桃亚属植物系统发育及桃遗传多样性的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃亚属植物是核果类重要的果树植物资源,其中桃和扁桃是世界上重要的栽培果树。本研究通过现代分子生物学技术和方法,对桃亚属植物的分子系统学研究,揭示其内各种间关系和分类地位及与其近缘亚属的关系,以及对桃遗传多样性研究。为桃亚属植物在分类学中存在悬而未决问题的解决和桃资源的保存与利用提供分子生物学依据。
     采用核核糖体DNA内转录间隔区(ITS)对桃亚属的光核桃、甘肃桃、新疆桃、山桃、陕甘山桃、扁桃、野扁桃基因序列测序及来源于GenBank的李、杏、梅、樱的18个种的ITS区基因序列,以稠李和楼木、梅和杏分别作为对桃亚属及其近缘亚属植物、桃亚属各种类的外类群,进行系统发育树的建立。运用RAPD技术对223个桃、李、杏、梅、樱类植物进行分子标记,采用聚类方法对上述内容研究,综合两种方法研究结果,探讨桃亚属植物分子系统发育关系,并对引物在各类间的多态信息量分析。与此同时,利用RAPD标记对桃遗传多样性、类群的遗传结构、类群间的遗传差异等方面进行分析。主要研究结果如下:
     1.初步建立了桃种质资源数据库,该数据库包括1)223份材料(含近缘亚属20个种)的原产地、采集地、中文名称、英文名称、学名及果实性状;2)223份材料经22个引物扩出180个多态位点上的谱带,共计40140个数据;3)获得桃亚属主要种类的ITS区基因系列9个。
     2.桃亚属在核果类植物的系统发育经RAPD带进行聚类分析,可见杏类与梅类先聚在一起,再与李类植物相聚,进一步与桃类植物相聚,最后与樱类植物聚在一起。如果以0.533处作一接合线,可分为四大类第一类杏、梅,第二类李,第三类樱,第四类含郁李、GF_(655)(桃和李杂种)和桃及近缘种植物。基于ITs序列得到系统发育树为樱类位于系统发育树的基部,构成一单系分支,其内部支持率为68%。而桃、李、杏、梅聚在一起构成另一单系分支,内部支持率为100%,其分支内又分为两亚类,一亚类为桃类(含扁桃),内部支持率为100%,另一亚类则由杏亚属和李亚属的其他种类组成,内部支持率只有54%,而第二亚类中的杏与梅为一组的支持率达85%。
     3.桃亚属植物内的种间系统发育通过所记录的180个位点清晰带进行聚类分析,以0.87处作为结合线,可将它们分成内蒙古长柄扁桃;光核桃;山桃;甘肃桃;白花山桃、红花山桃、帚形山桃;白花山碧桃;陕西桃巴旦、桃巴旦;毛桃、新疆桃、喀什1号、喀什2号、喀什3号、喀什4号等8组。ITS全序列的简约性分析得到了5个相等的最短简约树,该树树长为80步,一致性指数(CI)和维持性指数(RI)分别为0.925,和0.941。每个树拓朴分析除山桃和陕甘山桃的位置有变化外,得到的结果是相同的。野扁桃和矮扁桃在桃亚属中其它种的基部,紧接着是扁桃,它单独占有一类位置。供试的8个种,分成一个四歧式的单系类群,第一类为光核桃和甘肃桃,第二类为桃和新疆桃,其它两类分别为山桃和陕甘山桃。经过严格一致树分析,构成姊妹群有光核桃和甘肃桃,桃和新疆桃,野扁桃和矮扁桃。
     4.针对桃亚属中种类分类地位存在异议的新疆桃、山桃、陕甘山桃进行分子生物学研究。基于ITS的系统树分析,自展支持率90%支持新疆桃和普通桃有较密切的亲缘关系。对203个以桃与李杂种为外类群的桃亚属种、变种、品种及类型的RAPD分析,得到的聚类图中,除新疆桃以外的其它种基本聚在普通桃的外围,而5个新疆桃并未聚到普通桃的外围,反而在许多普通桃的变种、品种及类型的内侧,分布于普通桃之间。采用ITS序列重建系统发育树,陕甘山桃和山桃为并行分支,各自成为独立一组,位于桃、新疆桃,光核桃、甘肃桃的基部。RAPD标记聚类分析,山桃为单独一组。
     5.从多态带、特殊位点对类群分析,提出了各类群核心种质,砧木类有列玛格哈露红及贝蕾、阿克拉娃;寿星桃有红重瓣、寿星桃(红花),寿粉,白单瓣;碧桃有人面桃,红碧桃、红花碧桃;垂枝桃有垂枝桃(江苏)、鸳鸯垂枝、垂枝桃(华农);红叶桃有筑波3号、筑波6号和洛格红叶;硬肉桃有大红袍、五月鲜、秦岭冬桃、敦煌冬桃、一线红、阳泉肉桃和大甜桃;蜜桃有秋蜜、太原水蜜、深州水蜜和温州水蜜;水蜜桃有冈山白、Spring time、Rebin、白凤、霞晖2号、早艳、奉化玉露;蟠桃有玉露蟠桃、五月鲜扁干、苏联蟠桃、嘉庆、杨124;油桃有曙光、瑞光2号、五月火、艾米拉、红李光、阿姆肯;黄肉桃有爱保太,佛尔蒂尼莫蒂尼、金皇后、Red haven、西庄1号、金橙、橙香和锦锈。以上种质中,玉露蟠桃,秋蜜、爱保太和佛尔蒂尼莫蒂尼无论从带型还是在聚类图中的位置表现为更为特殊。
     6.利用特殊带型对各类群的品种、类型全部得到了识别,并依据特有带进行了分子检索表的编制。通过典型带对不同生态型、果实性状为类别进行分析,结果未发现有与生态型相吻合的特征带出现,而将供试所有品种按离核、粘核和溶质、不溶质划分归类,供试品种在Warburton等得到S_(167)-1050 bp处粘离核分子标记,出现既有离核(占供试离核41/56=73.2%),又有粘核(占供试粘核33/79=41.8%),可见此连锁标记连锁性不强,发生交换的机率较高,而S_(167)-850bp带和S_(167)-1050bp带同时出现时,该组包含6个离核,无粘核品种;6个溶质,而无不溶质。S_(167)-850bp和S_(167)-1400bp同时出现时,包含20个粘核品种和2个半离核品种。
     7.通过砧木、寿星桃、垂枝桃、红叶桃、碧桃、硬肉桃、蜜桃、水蜜桃、蟠桃、油桃、黄肉桃类群的多态标记、标记频率、扩增位点上的变异程度和各对应位点间相关性、类群多样性度及遗传分化和遗传结构分析。存在于桃类群间的变异为11.9%,类群内则为88.1%。各类群遗传多样度为黄肉桃>蜜桃>蟠桃>红叶桃>硬肉桃>碧桃、水蜜桃>油桃>寿星桃>垂枝桃。以类群进行聚类分析,在0.9586作为结合线,则有以食用为目的的栽培桃聚在一组(硬肉桃、水蜜桃、蜜桃、黄肉桃、油桃、蟠桃),其中最大的相似系数0.9806为硬肉桃和水蜜桃;而其它寿星桃、碧桃、红叶桃、垂枝桃各自成一组,其中最小相似系数0.9160为红叶桃和垂枝桃。
     依据以上研究结果,并结合前人对形态学、细胞学、孢粉学、酶学等方面的研究成果,认为核果类植物的属的分类为桃亚属、李亚属、杏梅亚属和樱亚属;新疆桃作为桃的一个变种;山桃为桃亚属中的一个种;陕甘山桃虽在本研究的系统树中单独为一类,对于其分类地位有待从多方面进一步研究。经对桃遗传多样性和遗传结构分析,证明特殊种质存在,且不同类群间存在不同的遗传变异,黄肉桃为其中遗传多样度最高的类群。类群内和类群间的遗传差异很大,类群内的变异是类群间变异近8倍。通过多态带和特殊带提出了桃核心种质,并利用聚类法、统计法、标记频率法、多态带数和特殊位点法、类群间和类群内的遗传差异法提出了种质保存策略;以及品种识别分子检索表的建立,为知识产权保护和正确选择品种提供了第一手资料。
Plants in subgenus Amygdalus are an important resource of stone fruits, of which P. persica and P. communis are major fruit species in the world for fruit production. The study aims to disclose phylogeny among subgenera in stone fruit plants and species in P. persica, taxonomic rank, and genetic diversity of P. persica by molecular biological technology and methods. It will provide molecular evidences for solving problems in taxonomy of subgenus Amygdalus, conservation and utility of germplasm in P. persica.
     The internal transcribed spacer (ITS) regions of nuclear ribosomal DNA from 8 species of subgenus Amygdalus were sequenced, and analyzed together with other ITS data (from GenBank) of 18 species representing subgenus Cerasus, subgenus Armeniaca and subgenus Primus by using of Padus racemosa (Lam.) Gilib. and Padus buergeriana (Miq.) Yüet Ku as outgroup for studying phylogeny of subgenera in stone fruit plants. 223 accessions from subgenus Amygdalus, subgenus Prunus, subgenus Armeniaca, subgenus Cerasus were studied by RAPD technology and clustered according to mentioned phylogenic contents. Polymorphic information contents (PIC) were calculated among species in subgenera and demes in P. persica. Meanwhile, genetic diversity, genetic structure, genetic differences of demes were analyzed with RAPD markers. The main results as follow:
     1. A database of germplasm in subgenus Amygdalus (including 20 relative species in other subgenera) was established, which included (1) origin sites, collection places, common names, scientific names and fruit characters of 223 accessions; (2) 40140 data obtained from 180 loci and 22 primers; (3) 9 gene sequences of rDNA ITS in subgenus Amygdalus.
     2. Phylogeny of subgenus Amygdalus in stone fruit plants was analyzed by RAPD markers, indicating that apricot and mume in subgenus Armeniaca clustered firstly, and the two together with subgenus Prunus, further the three with subgenus Amygdalus, finally the four with subgenus Cerasus. If the cluster was made a joint line at the level of 0.533, there were four groups as above motioned subgenera. The consensus tree by ITS gene sequences indicated that subgenus Cerasus was basal to the other subgenera with a bootstrap value of 68% and occupied an isolated position (cladeⅠ). Subgenus Prunus, subgenus Armeniaca and subgenus Amygdalus formed a monophyletic group (cladeⅡ) with a bootstrap value of 100%, which implied they had close relationships with each other and probably a common origin. CladeⅡwas divided into two subclades: One was subgenus Amygdalus with bootstrap values of 100%, the other was subgunus Prunus and subgenus Armeniaca with bootstrap values of 54%, but species in subgenus Armeniaca with bootstrap values of 85%.
     3. Phylogeny of species in subgenus Amygdalus was analyzed through markers in 180 loci and made a cluster, which inferred 8 groups: Neimengguchangbingbiantao(P. pedunculata); Guanghetao(P. mira); Shantao(P davidiana), Ganshutao(P. kansuensis); Badan(P. communis); Xinjiangtao, Maoto (P. persica ) from joint line of 0.87. Treating gaps as missing, the parsimony analyses generated five equally shortest trees with a length of 80 steps, a consistency index (CI) of 0.925, a retention index (RI) of 0.941, a rescaled consistency index (RC) of 0.871. The topology of each tree was identical except for placement of Shantao (P. davidiana) and Shanganshantao(P. potanini). In every case, P. ledebouriana and P. tenella were basal to the other species in subgenus Amygdalus, followed by P. communis which occupied an isolated position. Above these species, a tetrachotomy separated four monophyletic groups, the first one consisting of P. mira and P. kansuensis, the second one consisting of P. persica and P. persica var.ferganensis, and the rest two including P. potanini and P. davidiana, respectively. A strict consensus tree depicted sister groups of (P. mira, P. kansuensis), (P. persica, P. persica var. ferganensis), and (P. ledebouriana, P. tenella).
     4. In allusion to dispute on taxonomic ranks about Xingjiangtao, Shantao, Shanganshantao, they were analyzed with ITS gene sequences and RAPD markers. A bootstrap value of 90% supported extreme relative relationship between Xingjiangtao and common peach. 203 species, varieties, cultivars and forms clustered with RAPD markers, inferring that all species except Xingjiangtao in subgenus Amygdalus displayed in outer of the dendrogram, while 5 accessions of Xingjiangtao did not cluster out of common peach and mixed with accessions in common peach. Systematic tree was constructed by ITS sequences, indicating that Clades of Shanganshantao and Shantao existed parallel, turning into own group at the base of the other species in subgenus Amygdalus. The dendrogram from RAPD markers supported that Shantao was in an independent group.
     5. Core germplasm in each deme was put forward and listed as Liemage, Haluhong, Bailey, Akelawa in rootstock group; Hongchongban, Shouxintao(Red), etc. in shouxingtao group; Hongbitao, Honghuabitao, Renmiantao, etc. in bitao group; Zhubo 3, Zhubo 6, Luogehongye etc. in red leaf peach group; Dahongpao, Wuyuexian, Qinglingdongtao, Yixianhong, Yangquanroutao, Datiantao, etc. in crisp peach group; Qiumi, Taiyuanshuimi, Shenzhouhongmi, Wenzhoushuimi, etc. in honey peach group; Okayamahaku, Spring time, Rebin, Hakuho, Xiahui No2, Zhaoyian, Fenghuayulu, etc. in juicy peach group; Yulupantao, Wuyuexianbiangan, Sulianpantao, Jiaqing, Yangzhou 124, etc. in flat peach group; Shuguang, Ruiguang No.2, Mayfire, Aimila, Hongliguang, Armking, etc. in nectarine group; Fertinimoroteini, Xizhuang No.1, Nong 1-2-4, Gold queen, Red haven, Jinxiu, Chengxiang, Elberta, Jingcheng, etc. in yellow peach group. Among above mentioned germplasm, Yulupantao, Qiumi, Elberta, Fertinimoroteini appeared very special because of both RAPD markers and clustering place in dendrogram.
     6. Molecular checking indexes which identified the experimented accessions were edited according to special markers. Typical bands were used to analyze relation with ecotypes and characters of fruits, indicating that there was no relation between typical bands and ecotypes, but some extent relation between bands and characters of fruits existed. If all cultivars were divided into freestone and clingstone, melting and nonmelting, both freestone (ratio shared total survey, 41/56=73.2%) and clingstone (ratio shared total survey, 33/79=41.8%) appeared in the loci of S_(167)-1050 bp linked marker raised by Warburton et al. It was apparently not strong linkage between the marker and the character, and exchange rate of genes was high. If combinations of S_(167)-850bp and S_(167)-1050bp or S_(167)-850bp and S_(167)-1400bp were used to distinguish characters of fruits, 6 freestone accessions without clingstone ones and 6 melting accessions without nonmelting ones displayed in the first combination of markers, 20 clingstone accessions and 2 semi-freestone ones without freestone ones appeared in the second combination of markers.
     7. Shouxintao group, weeping peach group, red leaf peach group and bitao group, crisp peach group, mitao group, honey peach group, flat peach group, nectarine group, yellow peach group were studied from aspects of polymorphic markers, frequency of markers, variation degree of amplified loci, genetic diversity, genetic differentiation and genetic structure. There were 11.9% and 88.1% of genetic variation existing among and within demes, respectively. Genetic diversity of the demes was expressed as follow: yellow peach group>honey peach group>flat peach group>red leaf peach group>crisp peach group>bitao group and juicy peach group>nectarine group>shouxingtao group>weeping peach group. Demes clustered to be divided into five sections at joint line of 0.9586, the first one was cultivated cultivars including crisp peach, honey peach, juicy peach, flat peach, nectarine, yellow peach, of which crisp peach and juicy peach had 0.9806 of highest similarity; the others were shouxingtao, bitao, red leaf peach, weeping peach, of which red leaf peach and weeping peach had 0.9160 of lowest similarity.
     According to above results and former research achievements of morphology, cytology, pollen, isozyme, plants of stone fruits should be classified as subgenus Amygdalus, subgenus Prunus, subgenus Armeniaca, subgenus Cerasus; Xingjiangtao is a variant and suggested scientific name as Prunus persica var. ferganensis; Shantao as Prunus davidiana. Although shanganshantao clustered as independent group in the experiment, it needs studying further about taxonomical rank. There were special germplasm by means of genetic diversity. Different demes had various genetic variations, which of yellow peach was highest. Genetic variation in demes appeared 8 times higher than among demes. The paper also gave a few methods such as dendrogram, statistic, frequency of markers, polymorphic bands and special loci, genetic variations within and among demes for conservation and utility, molecular checking indexes for cultivars can provide basic information for protection of intellectual property rights and selection of wanted cultivars.
引文
曹后男,高光出,赵京秀等.桃属植物随机扩增多态性DNA技术桃品种分类学上的应用.延边大学农学学报,2000,22(1):1-5
    陈俊愉,赵守边等编著.梅花与园林.北京科学技术出版社
    陈学森,郭延奎,罗新书.扫描电镜不同制样方法对几种落叶果树花粉形态的影响.果树科学,1992,9(4):198-202
    陈耀华.关于桃花品种的产生及演化规律的初步研究。广东园林,1993,1(1):35-38
    程中平,陈志伟,胡春根,邓秀新,罗正荣,龚俊杰,姜正旺.分子标记在桃上的应用.中国南方果树,2002,31(2):60-62
    程中平,陈志伟,胡春根等.利用RAPD技术对新疆桃分类地位的探讨.园艺学报,2001,28(3):211-217.
    戴思兰,陈俊愉,李文杉.菊花起源的PAPD分析。植物学报,1998,40(11):1053-1059
    邓九生,赖炽昌,彭民璋.几个芒果品种的RAPD分析。果树科学,1999,16(2):156-158
    高锁柱,马德伟,张新文,等.桃属植物花粉形态的观察研究.中国果树,1998(4):13-16
    高锁柱,马德伟,刘景芬,赵颜斌.几种桃的过氧化物同工酶酶谱分析比较。河北农业大学学报,1987,10(1):23-27
    高锁柱,马德伟,张新文,刘连素.桃属植物花粉形态的观察研究。中国果树,1988,(4):13-16
    高志红,章镇,盛炳成,姚泉洪.桃梅李杏四种主要核果类果树RAPD指纹图谱初探.果树学报,2001,18(2):120-121
    郭振怀,贾希有,梁小巧.新疆桃和新疆甜仁桃染色体核型分析.河北农业大学学报,1989,12(1):22~26
    郭振怀,刘永居,解元铎,王明国.黄肉桃品种染色体核型分析.河北农业大学学报,1994,17(3):15-18
    郭振怀,吕增仁,李桂芹.等.山桃和甘肃桃染色体核型分析.河北农业大学学报,1986,9(4):1~5.
    郭振怀,张淑云,王秀玲.油桃染色体核型分析。河北农业大学学报,1995,18(3):107-110
    郭振怀,赵桂琴,闰景慧.碧桃染色体核型分析.河北林学院学报.1996,11(2):179-181
    郭振怀.普通桃染色体核型分析.河北农业大学学报,1992,15(3):112-114
    贺新强,李法曾。DNA分析技术及其在植物系统学研究中的应用。植物学通报,1995,12(1):38-43
    华南农学院主编.果树栽培学各论。农业出版社,1981
    华南农学院主编.果树栽培学各论.北京:农业出版社,1981,85-119
    吉田贤儿著.桃的实际栽培。日本农山渔村文化协会1986
    贾继增.分子标记种质资源鉴定和分子标记育种。中国农业科学,1996,29(4):1-10
    贾思勰原著,缪启愉校释.齐民要术校释.农业出版社,1982
    金英善,朴日子,玄永浩等.应用过氧化物酶同功酶谱对珲春桃亲缘关系的研究.延边大学农学学报,1998,20(3):196-200
    金勇丰,张耀州,陈大明,张上隆.桃早熟芽变品种‘大观一号’的RAPD分析及其特异片断的克隆.果树科学,1998,15(2):103-106
    菊池秋雄.果树园艺学(上卷).养贤堂,1951
    兰贺胜.桃有关种属的生化分类研究.杨凌西北农业大学硕土学位论文,1990
    李发芳,罗正荣,蔡礼鸿.RAPD及其在果树上的应用。果树科学,1998,15(3):256-260
    李锋,张凤芬,曹希俊等.李、杏及杂种间远缘杂交亲和性研究.吉林农业大学学报,1995,17(4):36-39
    李汝刚.分子标记在苹果品种鉴定中的应用。生物技术通报,1997,(1):17-20
    李玉晖,陈学森,杨红花,沈洪波,郑洲,吴树敬.核果类果树远缘杂交试验初报.山东农业大学学报(自然科学版),2003,34(3):369-372
    梁家勉主编.中国农业科学技术史稿.农业出版社,1989
    刘继红,胡春根.RAPD技术在果树研究中的应用.生命的化学,1998,18(1):33-35
    刘孟军,Shin Yong-UK,Yae Byeong-Woo.RAPD标记在苹果属种间杂交一代的分离方式.园艺学报,1998,25(3):214-219
    刘权,马宝昆,曲泽州编著.果树试验设计与统计.中国林业出版社,1990
    卢江.随机放大多态性DNA(RAPD)——一种新的分子遗传标记技术.植物学报,1993,35:119-127
    陆振翔,汪祖华.桃水溶性蛋白质等电聚焦电泳分析初报.果树科学,1990,7(3):157-160
    罗正荣,米森敬三,松浦明.应用RAPD技术进柿种类品种鉴定.日本园艺学会杂志,1995,64:535-541
    马锋旺,康俊生.桃和杏杂交亲和性试验.果树科学,1996,13(4):251-252,
    马艳,董超华.扁桃种质资源研究进展(综述).河科技师范学院学报,2004,18(2):29-31,44
    马艳,马英才.扁桃种质资源的AFL P分析.果树学报,2004,21(6):552~555
    农文协编.果树全书——.日本农山渔村文化协会,1985,83-91
    欧阳维敏,贾克礼.甘肃桃种质资源调查.甘肃农业科技,1985,(6):14-15
    彭建营,束怀瑞,孙仲序,彭士其.中国枣种质资源的RAPD分析.园艺学报,2000,27(3)171-176
    曲泽洲,孙云蔚.果树种类论.北京:农业出版社,1990
    陕西省果树研究所主编.陕西果树志.陕西:陕西人民出版社,1977
    沈德绪.果树种质资源的研究利用进展.果树科学,1994,11(4):253-257
    沈德绪主编.果树育种学.北京:农业出版社,1992,268-284
    沈向,郭卫东,任小林,李嘉瑞,郑学勤.用RAPD再探核果类果树间亲缘关系.西北农业大学学报,1999,27(4):19-22
    史永忠,郭文武,邓秀新.柑桔RAPD技术体系建立与体细胞杂种鉴定.园艺学报,1998,25(2):105-110
    史永忠,邓秀新,郭文武,胡春根.RAPD技术与果树种质资源及育种研究.中国果树,1997,(2):46-48
    唐前瑞,魏文娜.桃李梅杏四种核果类植物系统关系的研究Ⅲ.过氧化物酶同工酶酶谱比较.湖南农业大学学报,1996,22(4):337-340
    佟屏亚编著.果树史话.北京:农业出版社,1983
    汪小全,邹喻苹,张大明.RAPD应用于遗传多样性和系统学研究中的问题.植物学报,1996,38(12):954-962
    汪祖华,陆振翔,陆秀华.桃品种演化及分类研究——同工酶分析.园艺学报,1990,17(4):241-248
    汪祖华,周建涛.桃种质的亲缘演化关系研究——花粉形态分析.园艺学报,1990,17(3):161-168
    汪祖华,庄恩及.主编.中国果树志——桃卷.北京:中国林业出版社,2001
    汪祖华,陆振翔,郭洪.李、杏、梅亲缘关系及分类地位的同工酶研究,园艺学报,1991,18(2):a
    汪祖华,陆振翔,陆秀华.桃品种演化及分析研究——同工酶分析.园艺学报,1990,17(4):241-247
    汪祖华,周建涛.桃种质的亲缘演化关系研究——花粉形态分析.园艺学报,1990,17(3):161-168
    汪祖华编著,陆振翔,周建涛整理.桃品种.农业出版社,1990
    王善广,邓继光,高俊满.李杏杂交亲和性研究初报.北方果树,1991,(2):25-27
    王业遴,凌志奋,吴邦良.核果类主要果树花粉形态的鉴定观察.园艺学报,1992,19(1):29-33
    王宇霖.落叶果树种类学.北京:农业出版社,1988,243-268
    王中仁编著.植物等位酶分析.科学出版社,1996
    魏文娜,唐前瑞,杨国顺.桃李梅杏四种核果类植物系统关系的研究Ⅰ.形态特征的异同点.湖南农业大学学报,1996a,22(2):125-130
    魏文娜,唐前瑞.桃李梅杏四种核果类植物系统关系的研究Ⅱ.染色体核型及Giemsa显带的异同点.湖南农业大学学报,1996b,22(3):256-260
    吴耕民.中国温带果树分类学.北京:农业出版社,1984,136-207
    夏阳,梁惠敏.桃品种过氧化物同工酶识别研究.甘肃农业科技,1995,(11):14-17
    许勇,欧阳新星,张海英等.西瓜野生种质耐冷性基因连锁的RAPD标记.园艺学报,1998,25(4):397-398
    杨红花,陈学森,李玉晖,冯宝春,穆秀家.利用远缘杂交创造核果类果树新种质的研究Ⅰ.不同处理对核果类果树远缘杂交亲和性的效应研究.中国农业科学,2004,37(7):1034-1038
    杨新国,张开春,秦岭,王永熙.桃种质亲缘演化关系的RAPD分析.果树学报,2001,18(5):276-279
    杨英军,张开春,林珂.常见桃属植物RAPD多态性及亲缘关系分析.河南农业大学学报,2002,36(2):187-190
    俞德浚.关于园艺植物品种分类和命名问题.园艺学报,1963,2(2):225-231
    俞德浚.中国果树分类学.北京:农业出版社,1979,42-43
    俞德浚.中国果树分类学.上海科学技术出版社,1984,83-84
    俞明亮,马瑞娟,汤秀莲,郭洪.桃、李种间杂交试验初报.落叶果树,1995,(2):28-29
    俞明亮,马瑞娟,许建兰等.桃种间亲缘关系的SSR鉴定.果树学报,2004,21(2):106-112
    袁政,罗来水,肖德兴,张大兵.利用RAPD技术对桃种内种质的分析.江西农业大学学报(自然科学版),2002,24(2):172-175
    曾烨牟,蕴慧,甄灿福等.李、杏远缘杂交种的创造及其利用研究.北方园艺,2000,(6):22-23
    张剑.新疆的果树资源.园艺学报,1962,1(2):129-133
    张俊卫,包满珠,陈龙清.梅、桃、李、杏、樱的RAPD分析。北京林业大学学报,1998,120(2):12-15
    张开春,尹淑萍,杨英军等.分子标记在果树上的应用。果树科学,1999,16(3):210-218
    张开春,覃兰英,杨福银等.樱桃小茎兴培养后早熟变异与RAPD鉴定.果树科学,2000,17(3):225-227
    张立平,林伯年,沈德绪,吴平.葡萄属RAPD分类研究.1998,25(2):191-193
    张潞生,潘秀淑,郑开文.桃×山桃远缘杂种过氧化物酶同Ⅰ。园艺学报,1989,16(3):173-177
    张秀英,陈海萍,王文奎.关于‘白花山碧’桃亲缘关系的研究.北京林业大学学报,1998,20(2):51-55
    张秀英,王雁,王桂萍.桃花种质资源花粉形态的观察与比较.北京林业大学学报,1997,19(2):57-62
    张秀英,陈忠国.北京市桃花品种调查及分类探讨.园艺学报,1991,18(1):67-74
    章文才主编.果树研究法.农业出版社,198 1
    赵密珍,周建涛,郭洪,俞明亮.不同桃品种田间抗流胶病的鉴定.落叶果树,1996,(3):11-12
    浙江农业大学主编.果树育种学.上海科学技术出版社,1980
    中国科学院中国植物志编辑委员会主编.中国植物志.第38卷.北京:科学技术出版社,1986,10-25
    中国农业科学院果树所主编.果树种质资源目录(第二集).北京:农业出版社,1998,24-31
    中国农业科学院果树所主编.果树种质资源目录(第一集).北京:农业出版社,1993,56-89
    周建涛,郭洪,赵密珍等.桃野生种花粉水溶性蛋白IEF电泳分析.见:侯喜林,常有宏主编.园艺学进展(第2辑).南京:东南大学出版社,1998,143~145
    周建涛,郭洪,赵密珍.桃品种黄酮类化合物组分类别的数量化研究.园艺学报,1996,23(3):297-299
    周建涛,陆振翔,郭洪等.桃种质亲缘演化关系研究——表型性状的聚类分析.见:韩振海,黄卫东,许雪峰主编.中国科协第二届青年学术年会,园艺学论文集.北京:北京农业大学出版社,1995,369-399
    周建涛,钟永模,王天云等.川西南光核桃类型及桃的起源.见:张上隆,陈昆松主编.园艺学进展.北京:中国农业出版社,1994,74-77
    周建涛,郭洪,赵容珍.桃品种黄酮类化合物组分类别的数量化研究.园艺学报,1996,23(3):297-299
    周志钦,李育农,王力超.11种野生苹果资源的RAPD标记研究.西南农业大学学报,1998,20(1):34-36
    朱更瑞.中国桃属植物的抗性种质资源.作物品种资源,1992,(3):18-20
    朱更瑞,王力荣,左覃元,张学炜.桃砧木资源对南方根结线虫的抗性.果树科学,2000,17(增刊):36-39
    汪祖华,周建涛.桃种质的亲缘演化关系研究——花粉形态分析.园艺学报,1990,17(3):161-168
    宗成文,曹后男,赵成日,朴日子,朱波.应用RAPD标记对桃品种间亲缘关系的分析.延边大学农学学报,2005,27(2):77-82
    宗学谱,俞宏,王志强.桃属植物种间亲缘关系及演化研究——花粉蛋白SDS电泳分析。园艺学报,1995.22(3):288-290
    Aranxana M.J., Arus P., Carbo J.,.King G. J. AFLP and SSR markers for genetic diversity analysis and cultivar identification in peach [Prunus persica(L.) Batsch]. ISHS Acta Horticulturae 2001, 546:International symposium on molecular markers for characterizing genotypes and identifying cultivars in horticulture, Abstract
    Aranzana M.J., Pineda A., Cosson P., Dirlewanger E., Ascasibar J., Cipriani G., Ryder C.D., Testolin R., Abbott A.G., King G.J., Iezzoni A.F., Arus P. A set of simple-sequence repeat (SSR) markers covering the Primus genome. Theor Appl Genet, 2003a, 87:805-815
    Aranzana M.J., Carbo J., Arus P. Using amplified fragment-length polymorphisms(AFLPs) to identify peach cultivars. J. Amer. Soc. Hort. Sci. 2003b, 128(5): 672-677
    Aranzana M.J., Carbo J., Arus P. Microsatellite variability in peach [ Primus persica(L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet, 2003c, 106:1341.1352
    Aranzana M.J., Garcia-Mas J., Carbo J., Arus P. Development and variability of microsatellite markers in peach. Plant Breed,2002,1221:87-92
    Arulselar S.D., Parfitt E., Kester D.E. Comparison of isozyme variability in peach and almond cultivars. J . Hered ., 1986,77:272-274
    
    Asins M.J., Mestre P., Garcia J.E., Dicenta F., Carbonell E.A.. Genotype xenviromental interaction in QTL analysis of an intervarietd almaond cross by means of genetic markes. Theor. Appl. Genet, 1994, 89(2): 328-364
    Augusto M., Sergio L., Yael J., etc. DNA isolation and AFLP fingerprinting of nectarine and peach varieties (Prunus persica).Plant Molecular Biology Reporter, 1999,17:255-267
    Bachmann K. Molecular markers in plant ecology .New Phytologist, 1994,126,403-418
    Badenes L., Martinez-calvo J., Ll'acer G.. Analysis of peach germplasm from Spain. Acta Horticulturae, 1998,465,243-250
    Badenes M.L, Parfitt D.E. Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor. Appl. Genet. 1995, 90:1035-1041
    Baird W.V., Ballard R.E., Rajapakse S., Abbott A.G. progress in Prunus mapping and application of molecular markers to germplasm impvorement. HortScience, 1996,1 (7): 1099-1106
    Baldwin B.G., Sanderson M.J., Porter J.M., Wojciechowski M.F., Campbell C.S., Donoghue M.J. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 1995, 82: 247-277
    Baldwin, B.G. Phylogenetic utility of the transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molecular Phylogenetics and Evolution 1992, 1:3-16
    Ballard R.E., Abbott A.G. Characterization of microsatellite markers in peach [ Prunus persica (L.) Batsch] Theor Appl Genet, 2000, 101:421-428
    Barrett H.C, Rhodes A.M. A numerical taxonomic study of affinity relationshisp in cultivated citrus and its close relatives. System Bot, 1976,1(2):105-136
    Basar H. Elemental composition of various peach cultivars. Scientia Horticulturae www. elsevier. Com / locate/ scihorti, 2005
    Belthoff L.E., Ballard R., Abbott A., etal. Development of a satuatded linkage map of Prunus persica using molecular based marker systems. Acta Hort. 1993, (336):51-56.
    Bentham G and Hooker J D. genera plantarum, 1865, 1:610 , Reeve and Co., London, UK
    Bernhard R. The peach-almond and its utilization. Revue Horticole, 1949,121:97-101
    Bolivar A.C., David B., William R.O., Luis C.Z. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry, www.elsevier.com/locate/foodchem, 2005
    Bortiri E., Oh S.H., Gao F.Y., Potter D. The phylogenetic utility of nucleotide sequences of sorbitol 6-phosphate dehydrogenase in Prunus (Rosaceae). American Journal of Botany, 2002, 89:1697-1708
    Bortiri E., Oh S.H., Jiang J.G., Baggett S., Granger A., Weeks C, Buckingham M., Potter D., Parfitt D.E. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Systematic Botany, 2001, 26: 797-807
    Bourquin J.C.,. Sonko A., Otten L., Walter B. Restriction fragment length ploymorphism and molecular taxonomy in vitis vinifera L. Thero. Appl.Genet. 1993, 87:430-438
    Bowers J.E., Bandam E.B., Meredith C.P. DNA fingerprint characterization of some wine grape cultivars. Amer. Enol.viticult, 1993,44(3):266-2
    
    Brooks R.M.and Olemo H.P.Register of new fruit and nut varieties list-32.Hortscience, 1982,126:205-209
    Browicz K, Zohary D. The genus Amygdalus L. (Rosaceae): species relationships, distribution and evolution under domestication. Genetic Resources and Crop Evolution, 1996, 43: 229-247
    Brown A.H.D. Core collection: A pratical approach to genetic resources management. Genome, 1989,31: 818-824
    Byrne D.H., Littleton T.G. Verification of the parentage of presumed peach xalmond hybrids by isozyme analyses. Fruit Varieties Journal ,1988 ,42 (4): 130-134
    Byrne D H. Isozyme variability in four diploid stone fruits compared with other woody perennial plants. The Journal of Heredity ,1990 ,81 (1) :68-71
    Caetano-Anolles G., Bassam B.J., Gresshoff P.M. DNA amplification fingerprinting with very short primers. Proc of the Sym. Appl. of RAPD Technology to Plant Breeding1992, 18-15
    Callahan A., Peter M., Morgens H., Reuben A. Isolation and initial characterization of cDNA for mRNA rpegulated during peach fruit development. J.Amer. Soc. Hort. Sct. 1993,118(4): 531 -537
    Camara-Machado M.L., Camara-Maahado A., Hanzer V. et al. Regeneration of transgenetic plants of prunus armeniaca containing the coat protein gene of plum pox virus. Plant Breed.Berlin, 1998,117(1):69-72
    Cervera M.T., Cabezas J.A., Sancha J.C, Martinesz F., Martiez-Zapater J.M. Application of AFLPs to the characterization of grapevine Vitis vinifera L. genetic resources: A case study with accessions grom Rioja (Spain).TheorAppl. Genet 1998,97:51-59
    Chaparro J.X., Werner D.J., O'Malley D, Sederoff R.R. Argeted mapping and linkage analysis of morphological isozyme and RAPD markers in peach .Theor Appl Genet. 1994, 87(7):805-815
    Cheng H.Y., Yang W.C., Hsiao J.Y. Genetic diversity and relationship among peach cultivars based on random amplified microsatellite polymorphism (RAMP). Bot Bull Acad Sin, 2001,42 :201-206
    Cipriani G., Lot G., Huang W.G., Marrazzo M.T., Peterlunger E., Testolin R. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterization and cross-species application in Prunus. Theor Appl Genet, 1999,99:65-72
    Clegg, M.T. and Zurawski, G.. Chloroplast DNAand the study of plant phylogeny: present status and future prospects. In P.S.Soltis, D.E. Soltis and J.J. Doyle[eds.], Molecular systematics of plants, 1992, 1-13, Chapman and Hall, New York, NY
    Dariograttapaglia, J.C. 1992, Mapping in woody plany with RAPD marker: applification to breeding in forestry and horticulture proceedings of the syymposium 37-40
    De Candolle A.P.. Rosaceae. In Prodromus systematais naturalis regni vegetabilis, Treuttel and wurtz, Paris, France. 1825,2:525-639
    
    De Jusseiu A L. genra plantarum. B. Herissant, Paris, France, 1789
    De Tournefort J P. 1700. Institutions rei herbariae, 1st ed. Paris, France.
    Demeke T, Adams R.P., Chinbbar P. Potential taxonomic use rasom amplified polymorphic DNA(RAPD): a case study in Brassica. Theor Appl Genet., 1992. 84:990-994
    Deng Z.N., Gentile A., Nicolosi E., Domina F. Identification of in vitio and in vivo Lemon matants by RAPD markers ,J Hort. Soc. 1995, 70: 117-125
    Denisov,V.P. Almond genetic resources in the USSR and their use in production and breeding. Acta Hort. 1988,224:299-306
    Dirlewanger E., Pascal T., Zuger C, Kerrella J. Analysis of molecular markers associated with powerdery mildew resistance genes in peach Prunus persica (L),Batch X Prunus davidiana hybxids. Theor. Appl. Gene. 1996,93(5):909-911
    Dirlewanger, E., Cosson P., Tavaud M., Aranzana M.J., Poizat C, Zanetto A., Arus P., and Laigret F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry. Theor Appl Genet. 2002,105:127-138
    Dirlewanger E., Duha S., Viruel, M.A., Saunier, R. Identification of peach varieties using molecular markers. Acta Hortic. 1998,465, 69-78
    Downie, S.R.and Palmer, J.D. Restriction sit e mapping of t he chloroplast DNA inverted repeat: a molecular phylogeny of the Aateridae. Annals of the Missouri Botanical Garden, 1992, 79:266-283
    Durham R.E., Liou P.C.,Gimtter F.G., Moore G.. Linkage of restriction fragment lergth polymorphisms and isozymes in itrus. Theor. Appl. Genet. 1992,84:39-48
    
    Durkewabgerm E., Bodo C. Molecular genetic mapping in peaches. HortScience,1994, 27: 160-163
    Excoffier L. Analysis of Molecular Variance(AMOVA) Version 1.5 Genetics and Biometry Laboratory, University of Geneva. 1995
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985, 39: 783-791
    Fogle H.W. Identification clones within four fruit species by pollen exine patterns. J.Amer Soc.Hort.Sci. 1997,102(5): 552-560
    Foolad M.R., Arulsekar S., Becerra V., Bliss F. A. A genetic map of Prunus based on an interspecific cross between peach and almond. Theor. Appl. Genet 1995,91(2)262-269
    Fukuda T., Yokoyama J. and Ohashi H. Phylogeny and Biogeography of the Genus Lycium (Solanaceae): Inferences from Chloroplast DNA Sequences.Molecular Phylogenetics and Evolution,2001, 19(2): 246-258
    Gardiner S.E., Zhu J.M., Heather CM. Madie W.C. The New Zealand apple genome mapping project ,The Horticuldture and Food Research, 1994,275-279
    Garham J., Mcnicol R.J., Greig K., Van de Ven W. T.G. Identification of red raspberry cultivars and an assessment of their relatedness using fingerprints produced by random primers. J. Hort. Sci. 1994,69(1): 123-130
    Ghora C and Panigrahi. The family Rosaceae in India, vol.2.Bishen Singh Mahendra Pal Singh, Dehara Dun, India. 1995
    Gmitter F.G., Xiao S.Y., Huang S., Hu X. L. A localized linkage map of the citus tristeza virus resistance gene region Theor. Appl. Genet. 1996,92:688-695
    Gogoreena Y., Parftt D.E. Evalution of RAPD consistency for detection of polymorphism in apricot. Sci. Hort. 1994, 59:163-167
    Grossa J., Delacy I.H., Taba S. The use of multivariate methods in developing a core collections of plant genetic. IPGRI, 1995, 77-92
    Grundmann M., Schneider H., Russell S.J. and Johannes C. Vogel Phylogenetic relationships of the moss genus Pleurochaete Lindb. (Bryales: Pottiaceae) based on chloroplast and nuclear genomic markers .Organisms Diversity & Evolution, Volume 6, Issue 1, 9 February 2006, Pages 33-45
    Hamby R. and Zimmer K. Ribosomal RNA as a phylogenetic tool in plant systematics. In P.s. Soltis, D.E. Soltis, and J.J. Doyle[eds.], Molecular systematics of plants, 1991,p50-91. Chapman and Hall, New York, NY.
    Hancock J.F., Callow P.A., Shaw D.V. Randomly amplified ploymorphic DNA in the cultivated strawberry Fragria X Ananassa. J. Amer. Soc. Sci. 1994,19:862-864
    Hashimi G. Huettel R., Meyer R., Krusbery L. and Hammerschlay F. RAPD analysis of somaclonal variants derived from embryo callus cultures of peach. Plant Cell Rep. 1997. 16(9):624-627
    Herrero R. Asins, M.J., Carbonell E.A., Navarro L. Genetic diversity in the orange subfamily Aurantioideae. II Genetic relationships among genera and species. Theor. Appl. Genet. 1996,93: 1327-1334
    Herrero R., Asins M.J., carbonell E.A., Nararro L. Genetic diversity in the orange subfamily Aurantioideae.I. Intraspecies and intragenus genetic variability. Theor. Appl. Genet. 1996,92:599-609
    Hesse, CO. Peach. In Advances in fruit breeding. Edited by Janick J. and Moore J.N.. Purdue University Press, West Lafayette, Ind. 1975
    Hirai M. Isozymes analysis and phlogenic relationship of Citrus.. Japan J. Breed 1986, 37:-388 http://apps.fao.org
    
    James N.M., James R. Balloington J. Genetic resources of temperate fruit and nut crops . published by the international Soc.for Hort Sic. 1990,177-214
    Jin Y.F., Zhang Y.Z., Chen D.M. and Zhang S.L. Identification of peach early-ripening mutant 'Daguang 1' by RAPD markers and cloning of specific fragment. Journal of Fruit Science, 1998,15(2): 103-106
    Jvascu A. Peach genetic resources in Romanisa.Proceedings of the Fourth International Peach Symposium 1998,251-259
    Kester D.E. and Hansen C.J. Rootstock potentialities of F1 hybrids between peach(Prunus persica L.) and almond( Prunus amygdalus Batsch.). J. Amer. Soc. Hort. Sci. 1966, 89:100-109
    Knaak C, Hamby R.K., Arnold M.L., Leblanc M.D., Chapman R.L. and Zimmer E.A. Ribosomal DNA variation and its use in plant biosystematics. In S. Kawano[ed.], Biological approaches and evolutionary trends in plants, 1990,p135-158. Academic Press, London
    Koehne B.A. E. Die Gliederung von Prunus subgen. Padus, Verhandhunben des botanischen Vererins der Provinz Brandenburg. Berlin. 1911, 52:101-108
    
    Koehne B A E. Deutsche Dendrologie, Verlag von Ferdinand Enke, Stuttgart, Germany, 1893
    Koller B.A., Lehmanm J.M., Dermott M., Gessler C. Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 1993, 85: 901-904
    Kyndt T., Droogenbroeck B.V., Romeijn-Peeters E., Romero-Motochi J.P., Scheldeman X., Goetghebeur P., Damme P.V. and Gheysen G. Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data .molecular Phylogenetics and Evolution,2005,37(2): 442-459
    Lavi U., Hilld J.., Vainstein A, Lahav E., Sharon D. Application and genetic analysis of avocado. J. Amer. Soc. Hort. Sci. 1991, 116:1078-1081
    Lee S, Wen J. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. American Journal of Botany, 2001, 88,150-160
    Linnaeus C. Species plantarum. 1753, Stockholm, Sweden.
    
    Linnaeus, C. Genera Plantarum. 5th ed. Stockholm: 1954, Impensis Laurentii Salvii.
    Lu Z.X., Reighard G.L., Baird W.V., Abbott A.G., Rajapa S. Identification of peach rootstock cutivars by RAPD markers. HortScience, 1996,31(1):127-129
    Luro F., Laigret F., Ollitrault P. Citrus genome mapping with molecular markers:two maps obtained by segregation analysis of progeny of one intergenetic cross. Pro. Int. Soc. Citrus cul. 1996, 862-866
    Luro F., Laigret F., Bovel J.M. Applification of random amplified polymorphic DNA (RAPD)to citrus genetics and taxonomy. Pro. nt.Soc. Citrus Cultivation. 1992,225-228
    Mansion G. and Struwe L. Generic delimitation and phylogenetic relationships within the subtribe Chironiinae (Chironieae: Gentianaceae), with special reference to Centaurium: evidence from nrDNA and cpDNA sequences .Molecular Phylogenetics and Evolution, 2004,32(3): 951-977
    Martinez-Gomez P, Arulsekar S, Potter D, and Gradziel T.M. Relationship among peach, almond, and related species as detected by simple sequence repeat markers. J. Amer. Soc. Hort. Sci. 2003, 128(5):667-671 eih M., Zahorchak R. Characterization Of microsatellite markers in eastern whitepine. Genome, 1996, 39: 1102-1108
    May C.S., Marquardt P., Hseih M., Zahorchak R. Characterization Of microsatellite markers in eastern white pine. Genome, 1996, 39: 1102—1108.
    Messeguer R., Arus P., Carrera M. Identification of peach clutivars with pollen isozymes. Scientia Horticulturae, 1987,31:107-117
    Mowrey B.D., Werner D. J., Byrne D.H. Isozynme survey of various species of Prunus in the subgenus Amygdalus. Scientia Hort. 1990,44:251-260
    Mowrey B.D., Werner D. J. Developmental specific isozyme expression in peach. HortScience ,1990 , 25 (2) :219-222
    Mowrey B.D., Werner D.J., Byrne D.H. Isozyme survey of various species of Prunus in the subgenus Amygdalus. Scientia Horticulturae, 1990 ,44 :251-260
    Mowrey B.D., Werner DJ. Phylogenetic relationships among species of Prunus as inferred by isozyme markers. Theoretical and Applied Genetics, 1990, 80:129-133
    Nei M. Analysis of gene diversity in subdivided populations . Proc. National Academy of Science ,USA, 1973,70:3321-3323
    
    Nybom H . DNA fingerprintg: A useful tool in fruit breeding. Hort. Plant. Breeding, 1994,257-262
    Nyubom H., Schaal B.A.,. Rogstad S.H. DNA "fingerprints" can distinguish cultivars of blackberries and raspberries .Acta Hort. 1989,262:305-310
    Olmstead R.G., Jansen R.K., Michaels H.J., Downie S.R. and Palmer J.D.Chloroplast DNA and phylogenetic studies in the Asteridae. In S. Kawano[ed.]. Biological approaches and evolutionary trends in plants, 1991, 110-134. Academic Press, London
    Palmer J.D. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. American Naturalist 1987,130:S6-S29(Supplement)
    Palmer J.D., Jansen R.K., Michaels H.J., Chase M.W. and Manhart J.W. Chloroplast DNA variation and plant phylogeny. Annals of the Missouri Botanical Garden ,1988, 75:1180-1206
    Parent J.K., Page D. Identification of raspberry cultivars by nonradiative DNA fingerprinting. Hortscience, 1992,27:1108-1110
    Paul S., Wachira F.N., Powell W., Waugh R. Diversity and genetic differentiation among populations of India and Kenyan tea (Camellia sinensis O.kuntze)revealed by AFLP markers. Teor. Appl. Genet. 1997,94:255-263
    Powell W, Morgante C.A., Hanafey J.V., Tingery S. and Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR(microsatellite) makers for germplasm analysis. Mol. Breeding, 1996, 2:225-238
    Quarta R , Dettori M T , Verde I ,et al. Characterization and evaluation of genetic diversity in peach germplasm using RAPD and RFL P markers. Acta Hort. ,2001 ,546 :489-496
    Rajapakse S., Belthoff L.E., He G., Estager A. E., Scorza R., Verde I., Ballard R. E., Baird W. V., Callahan A., Monet R., Abbott A. G.. Genetic linkage mapping in peach using morphological RFLP and RAPD markers. Theor. Appl. Genet. 1995,90(3):503-510
    Randall L., Edgar S., Lickey B., Shaw J. and Hauk W.D. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae .molecular Phylogenetics and Evolution, 2005,36(3): 509-522
    Rehder A. Amanual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperate regions, 2nd ed. Macmillan, 1940, New York, New York, USA.
    Russdll J.R., Hosein F., Johnson E., Wangh R., Powell W. Genetic differentiation of Cocoa (Theobroma cacao L.) populations revealed by RAPD analysis. Mol. Ecol. 1993,2:89-97
    Sandhya A., Nath A.K., Sharma D.R.. Characterisation of peach(Prunus persica L.) cultivars using isozymes as molecular markers. Scientia Horticulturae, 2001,90:227-242
    Savolainen V, Orbaz R.C. Moncousin C, Spichiger RChloroplast DNA variation and parentadge analysis in 55 apples.Theor. Appl. Genet. .1995,90:1138-1141
    Scorrza R., Mehlenbacher S.A., Lightner G.W. Inbreeding and coancestry of freestone peach cultivars of eastern United stsates and implications for germplasm improvement. J. Amer.Soc.Hort.Sci. 1985, 110: 547-552
    Scorza R. and Sherman W.B. Peaches, p285-326.In: J. Janick and J N Moore(eds).Fruit breeding. 1996, Wiley,New York
    Sharon A.D., Lavil V. Application of DNA fingerprints for identification and genetic analyses of Mango(Mangifera indica )genotypes. J.Amer. Soc. Hort. Sci., 1995, 120(2):259-264
    Shaw J, Small R.L. Addressing the "hardest puzzle in American Pomology:" phylogeny of Primus sect. Prunocerasus (Rosaceae) based on seven noncoding chloroplast DNA regions. American Journal of Botany, 2004, 91,985-996
    Smigocki A..C., Hammerschlag F. A., Regeneration of plants from peach embryo cells infected with a shooty mutant strain of Agrobacterium. J.Amer. Soc. Hort. Sci., 1991,116(6): 1092-1097
    Soost R.K., Caneron J.W. Advances in fruit breeding . Purdue Univ Weit Lafayethe Ind , 1975 ,507-540
    
    Sosinski B., Gannavarapu M., Hager L.D., Beck L.E., King G.J., Ryder C.D., Ajapakse S. Baird W.V., Staub J. E., Serquen F. C. Genetic markers, map construction ,and their application in plant breeding. Stebbins G.L. 1971, Chromosomal evolution in higher plants. 1996, p87-89, Edward Arnoed Ltd.London
    Stiles J.I., Lemme C, Sondur S. Using randomly amplified polymorphic DNA for evaluating genetic relationship among papaya cultivars. Theor. Appl. Genet. 1993, 85:697-701
    Sugawara K., Owada A., Moriguchi T., Omura M. Identification of citrus chimeras by RAPD markers HortScience ,1995,30(6):1276-1278
    Swofford D.L. PAUP* 4.0: Phylogenetic analysis using parsimony (* and other methods). Beta version 4.0b4A. Sunderland: Sinauer Associates. 1998
    Takash ST., Hosada H. K. Classification and parent determination by RAPD in mume . Techniques on Gene Diagnosis and Breeding in Fruit Trees Copyright FTRS. 1993
    Thompson J.D, Gbson T.J, Plewinak F., et al. The clustal-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25: 4876-4882
    Thomson D., Herry R. Use of DNA from dry leaves for PCR and RAPD analysis. Plant Mol. Bio. Report ,1993, ll(3):205-206
    Thormann C.E., Osrorn T.C. Use of RAPD and RFLP markers for germplasm evaluation. Proceeding of the Symposium . Applications of RAPD Technology to Plant Breeding, 1992,9-11
    Tingey S.C., Raralsk. i J.A,. Willimas J.G. K Genetic analysis with RAPD markers. Proceeding of the Syposium: Application of RAPD technology to plant breeding, 1992,3-8
    United States Department of Agriculture. Handbook of peach and nectarine varieties. Agricultural research service, 1998, 1-808
    Vezvaei A., Hancock T.W., Giles L.C., Glarke G.R., Jackson J.F. Inheritance and linkage of isozyme loci in almond. Theor. Appl. Genet.,1995,91(3):432-438
    Viruel M. A., Messeguer R., Vicente M.C. Garcia-mas J. A Linkage map with RFLP and isozyme markers for almond. Theor. Appl. Genet. 1995,91(5):964-971
    Wang Y.J. and Liu J.Q. Phylogenetic analyses of Saussurea sect. Pseudoeriocoryne (Asteraceae: Cardueae) based on chloroplast DNA trnL-F sequences .Biochemical Systematics and Ecology, 2004 32(11): 1009-1023
    Warburton M.L., Bliss F.A. Genetic diversity in peach [Prunus persica (L.) Batch]reveaed by randomly amplified polymorphic DNA(RAPD) markers and compared to inbreeding coefficients. J Amer Soc Hort., 1996.121(6):1012-1019
    Weinberger J.H. Plums in Advances in fruit breeding, eds. Janic J and Moore J N. West Lafayette: Purdue University Press. P. 336-347, 1975
    Welsh J., Petersen. C, Mcclelland M. polymorphorisms generated by arbitrary primed PCR in the mouse : Application to strain identification and genetic mapping. Nucleic Acids Res. 1991,19:303-306
    White T.J, Bruns T, Les S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T eds. PCR Protocols: A Guide to Methods and Application. San Diego: Academic Press. 1990, 315-322
    Willimas J.G., Kubelik A.R, Livak K.J., Rafalski J.A., Tingey S.V. DNA ployphorisms amplified by arbitrary primers and useful as genetic markers. Nucleic Acids Research, 1990, 18(22)6531 -6535
    Wu B.H., Quilot B., Ge'nard M., Kervellac J., Lia S.H.. Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Scientia Horticulturae, 2005,103:429-439
    www.cpst.net.cn
    Xu D.H., Wahyunil S.,. Sato Y., Yamaguchi M., Tsunematsul H. andBanl T.Genetic diversity and relationships of Japanese peach (Prunus persica L.)cultivars revealed by AFLP and pedigree tracingGenetic Resources and Crop Evolution (2006) 00:1-7 Springer 2006
    Young E.G., Ballard R.E., Coston D.C. The identification and comparison of flavonoid compounds in the fruit, skins and leaves of peach cultivars.ISHS Acta Horticulturae 254:11 international peach symposium.,Abstract
    
    Yu K., Pauls K.P. Optimization of the PCR program for RAPD analysis, NAR, 1992, 20:2602
    Zanetto A., Formery B. International network on Prunus genetic resources :The European Prunus datebase. Proceedings of the Fourth International Peach Syposium,1998,237-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700