabidopsis thaliana., J.Biol.Chem.282:37794-37804.
    [18]Yuliang Zhou, Huhui Chen, Pu Chu, Yin Li, Bin Tan, Yu Ding, Edward W. T.Tsang, Liwen Jiang, Keqiang Wu, Shangzhi Huang. (2012). NnHSP17.5, a cytosolic class Ⅱ small heat shock protein gene from Nelumbo nucifera, contributes to seed germination vigor and seedling thermotolerance in transgenic Arabidopsis, Plant Cell Rep.31:379-389.
    [19]Schlesinger M.J. (1990). Heat shock proteins, J.Biol.Chem.265:12111-12114.
    [20]Schoffl F., Prandl R., Reindl A. (1998). Regulation of the heat shock response, Plant Physiol. 117:1135-1141.
    [21]Kotak S., Larkindale J., Lee U., von Koskull-Doring P., Vierling E., Scharf K.D. (2007). Complexity of the heat stress response in plants, Curr. Opin. Plant Biol.10:310-316.
    [22]Mohamed H., A1-Whaibi. (2010). Plant heat-shock proteins:A mini review, Journal of King Saud University.139-150.
    [23]Barends T.R., Werbeck N.D., and Reinstein. (2010). Disaggregases in 4 dimensions, Curr. Opin. Struct. Biol.20:46-53.
    [24]Martin A., Baker T.A., and Sauer R.T. (2005). Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines, Nature.437:1115-1120.
    [25]Schirmer E.C., Glover J.R., Singer M.A., and Lindquist S. (1996). HSP100/Clp proteins:a common mechanism explains diverse functions, Trends Biochem. Sci.21:289-296.
    [26]Schrader E.K., Harstad K.G., and Matouschek A. (2009). Targeting proteins for degradation, Nat. Chem. Biol.5:815-822.
    [27]Doyle S.M., Shorter J., Zolkiewski M., Hoskins J.R., Lindquist S., and Wickner S. (2007). Asymmetric deceleration of C1pB or Hsp104 ATPase activity unleashes protein-remodeling activity, Nat. Struct. Mol. Biol.14:114-122.
    [28]Schaupp A., Marcinowski M., Grimminger V., Bosl B., and Walter S. (2007). Processing of proteins by the molecular chaperone Hsp104, J. Mol. Biol.370:674-686.
    [29]Weber-Ban E.U., Reid B.G., Miranker A.D., and Horwich A.L. (1999). Global unfolding of a substrate protein by the Hsp100 chaperone C1pA, Nature.401:90-93.
    [30]Goloubinoff P., Mogk A., Zvi A.P., Tomoyasu T., Bukau B. (1999). Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network, Proc. Natl. Acad. Sci. USA.96:13732-13737.
    [31]Schirmer EC, Lindquist S, Vierling E. (1994). An Arabidopsis heat shock protein complements a thermotolerance defect in yeast, The Plant Cell.6:1899-1909.
    [32]Welch W.J., and Feramisco J.R. (1982). Purification of the major mammalian heat shock proteins, J. Biol. Chem.257:14949-14959.
    [33]Picard D. (2002). Heat-shock protein 90, a chaperone for folding and regulation, Cell. Mol. Life Sci.59:1640-1648.
    [34]Pratt W.B., and Toft D.O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery, Exp. Biol. Med. (Maywood) 228:111-133.
    [35]Smith D.F. (1998). Sequence motifs shared between chaperone components participating in the assembly of progesterone receptor complexes, Biol. Chem.379:283-288.
    [36]Jakob U., Lilie H., Meyer I., and Buchner J. (1995). Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase.Implications for heat shock in vivo, J. Biol. Chem.270:7288-7294.
    [37]Pearl L.H., and Prodromou C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery, Annu. Rev. Biochem.75:271-294.
    [38]Taipale M., Jarosz D.F., and Lindquist S. (2010). HSP90 at the hub of protein homeostasis:emerging mechanistic insights, Nat. Rev. Mol. Cell Biol.11:515-528.
    [39]Wandinger S.K., Richter K., Buchner J. (2008). The Hsp90 chaperone machinery, J. Biol. Chem.283:18473-18477.
    [40]Li J., Richter K., and Buchner J. (2010). Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle, Nat. Struct. Mol. Biol. in press.
    [41]Eisen M.B., Spellman P.T., Brown P.O., and Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns, Proc. Natl. Acad. Sci. USA.95:14863-14868.
    [42]Richter K., Muschler P., Hainzl O., Reinstein J., and Buchner J. (2003).Sti1 is a non-competitive inhibitor of the Hsp90 ATPase. Binding prevents the N-terminal dimerization reaction during the atpase cycle, J. Biol. Chem.278:10328-10333.
    [43]Hessling M., Richter K., and Buchner J. (2009). Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90, Nat. Struct. Mol. Biol.16:287-293.
    [44]Mayer M.P., and Bukau B. (2005). Hsp70 chaperones:cellular functions and molecular mechanism, Cell. Mol. Life Sci.62:670-684.
    [45]Zhu X., Zhao X., Burkholder W.F., Gragerov A., Ogata C.M., Gottesman M.E., and Hendrickson W.A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK, Science.272:1606-1614.
    [46]Kampinga H.H., and Craig E.A. (2010). The HSP70 chaperone machinery:J proteins as drivers of functional specificity, Nat. Rev. Mol. Cell Biol.11:579-592.
    [47]Van Montfort R., Slingsby C., and Vierling E. (2001). Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones, Adv. Protein Chem.59: 105-156.
    [48]Haslbeck M., Franzmann T., Weinfurtner D., and Buchner J. (2005a). Some like it hot:the structure and function of small heat-shock proteins, Nat. Struct.Mol. Biol.12:842-846.
    [49]McHaourab H.S., Godar J.A., and Stewart P.L. (2009). Structure and mechanism of protein stability sensors:chaperone activity of small heat shock proteins, Biochemistry.48:3828-3837.
    [50]Mogk A., Schlieker C., Friedrich K.L., Schonfeld H.J., Vierling E., and Bukau, B. (2003). Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK, J. Biol. Chem.278:31033-31042.
    [51]Lee G.J., Roseman A.M., Saibil H.R., and Vierling E. (1997). A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state, EMBO J.16:659-671.
    [52]Haslbeck M., Miess A., Stromer T., Walter S., and Buchner J. (2005b). Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssal and Hsp104, J. Biol. Chem.280:23861-23868.
    [53]Cashikar A.G., Duennwald M., and Lindquist S.L. (2005). A chaperone pathway in protein disaggregation:Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104, J. Biol. Chem.280:23869-23875.
    [54]Liberek K., Lewandowska A., and Zietkiewicz S. (2008). Chaperones in control of protein disaggregation, EMBO J.27:328-335.
    [55]Vierling E. (1991). The roles of heat shock proteins in plants, Plant Mol Biol.42:579-620.
    [56]Waters ER, Lee GJ, Vierling E. (1996). Evolution, structure and function of the small heat shock proteins in plants, J Exp Bot.47:325-338.
    [57]Changle Ma, Martin Haslbeck, Lavanya Babujee, Olaf Jahn, Sigrun Reumann. (2006). Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes, Plant Physiology.141:47-60.
    [58]Sun W., Motangu M.V., Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants, Biochim. Biophys. Acta.1577:1-9.
    [59]Clos J., Westwood J.T., Becker P.B., Wilson S., Lambert K., Wu C. (1990). Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation, Cell.63:1085-1097.
    [60]Baniwal S.K., Bharti K., Chan K.Y., Fauth M., Ganguli A., Kotak S., Mishra S.K., Nover L., Port M., Scharf K., Tripp L., Weber C., Zielinski D., von Koskull-Doring P. (2004). Heat stress response in plants:a complex game with chaperones and more than 20 heat stress transcription factors, J. Biosci.29:471-487.
    [61]Hu W., Hu G., Han B. (2009). Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice, Plant Sci.176:583-590.
    [62]Schuetz T.J., Gallo G.J., Sheldon L., Tempst P., Kingston R.E. (1991). Isolation of a cDNA for HSF2:evidence for two heat shock factor genes in humans, PNAS.88:6911-6915.
    [63]Nover L., Baniwal S.K. (2006). Multiplicity of heat stress transcription factors controlling the complex heat stress response of plants, In:International Symposium on Environmental Factors, Cellular Stress and Evolution, Varanasi, India. October 13-15, p.15.
    [64]Klaus Richter, Martin Haslbeck, Johannes Buchner. (2010).The Heat Shock Response:Life on the Verge of Death, Molecular Cell.40:253-266.
    [65]Baneyx F, Bertsch U, Kalbach C.E et al. (1995). Spinach chlorplast together in toroidal struchure and exhibits nucleotided ependent binding to plastid chaperonin 60, J Biol Chem.270: 10695-10702.
    [66]Jakob U., Gaestal M, Engel K, et al. (1993). Small heat shock protein are molecular chaperons, J. Biol Chem.268:1517-1520.
    [67]Jorge N.S., Luz M, Gerorgian P. (2002). Maize HSP101 Plays Important Roles in Both Induced and Basal Thermotolerance and Primary Root Growth, The Plant Cell. 14(7):1621-1633.
    [68]Lafuente M.T., Belver A, Guye M.G, et al. (1991). Effect of temperature conditioning on chilling injury of cucumber cotyledons, Plant physiol.95:443-449.
    [69]Graham G. Collins, XunLi Nie, Mikal E. Saltveit. (1995). Heat shock proteins and chilling sensitivity of mung bean hypocotyls, J Exp Bot.46:795-802.
    [70]Sabehat A, Weiss D, Lurie S. (1996). The Correlation between Heat-Shock Protein Accumulation and Persistence and Chilling Tolerance in Tomato Fruit, Plant Physiology. 110:531-537
    [71]耶兴元,马锋旺.(2004).植物热激蛋白研究进展,西北农业学报.13(2):109-114.
    [72]Harndahl U, Kokke BP, Gustavsson N, Linse S, Berggren K, Tjemeld F, Boelens WC, sundby C. (2001). The chaperone-like Activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surfaceexposed amphipathic alpha-helix, Biochim Biophys Acta,1545:227-237.
    [73]Gustavsson N, Kokke BP, Harndahl U, Silow M, Bechtold U, Poghosyan Z, MurPhy D, Boelens WC, sundby C. (2002). A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein, Plant J.29(5):543-553.
    [74]Alvim Fc, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB. (2001). Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress, Plant Physiol.126:1042-1054.
    [75]Cho EK, Hong CB. (2006). Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants, Plant Cell Rep.25:349-358.
    [76]Nancy A. Eckardt. (2010). Physcomitrella Reveals a Key Role for Stromal Hsp70 Chaperones in Chloroplast Protein Import, The Plant Cell.22:1
    [77]Wehmeyer N, Hernandez LD, Finkelstein, Vierling E. (1996). Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation, Plant Physiology. 112:747-757.
    [78]Alvaro Soto, Isabel Allona, Carmen Collada, Maria-Angeles Guevara, Rosa Casado, Emilio Rodriguez-Cerezo,Cipriano Aragoncillo, and Luis Gomez. (1999). Heterologous Expression of a Plant Small Heat-Shock Protein Enhances Escherichia coli Viability under Heat and Cold Stress, Plant Physiology.120:521-528.
    [79]Weining Sun, Catherine Bernard, Brigitte van de Cotte, Marc Van Montagu and Nathalie Verbruggen. (2001). At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression, The Plant Journal.27(5):407-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700