披碱草属遗传多样性、P基因组特异重复序列克隆和小麦EST-SSR标记开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本报告分为三部分。
     第一部分是披碱草属植物的遗传多样性分析。以中国境内的披碱草属物种为研究材料,采用ISSR和SSR标记技术,比较了ISSR和SSR标记在披碱草属植物研究中的可应用性;研究了Elymus dahuricus complex物种在中国境内的遗传多样性状况;采用SSR标记对披碱草属植物模式种E.sibiricus的遗传多样性分布状况进行了分析。主要结果如下:(1)ISSR和SSR标记在披碱草属物种中标记效率比较研究表明,2种标记均表现出较高多态性,基于两种标记的种间聚类状况与物种的倍性水平和形态学相似程度存在较高一致性。在12个种间ISSR标记表现出更高的标记效率,SSR标记则更适于近亲缘物种分析。两种标记的相关性在12个种间表现为显著,在近亲缘水平表现不显著。(2)利用ISSR和SSR标记分析了中国境内4个E.dahuricus complex物种共39个居群的遗传多样性。结果显示,4个E.dahuricus complex物种间分化程度较低。其中Eexcelsus相对独立;E.dahuricus和E tangutorm之间存在一定程度的分化;E.cylindricus介于E.dahuricus和Etangutorm之间。UPGMA系统聚类具有明显的地域特性。其中,青海省东沿及周边地区可能是E.dahuricus complex物种在中国境内发生显著分化的地理分界线。(3)6个E.sibiricus居群的SSR分析表明,在居群内和居群间均存在较为丰富的SSR位点变异。遗传变异主要存在于居群间,居群内SSR位点以杂和状态出现的极低频率,表明E.sibiricus为较严格白花授粉植物。E.sibiricus主要分布区的40个居群研究表明,居群间分化具有明显的地域特性,其中青藏高原地区为E.sibiricus分化状况较为复杂的地区。
     第二部分是P基因组特异重复序列的克隆。以冰草及小麦族其它基因组植物为材料,进行冰草P基因组特异重复序列分离研究,获得的主要结果如下:(1)利用回收特异RAPD片段的方法,分离到一个长578bp的冰草P基因组特异DNA重复序列——OPC08_(578),与Genbank上注册的序列同源比较表明,该序列是冰草P基因组新的特异重复序列。以OPC08_(578)克隆作探针进行Southern杂交表明,该克隆片段在W、H和F基因组也有分布,在ABD、R、V、E、St、Ns、I、D、A等基因组中则无分布。根据OPC08_(578)序列,设计合成了一对特异引物SC-OPC08。该标记可以用来区别P与ABD、R、V、E、St、W、Ns、D、A、C、S、U、I、M、AG基因组,也可用于小麦——冰草附加系中冰草染色质的检测,PCR扩增结果和Southern杂交结果相吻合。(2)利用回收特异ISSR片段的方法,分离到一个长535bp的冰草P基因组特异DNA重复序列——UBC811_(535),同源比较表明,该序列是P基因组新的特异重复序列。Southern杂交表明,该克隆片段在P基因组有非常强的分布,而子ABD、F、V、H、Ns、R、St等其它基因组无杂交信号。根据UBC811_(535)序列,设计合成了一对特异引物SC-UBC811,该标记可以用于小麦——冰草附加系中冰草染色质的检测。
     第三部分是EST-SSR标记的开发和作图。利用普通小麦EST数据库(GenBank/dbEST)中最新的151695条EST序列(2003.7.14~2004.8.24)进行了微卫星序列的筛选,共发现微卫星序列2038个,占整个EST数据库的1.34%。根据筛选得到的微卫星序列设计并合成了249个引物对。PCR扩增表明,166个引物对在不同小麦品种中显示出稳定清晰的带型,可以作为小麦和相关物种的新的EST-SSR分子标记。将其中的93个引物对、193个位点定位到除4A和4B外的19条特定的染色体。利用RIL群体将43个EST-SSR位点绘制到遗传图谱的11条染色体上。对开发的166个EST-SSR引物对的EST在GenBank数据库进行比对分析,有48条EST序列与35种具有生物功能的核酸或蛋白质有同源性,大部分的同源产物来源于普通小麦和栽培水稻。将其中的23条EST序列、推测编码20种蛋白质的基因定位到14条特定的小麦染色体;将涉及5种推测蛋白质基因的12个位点绘制到遗传图谱的6条染色体上。
This report is composed of three parts.
     Part I is Genetic Diversity of Elymus species. Using twelve Elymus species collected from China, the usefulness of ISSR and SSR markers in genetic diversity analysis was compared. The genetic diversity of Elymus dahuricus complex species of China was analysed. The differentiation model and genetic diversity distribution of Elymus sibiricus in China were investigated using SSR markers. The main results were as follows. (1) The comparing of the usefulness of ISSR and SSR markers showed that both type markers appeared high polymorphism, and the results of cluster analysis based on ISSR and SSR markers were coincided highly with ploidy level and morphologic taxonomy. For 12 species, ISSR markers had higher marker utility than that of SSR markers. But SSR markers were fit to related species analysis. The relation of genetic similarity matrix between ISSR and SSR was significant for 12 species, but not significant for related species. (2) The genetic diversity of 39 populations of four E. dahuricus complex species collected in China was studied using ISSR and SSR markers. The results showed that the differentiation among E. dahuricus complex species was lower. E. excelsus was a relative independence specie. There was definite differentiation between E. tangutorum and E. dahuricus. E. cylindricus showed complex relationship with others species. The UPGMA cluster appeared obvious zone character. The east of Qinghai province might be the geographical differentiation boundary of E. dahuricus complex species. (3) The analysis of 6 E. sibiricus populations based on SSRs showed that there were plenty SSR locus variances within population and among populations. The main genetic variance existed among population. In another, there was only low percentage of heterozygotes within population. These showed that E. sibiricus was a kind of self-pollination plant. The study of 40 populations from the main distribution area showed that there was obvious zone character among population differentiation. And Qingzang altiplano was the area of complicated genetic variance.
     Part II is Cloning of P-genome Specific Repetitive DNA Sequences. Agropyron Gaertn (P genome) and other genome of Triticum were used to isolate P-genome specific repetitive DNA sequences. The main results were as follows: (1) Using the method of reclaiming the products of RAPD, A specific DNA repetitive sequence of P genome in Agropyron, OPC08_(578), was isolated and cloned. Homologous comparison with the DNA sequences registered in GenBank indicated that it was a new P-genome specific DNA repetitive sequence. Southern hybridization showed that OPC08_(578) had the same distribution in the genome W, H and F. But it has no hybridization signals detected in ABD, R, V, E, St, Ns, I, D and A genomes. A pair of specific primers SC-OPC08 were designed according to the sequence of OPC08_(578). This primer could not only distinguish P genome from genomes ABD, R, V, E, St, W, Ns, D, A, C, S, U, I, M and AG, but also could be used in the detection of chromatin of P genome from Wheat-Agropyron addition lines. The results of PCR amplification were consistent with the results of Southern hybridization. (2) Using the method of reclaiming the products of ISSR. A P-genome specific DNA repetitive sequence in Agropyron, UBC811_(535), was isolated and cloned. Homologous comparition indicated that it is a new P-genome specific DNA repetitive sequence. Southern hybridization showed that UBC811_(535) had strong distribution in the P genome. But it has no hybridization signals detected in F, V, H, Ns, R and St genomes. A pair of specific primers SC-UBC811 was designed according to the sequence of UBC811_(535). This primer could be used in the detection of P chromatin from Wheat-Agropyron addition lines.
     Part III is Development and mapping of EST-SSR markers in wheat. A number of 151695 wheat expression sequence tags (ESTs) that originated from GenBank/dbEST from July 14, 2003 to August 24, 2004 were used to search for simple sequence repeats (SSRs) with motif 2-5 bp, and 2038 simple sequence repeats (EST-SSRs), which accounted for 1.34% of EST database, were identified. Based on these SSR sequences, 249 EST-SSR primer pairs and 166 amplified clear bands in various wheat cultivars were designed. These EST-SSR markers can be used as new molecular markers in wheat and related species. Using Chinese Spring nulli-tetrasomic lines, 93 EST-SSR primer pairs and 193 EST-SSR loci were located on 19 wheat chromosomes except for 4A and 4B. Forty-three loci were mapped on 11 chromosomes of the genetic framework previously constructed using recombinant inbred lines. EST sequences (166) corresponding to EST-SSR markers were analyzed by the programs BLASTN and BLASTX to obtain their information of bio-function and express types. After sequence similarity assignment, 48 ESTs have 35 kinds of homologous sequences or proteins. The most homologous sequences or proteins are from wheat and rice. 23 ESTs with coding 20 proteins putatively were located on 14 chromosomes and 5 genes of coding proteins putatively with 12 loci were mapping on 6 chromosomes.
引文
1.鲍文奎.机遇与风险——40年育种研究的思考.植物杂志,1990,17(4):4-5.
    2.杜立群.PEFCSH的建立及在基因组特异序列克隆上的应用.中国科学院博士学位论文,1999
    3.范正一.中国自然保护地图集,1989,科学出版社.
    4.何风发,何丽玫,候磊,柳家荣.芝麻的核型与系统演化.西南农业大学学报,1994,16:573-576.
    5.贾继增.分子标记种质资源鉴定和分子标记育种.中国农科学,1996,29(4):1~10.
    6.金燕,卢宝荣.遗传多样性的取样策略.生物多样性,2003,11(2):155-160.
    7.孔秀英,周荣华,董玉琛,贾继增.尾状山羊草C基因组特异重复序列的克隆.科学通报,1999a,44(8):828-832.
    8.孔秀英,周荣华,董玉琛,贾继增.尾状山羊草与硬粒小麦、普通小麦的杂交及外源染色质检测.植物学报,1999,41:1164-1168.
    9.李洪杰.长穗偃麦草(Thinopyrum elongatum)基因组特异重复序列的分离.中国科学院博士后研究工作报告,2000.
    10.李立会,董玉琛,周荣华,李秀全,李培.普通小麦与冰草间杂种的细胞遗传学及其自交可育性.遗传学报,1995,22:109-114.
    11.李立会,董玉琛.普通小麦与沙生冰草属间杂种的产生及细胞遗传学研究.中国科学B辑,1990(5):492-496.
    12.李立会,李秀全,李培,董玉琛,赵桂慎.小麦—冰草异源附加系的创建.遗传学报,1997,24:154-159.
    13.李立会,董玉琛.普通小麦X根茎冰草X黑麦三属杂种自交可育性的细胞学机理.遗传学报,1995,22(4):280-285.
    14.李立会,董玉琛.在组织培养中属间杂种的体细胞变异研究.中国农业科学,1995,28(6):9-19.
    15.刘望夷,祁国荣.真核生物核糖体RNA基因的结构与表达.见:敖世洲主编.真核生物基因的结构与功能.北京:科学出版社,1986,46-94.
    16.刘仁虎,孟金陵.MapDraw在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321.
    17.刘玉红.我国11种披碱草的核型分析.武汉植物学研究,1985,3(4):325-330.
    18.卢宝荣,BOrn Salomon.种间杂种染色体配对所揭示的披碱草属植物StY基因组分化及其进化意义.生物多样性,2004,12:213-226.
    19.骆蒙,贾继增.国际麦类基因组EST计划研究进展.中国农业科学,2000,33:110~112
    20.马朝芝,傅廷栋,Stine T,Bo G.用ISSR标记技术分析中国和瑞典甘蓝型油菜的传多样性.中国农业科学,2003,36:1403-1408.
    21.钱韦,葛颂,洪德元.采用RAPD和ISSR标记探讨中国疣粒野生稻的遗传多样性.植物学报,2000,42:741-750.
    22.孙根娄,颜济,杨俊良.华山新麦草同高加索鹅观草和糙毛仲彬草间物种生物学研究.草业学报,1995,12:39-45.
    23.谢可军.鹅观草属与披碱草分类学的历史与现状.草原与草坪.2000,91:6-8.
    24.王坤波,张香娣,王春英,宋国立,李懋学.棉花A染色特组的核型研究.遗传,1995,17:32-34.
    25.颜济,杨俊良.耿氏草属(Kengyilia)中国禾本科小麦族—新属.四川农业大学学报.1990,8(1):75-76.
    26.张新全,伍碧华,颜济,杨俊良,郑有良.阿拉善鹅观草、大鹅观草及大丛鹅观草杂种的细胞学研究.草业学报.1999,12:23-28.
    27.新全,杨俊良,颜济,郑有良,伍碧华.鹅观草与大鹅观草的细胞遗传学及形态学研究.广西植物,1999,19:355-358.
    28. Agafonov A V, Agafonova O V. Intraspecific variation in the prolamins of Elymus sibiricus established by means of one-dimensional eletrophoresis. Genetika Moskva. 1990, 26: 304-311.
    29. Agafonov A V, Agafonova O V. SDS-eletrophoresis of the endosperm protrins in representatives of the genus Elymus. L with different genome struture. Sibirskii Biologicheskii Zhumal. 1992, 3: 7-12.
    30. Agafonoy A, Baum V, Bailey B R, Agafonova L G. Differentiation in the Elymus dahuricus complex (Poaceae): evidence from grain proteins, DNA, and crossability. Hereditas, 2001, 135: 277-289.
    31.Ahn S, Anderson J A, Sorrells M E, Tanksley S D. Homologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet, 1993, 241: 483-490.
    32.Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphism of simple sequence repeat DNA in soybean. Genetics, 1992, 132: 1131-1139.
    33.Anderson O D, Litts J C, Greene F C. The Characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of the gene family. Theor Appl Genet, 1997,95:50-58.
    34.Anderson O D, Greene F C. DNA and protein sequence variation, subfamily structure and origins of pesudogenes. Theor Appl Genet, 1997, 95:59 -65.
    35.Adams M D, Kelley J M, Gocayne J D. Complementary DNA sequencing : expressed sequence tags and human genomeproject, Science, 1991, 252:1651-1656.
    36.Appel S R, Driscoll C, Peacock J. Heterochromotin and highly repeated DNA sequences in rye (Secale cereale). Chromosoma, 1978, 70: 67-89.
    37.Appels R, Moran L B, Gustafson J P. Rye heterochromatin1. studies on clusters of the major repeating sequence and the identification of a new dispersed repetitive sequence element. Can Genet cytol, 1986, 28: 645-657.
    38.Apples R, Baum B. Evolution of the Nor and 5S DNA loci in the Triticeae. In: Molecular. 1992.
    39.Apples R, Gerlach W L, Dennises. Molecular and chromosomal organization of DNA sequences coding for the ribosomal RNAs of cereals. Chromosoma, 1980,78:293-311.
    40.Archak S, Gaikward A B, Gautam D, Rao E V V B, Swamy K R M, Karihaloo J L. Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome, 2003, 46: 362-369.
    41.Awadalla P, Ritland K. Microsatllite variation and evolution in the Mimulus guttatus species complex with contrasting mating system. Molec Biol Evol, 1997, 14: 1023- 1034.
    42.Badaeva E D, Friebe B, Gill B S. Genome differentiation in Aegilos 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome, 1996, 39: 293-306.
    43.Baldauf F, Schubert V, Metzlaff M. Repeated DNA sequences of Aefilops markgra -fii (Geuter) Hammer var, markgrafii: cloning, sequencing and analysis of distribu -tion in Poaceaae species. Hereditas, 1992, 116: 71-78.
    44.Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G, Bryan G, Woodfield D. A microsatellite map of white clover. Theor Appl Genet, 2004, 109: 596-608.
    45.Baum B R, Estes J R, Grupta P K. Assessment of the genomic system of classifica -tion in the Triticeae. Am. J. Bot., 1987, 74: 1388-1395.
    46.Bedbrook J R, Jones J, O'Dell M, Thonpson R, Flavell R B. A molecular descrip -tion of telomeric heterochromatin in Secale species. Cell, 1980, 19: 545-560.
    47.Bedrook J R, O'Dell M, Flavell R B. Amplification of rearranged sequences in cereal plant. Nature. 1980,288: 133-137.
    48.Bell C J, Ecker J H. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics, 1994, 19: 137-144.
    49.Bietz J A. Genetics and biochemical studies of nonenzymes endosperm proteins. Wheat and Wheat Improvement-Agronom Monograph No.13 (2nd Education) 1987, 215-241.
    
    50.Blackburn E H. Telomeres and their synthesis. Science, 1990, 249: 489-490.
    51.Chen Q, Jahier J, and Cauderon Y. Intergeneric hybids between Tritium aestivum and three crested wheatgrasses: Agropyron mongolicum, A.michnoi, and A. desertorun. Genome, 1990, 33: 663-667.
    52.Chin E C L, Senior M L, Shu H, and Smith J S C. Maize simple repetitive DNA sequences: abundance and allele variation. Genome, 1996, 39: 866-873.
    53.Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N, Cartinhour S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice {Oryza sativa L.). Theor Appl Genet, 2000,100:713-722.
    54.Cordeiro G M, Casu R, McIntyre C L, Manners J M, Henry R J. Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci, 2001, 160: 1115-1123.
    55.Crane C F, Carman J G. Mechanisms of apomixes in Elymus rectisetus from east Australia and New Zealand. Amer J Bot, 1987, 74: 477- 456.
    56. Crick F H C. General model for the chromosome of higher organisms. Nature, 1971, 234: 25-27.
    57. Cuadrado A, Jouve N. Distribution of highly repeated DNA sequences in species of the genus Secale. Genome, 1997, 40: 309-317.
    58. Daud H M, and Gustafson J P. Molecular evidence for Triticum speltoides as a B-genome progenitor of wheat (Triticum aestivum). Genome, 1996, 39: 543-548.
    59. Decroocq V, Fave M G, Hagen L, Bordenave L, Decroocq S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet, 2003, 106: 912-922.
    60. DePace C, Deler V, Scarasciia M G T, Qualset C O, Cermonini R, Frediani M, Clonini P G. Molecular and chromosomal characterization of repeated and single copy DNA sequences in the genome of Dasypyrum villosum. Hereditas, 1992, 116: 55-65.
    61. Dennis E S, Gerlach W L, and Peacock W L. Identifical polypyrimid ineplypurine satellite DNA in wheat and barley. Heredity, 1980, 44: 349-366.
    62. Dewey. Cytogentics of Agropyron ugamicum and six of its interspecific hybrids. Bot Gaz, 1980, 141: 305-312.
    63. Dewey D R. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson J. P. (ed.) Gene manipulation in plant improvement. Plenum Publishing corporation. New York, 1984, pp: 209-280.
    64.Dewey D R,云锦凤.关于采用染色体组分离系统划分中国小麦多年生类群的建议.中国草原,1985,3:611.
    65. Diaz O, Salomon B, Bothmer R V. Description of isozyme polymorphisms in Elymus species using starch gel eletrophoresis. Triticeae Proceedings of the Third International Triticeae Symposuum, Aleppo, Syria, 4-8 May 1997. 1998, 199-208. Science Publishers, Inc; Enfield; USA.
    66. Diaz O, Solomon B, Von Bothmer. Genetic diversity and structure in populatiom of Elymus caninus (L.) (Poaceae). Hereditas, 1999, 131: 63-67.
    67. Diaz O, Solomon B and Von Bothmer. Genetic variation and differentiation in Nirdic population of Elymus alaskanus (Scrib.ex Merr.) Love (Poaceae). Theor Appl Genet, 1999, 99: 210-217.
    68. Diaz O, Gen-Lou Sun, Bjorn Salomon, Roland von Bothmer. Levels and distribution of allozyme and RAPD varation in population of Elymus fibrosus (Sshrenk) Tzvel. (Poaceae). Genetic Resources and Crop Evolution. 2000, 49: 11-24.
    69.Dong Y C, Zhou R H, Jia J Z. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas, 116: 157-178.
    70.Dvorak J, Terlizzi P, Zhang H B, et al. The evolution of polyploid wheats: identification of the A genome donor species. Genome, 1993, 36: 21-31.
    71.Dvorak J, Zhang H B, Kotars, et al. Orgnization and evolution of the 5S ribosomal RNA gene faily in wheat and related species. Genome, 1989, 32: 1003-1016.
    72.Ellistn, Leed, Thomasc M. 5S rRNA genes in pisum: Sequence, long range and chromosomal orgnization. Mol Gen Genet, 1988, 214: 333-342.
    73.Eujay I, Sorrells M E, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSR and genomic SSRs. Euphytica, 2001, 119: 39-43.
    74.Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399-407.
    75.Fang D Q, Roose M L. Identification of closely related citrus cultivars with inter-simple sequence repeat makers. Theor Appl Genet, 1997, 95: 408-417.
    76.Flavell R B. The molecular characterization and organization of plant chromosomal DNA sequence. Annu Rev Plant Physiol, 1980, 31: 569-596.
    77.Flavell R B. Repetitive DNA and chromosome evolution in plants. Philis. Trans. R. Soc. Lond. B., 1986, 312: 227-242.
    78.Flavell R B, Bennett M D, Smith J B, et al. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet, 1974, 12: 257-269.
    79.Frederiken S, Seberg O. Phylogenetic analysis of the Triticeae (Poaceae). Hereditas. 1992, 116: 15-19.
    80.Gaillard C, Strauss F. Association of poly (CA) poly (TG) DNA fragments into fourstranded complexes bound by HMG1 and 2. Science, 1994, 264: 433-436.
    81.Gale M D, Devos K M. Plant comparative genetics after 10 years. Science, 1998,282:656
    82.Gao L F, Tang J F, Li H W, Jia J Z. Analysis of microsatellites in major crops assessed by computational andexperimental approaches. Molecular Breeding, 2003, 12:245-261.
    83.Gao L F, Jing R L, Huo N X, Li Y, Li X P, Zhou R H, Chang X P, Tang J F, Ma Z Y, Jia J Z. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet, 2004,108:1392-1400.
    84.Gibert J E, Lewis R V. Developping an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet, 1999, 98: 1125-1131.
    85.Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 1991, 34: 830-839.
    86.Gill B S, Morris K, Appels R. Assignment of the genome affinities of chromosomes from polyploid Elymus spesies added to wheat. Genome, 1988, 30: 70-82.
    87.Giorgi D, D'Ovidio R, Tanzarella O A, Ceoloni C, and Porceddu E. Isolation and characterization of S genome specific sequences from Aegilops sect. sitopis species. Genome, 2003, 46: 478-489.
    88.Goldsbrough P B, Lane C, Lomonosoff G P. Sequence variation and methylation of flax 5S RNA genes. Nucl Acids Res, 1982, 10: 4501-4514.
    89.Guadagnuolo R, Bianchi D, Felber F. Specific genetic markers for wheat, spelt, and four wild relatives: comparison of isozymes, RAPDs, and wheat microsatellites. Genome, 2001, 44: 610-621.
    90.Gupta P K, Balyan H S, Sharma P C, Ramesh B. Microsatellite in plants: a new class of molecular markers. Curr Sci, 1996, 70: 45-54.
    91.Gupta P K, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics, 2003, 270: 315-323.
    92.Gupta P K, Varshney R K, Sharma P C. Molecular marker and their applications in wheat breading, Plant Breading. 1996, 118: 369-399.
    93.Hackauf B, Wehling P. Identification of microsatellite polymorphismsin an expressed portion of the rye genome. Plant Breed, 2002, 121:17-25.
    94.Hamada H, Petrina, M G, and Kakunaga T. A novel reperated element with Z-DNA-forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc Natl Acad Sci USA. 1982, 79: 6465-6469.
    95.Hamrick J L, Godt MJW. Allozyme diversity in plant species.In:Browb AHD, Clegg MT, Kahler AL, Weir BS(eds) Plant population genetics, breeding, and genetic resources.Sinauer Associates, Sunderland: 43-63.
    96.Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics, 2004, 272: 308-327.
    97.Hinpkins B K, Wilson, Barbara L; Kitzmiller, Jay ; Rolle, Wayne ;. Isozyme variation and its environment correlates in Elymus glaucus from California Province. Canadian Journal of Botany, 2001, 79: 139-153.
    98.Hohmann U, Graner A , Endo T R, et al. Comparison of wheat physicalmaps w ith barley linkagemaps for group 7 chromosomes. Theor Appl Genet, 1995, 91:618-626.
    99.Holton T A, Christopher J T, McClure L, Marker N, and Henry R J. 2002. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed, 9: 63-71.
    
    100. Hsiao C N, Chatterton J, Asay K H, Jensen KB. Phylogentic relationships of the monogenomic species of the wheat tribe Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) Sequences. Genomes, 1995, 38: 211-223.
    
    101. http://www.gramene.org/gremene/ searches/ssrtool
    
    102. http://www.ncbi.nlm.nih.gov/ blast/
    
    103. http://www.ncbi.nlm.nih.gov/dbEST/bEST_summary.html
    
    104. http://www.ncbi.nlm.nih.gov/dbEST/index.html
    
    105. http://wheat.pw.usda.gov/ggpages/SSR/WMC/
    
    106. Hutchinson J, Lonsdale D M. The chromosome distribution of cloned highly repetitive sequences from hexaploid wheat. Heredity. 1982, 48: 371-376.
    
    107. Jaaska V. Isoenzyme variation in the grass genus Elymus (Poaceae). Hereditas, 1992, 117: 11-22.
    
    108. Jaccard P. Nouvelles rescherches sur la distribution florale. Bull Soc Vaud Sci Nat, 1908, 44: 223-270.
    
    109. Jensen K B, Chen S L. An overriver: Systematic relationships of Elymus and Rregenia (Poaceae). Hereditas, 1992, 116: 127-132.
    110. Jones J D G and Flavell R B. The structure, amount and chromosomal localization of defined repeated DNA sequences in species of the genus Secale. Chromosoma. 1982, 86: 613-641.
    
    111. Ju-Kyung Y, Trevor M D, Sukhwinder S, David B. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818.
    
    112. Kantety R V, Rota M L, Matthews D E, Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Bio, 2002, 48: 501-510.
    
    113. Kellogg E A. Restrition site variation in the chloroplast genomes of the monogenomic Triticeae. Hereditas, 1992, 116: 43-47.
    
    114. Kellogg E A. Systematics of the evolution and progress. In: Proc. 2nd Inter. Triticeae Symp., Wang R R C, Jensen K B and Jaussi C (Eds). 1994, pp: 201-214.
    
    115. Kellogg E. A. Comments on genomic genera in the Triticeae (Poaceae). Am J Bot, 1989,76:796-805.
    
    116. Kostina E V, Agafonov A V, Salomon B. Eletrophoretic properties and variability of endosperm proteins in Elymus caninus. Proceedings of the Third International Triticeae Symposium, Aleppo, Syria, 4-8 May 1997.1998, 265-272. Science Pnblishers, Inc; Enfield; USA.
    
    117. Kota R, Varshney R K, Thiel T, Dehmer K J, Graner A. Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgareL). Hereditas, 2001, 135: 145-151.
    
    118. Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differ between plants and bertebrates, Nucleic Acids Res, 1993,21: 1111-1115.
    
    119. Lagudahe S, Appels EL, Mcneild. The Nor-D3 of Triticum tauschii: Natural variation and genetic linicage to markers in chromosome 5. Genome, 1991,34:387-395.
    
    120. Lanwrence T. Inheritance of a dwarf character in Russan wildrye grass, Elymus junceus. Cand J Genet Cytol, 1967, 9:126- 128.
    
    121. Lapitannlv, Ganal M W, Tanklety S D. Organization of 5S ribosomal RNA genes in the genome of tomato. Genome, 1991, 34: 509-514.
    
    122. Lewin B. Genes V. Oxford University Press, New York. 1994.
    123. Li L H and Dong Y S. Hybridization between Triticum aetivum L. and Agropyron michnoi Roshev. Theor Appl Genet, 1991, 81: 312-316.
    
    124. Li W L, Chen P D, Qi L L, Liu D J. Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theor Appl Genet, 1995, 90: 526-533.
    
    125. Li LH, Wang R R-C, and Dong Y S. Isozyme analysis of three species of Roegneria C. Koch from China, Genetic Resources and Crop Evolution. 1995,42: 119-125.
    
    126. Limin A E and Fowler D B. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome, 1990, 33: 581-584.
    
    127. Linde-laursen. Giemsa C-banding of the chrosome of "Emir" barly. Heredias, 1980,93:235-254.
    
    128. Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat eithin the cardiac muscle actin gene. Am J Hum Genet, 1989, 44: 397-401.
    
    129. Liu W Z, Wang R. Hybrids and backcross progenies between wheat and apoictic Australian wheatgrass: karyotypic and gnomic analyses. Theor. Appl. Genet, 1994, 89:599-605.
    
    130. Li Y C, Tzian Fahima, Abaham B Korol, Junhua Peng, Marions S Roder, Valery Kirzhner, Avigdor Beies, and Evitar Nevo. Microsatellite diversity correlated with ecological- edaphic and genetic factors in three microsites of wild emmer wheat in north Israel. Mol Biol Evol, 2000, 17: 851-862.
    
    131. Longe O, Dawidib. Repeated genes in eukaryotes. Annu. Rev. Biochem., 1980,43:727-764.
    
    132. Love A. Conspectus of the Triticeae. Feddes Rrport, 1984, 95: 425-521.
    
    133. Lu.B.R von Bothmer.R. Intergenetic hybridization between Hordeum and Asiatic Elymus. Hereditas, 1990, 112: 209-220.
    
    134. Lu B R, Salonmon B. Differentiation of SY genomes in Asiatic Elymus. Hereditas, 1992, 116: 121-126.
    
    135. Lu B R. Biosystmeatic investigation of Asiatic wheatgrass-Elymus L. (Triticeae Poaceae). Alnarp, Sweden, 1993, 1-57.
    
    136. MacRitchie D, Sun G L. Evaluating the potential of barley and wheat microsatellite markers or genetic analysis of Elymus trachycaulus complex species. Theoretical Applied Genetics, 2004, 108: 720-724.
    
    137. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Research, 1967, 27: 209-220.
    
    138. Martin J P, Sanchez-Yelamo M D. Genentic relationships among species of the genus Diplotaxis (Brassiceae) using inter-simple sequences repeat markers. Theor Appl Genet, 2000, 101: 1234-1241.
    
    139. Masciapn, Ruben S, Philips R L. Localization of the 5S rRNA genes and evidence for diverdity in the 5S rDNA region of maize. Gene, 1981, 15: 7-20.
    
    140. Mayce, Appel S R. Variability and genetics of spacer DNA sequence between ribosomal RNA genes of hexaploid wheat (Triticum aestivum). Theor Appl Genet, 1988, 85: 536 -540.
    
    141. McGuire P E, Dvorak J. High salt tolerance potential in wheat grasses. Crop Sci., 1981,21: 10-5.
    
    142. McIntyre C L, Pereira S, Moran L B, et al. New Secale cereal (rye) DNA derivatives for detection of rye chromosome segements in wheat. Genome, 1990,33:635-640.
    
    143. McIntyre C L. Variation at isozyme loci in Triticeae. Plant Syst Evol, 1988,160: 123-142.
    
    144. McMillan E, Sun G L. Genetic relation of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction-restriction length polymorphism analysis of chloroplast gene regions. Theor Appl Genet, 2004, 108: 535-542.
    
    145. Messing J, Laca V. Importance of anchor genomes for any plant genome project. Proc Natl Acad Sci USA, 1998, 95: 2017-2020.
    
    146. Metzlaff M, Troebner E, Baldauf F, Schlegel R, Cullun J. Wheat-specific repetitive DNA sequences-construction and characterization of four different genomic clones. Theor Appl Genet, 1986, 72: 207-210.
    
    147. Meyne J, Ratcliff R L, and Moyzis R S. Conservation of the human telomere sepyene (TTTAGGG) namong bertebrates. Proc Natl Acad Sci USA, 1989, 86: 7049-7053.
    
    148. Milbourne D, Rhonda Meyer. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivared potato. Molecular Breeding, 1997, 3: 127-136.
    149. Miklos G. Localized highly repetitive DNA sequence in vertebrate and invertebrate genomes, In: Mc Intyre R (ed), Molecular evolutionary genetics. Plenum Press, New York, 1986, 241-322.
    
    150. Miller T E. Systematics and evolution-In Wheat Breeding-Its Scienutic Basis ed FLon Chapman and Hall. 1987:1 -30.
    
    151. Monte J V, Mclntyre C L, Gustafson, J P. Analysis of phylogenetic relationships in Triticeae tribe using RFLPs. Theor Appl Genet, 1993, 86: 649-655.
    
    152. Morgante M, Olibieri A M. PCR-amplified microsatellites as markers in plant genetics. Plant, 1993, 3: 175-182.
    
    153. Mukai Y, Endot R, Gill B S. Physical mapping of the 5S rRNA multigene family in common wheat. J Hered, 1990, 81: 290-295.
    
    154. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genom ic and h ighly repeated DNA probes. Genome, 1993, 36: 489-494.
    
    155. Nachit M M, Elouafi I, Pagnotta MA, A. El Saleh, E. Iacono, M. Labhilili, A. Asbati, M. Azrak, H. Hazzam, D. Benscher, M. Khairallah, J.-M. Ribaut, O. A. Tanzarella, E. Porceddu, M. E. Sorrells. Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet, 2001, 102: 177-186.
    
    156. Nagaoka T, Ogihara Y. Application of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet, 1997, 94: 597-602.
    
    157. Nei M. Anaylsis of gene diversity in population. Proc Natl Acad Sci, 1973,70:3321-3323.
    
    158. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583-590.
    
    159. Nieto-Lopez RM Casanova C Soler C. Analysis of the genetic diversity of wiid Spanish population of the species Elymus caninus (L.) and Elymus hispanicus (Boiss.) Talavera by PCR-based marks and endosperm proteins. Agronomie, 2000, 20: 893- 905.
    
    160. Orgaard M, Anamthawat-Jonsson K. Genome discrimination by in situ hybridization in Icelandic species of Elymus and Elytrigia (Poaceae: Triticeae). Genome. 2001, 44: 275-283.
    
    161. Paul J. General theory of chromosome structure and gene activation in eukaryotes. Nature, 1972, 238: 444-446.
    
    162. Peacock W J, Phoadesm W, Pryor A J. Highly repeated DNA sequence limited to knob heteroch romatin in maize. Proc Natl Acad Sci USA, 1981, 78: 4490-4494.
    
    163. Penner G A, Zirino M, Kruger S. Accelerated recurrent parent selection in wheat with microsatellite markers. Proceedings of the Ninth International Wheat Genetics Symposium, Saskatoon, Saskatchewan, Canada, 2-7 August 1998. 1998, 131-134. University Extension Press, Extension Division, University of Saskatche -wan, Saskatoon, Canada.
    
    164. Pestsova E, Ganal M W, Roder M S. Isolation and mapping of microsatellite markeras specific for the D genome of bread wheat. Genome, 2000, 43(4): 689-697.
    
    165. Peter A, Molley P. A Genome Wide depature from the standard neutral model in natural population of Drosophia. Genetics. 2000, 156: 257-268.
    
    166. Powell W, Machray G C, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci, 1996, 7: 215-222.
    
    167. Powell W, Morgante M. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996,2:225-238.
    
    168. Rayburn A L, Gill B S. Isolation of a D-genome specific repeated DNA sequence from Aegilop stauschi. Plant Mol Biol Rep, 1987, 4: 102-109.
    
    169. Reddy P, Appels R. A second locus for the 5S multigene family in secale L: sequence divergene family. Gemome, 1989, 32: 456-467.
    
    170. Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001, 98: 11479-11484.
    
    171. Roberta J. Mason-Gamer, Nancy L. Orme, and Claire M. Anderson. Phylogenetic analysis of northern American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome, 2002, 45: 991-1002.
    
    172. Roder M S, Plaschke J, Koning S U, Borner A, Sorrels M E, Tanksley S D, and Ganal M W. Abundance variability and chromosomal location of microsatellites in wheat. Mol Gen Genet, 1995, 246: 327-333.
    
    173. Roder M S, Korzun V, Wendehake K. A microsatellite map of wheat. Genetics. 1998, 149: 2007-2023.
    
    174. Rogowsky P M, Manning S, Liu J Y. Langridge P. The R173 family of rye-specific repetitive DNA sequences: a structure analysis. Genome, 1991, 34: 88-95.
    
    175. Rohlf F J. Numerical taxonomy and multivariate analysis system. V.1.80 Exeter Software, Setauker, N. Y.
    
    176. Rongwen J, Cregan P C, Akkaya M S, Bhagwat A A, and Lavi U. The use of simple sequence repeat DNA markers for soybean genotype identification. Theor Appl Genet, 1995, 90: 43-48.
    
    177. Rungis D, Berube Y, Zhang J, Ralph S, Ritland C E, Ellis BE, Douglas C, Bohlmann J, Ritland K. Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet, 2004, 109: 1283-1294.
    
    178. Saghai-MARoof M A S, Biyashey R M, Yang G P. Extraordinarily polymorphic microsatellite DNA in barley species diversity, chromosomal locations, and populationdynamics. Proc Natl Acad Sci USA, 1994, 91: 5466-5470.
    
    179. Schoen, DJ and Brown AHD. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci, USA, 1991, 88: 4494- 4497.
    
    180. Schwe I G, Ganal M, Ninn E H, et al. Species-specific DNA sequences for identification of somatic hybrids between Lycop ersicon esculentum and Solanum acaule. Theor Appl Genet, 1988, 75: 679-684.
    
    181. Scoles G J, Gill B S, Yin X Y, Clark B C, Mclntyre C L, Chapman C, Appels R. Frenqent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst Evol, 1988, 160: 105-122.
    
    182. Scott K D, Eggler P, Seaton G, Rossetto M. Ablet E M, Lee L S, Henry R J. Analysis of SSRs derived from grape ESTs. Theor Appl Genet, 2000, 100: 723-726.
    
    183. Senior M L, Heun. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a ct primer. Genome, 1993,36:884-889.
    
    184. Sharp P J, Chao S. The isolation, characterization and amplication in the triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor. Appl. Genet., 1989, 78: 342-348.
    
    185. Sigridur K B, and Kesara A. Isolation, characterization, and analysis of Leymus-specific DNA sequences. Genome, 2003, 46: 673-682.
    
    186. SjOgren and WyOni Conservation genetics and detection of rare alleles in finite population. Conservation Biology. 1994, 8: 267-270.
    
    187. Smith J J, ScottCraig J S. Characterization of random amplified polymorphic DNA (RAPD) products from Xanthomonas campestris and some comments on the use of RAPD products in phylogenetic analysis. Mol Phyligen Evol, 1994, 3: 135-145.
    
    188. Sonina N N, Lushnikova A A, Tihonov A P, and Anniev E V. Dialect-I, Apecies-specific repeated NDA sequence from barley, Hordeum vulgare. Theor Appl Genet, 1989, 78: 589-593.
    
    189. Staub J E, Serquen F C, et al. Genetic markers, map construction and their application in plant breeding. Hort Breeding, 1996, 31: 729-741.
    
    190. Stebbins G L. Chromosomal evolution in higher plants Edward Arnold LTD, London. 1971.
    
    191. Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C, Gale M. Fifty new microsatellite loci for the wheat genetic map. Theorl Appl Genet, 1998,97:946-949.
    
    192. Sun G L, Salomon B, Bothmer R. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome, 1997, 40: 806-814.
    
    193. Sun G L, Salomon B, Bothmer R. Characterrization and analysis of microsatellite loci in Elymus caninus (Triticeae: Poaceae). Thero Appl Genet, 1998,96:676-682.
    
    194. Sun GL, Diaz O, Salomon B, Bothmer B von. Microsatellite variation and its comparison with allozyme and RAPD variation in Elymus fibrous (Schrenk) Tzvel. (Poaceae). Hereditas, 1998, 129, 41: 455-463.
    
    195. Sun G L, Oscar Diaz, Bjorn Salomon, and Roland von Bothmer. Genetic diverdity in Elymus caninus as revealed by isozyme, RAPD and microsatellite marks. Gmnome, 1999,43: 420-431.
    
    196. Sun G L, Diaz O, Salomon B, Bothmer R. Genetic diverdity and structure in a natural Elymus caninus population from Denmark based on microsarellite and isozyme analysis. Plant Systematics and Evolution, 2001, 227: 235-244.
    
    197. Sun G L, Salomon B, Bothmer R. Microsatellite polymorphism and genetic differentiation in three Norwegian population of Elymus alaskanus (Poaceae). Plant Systematics and Evolution, 2002, 234: 101-110.
    
    198. Svitashev S, Bryngelsson T, Li X M, and WangR R-C. Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus. Genomes, 1998, 41: 120-128.
    
    199. Svitashev S, Salomon, Bryngelsson T, Bothmer R von. A study of 28 Elymus species using repetitive DNA sequence. Genome, 1996, 39: 1093-1101.
    
    200. Sylvia Stack, Campbell L, Henderson K, Eujayl I, Hanafey M, Powell W, Wolters P. Development of EST-derived microsatellite markers for mapping and germplasm analysis in wheat. Plant & Animal Genome VIII Conference, San Diego, CA, 2000, January 9-12.
    
    201. Talbert L E, Magyar G M, Lavin M, Blake T K, and Moylan S L. Molecular evidence for the origin of the S-derived genomes of polyploidy Triticum species. Am J Bot, 1991, 78: 340-349.
    
    202. Taramino G, and Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome, 1996, 39: 277-287..
    
    203. Tautz D, Renz M. Simple sequences are obliquitous repetitive components of eukaryotic genomes. Nuc Acids Res, 1984, 12: 4127-4138.
    
    204. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res, 1989, 7: 6463-6471.
    
    205. Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 697-712.
    
    206. The EU Arabidopsis Genome Project. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 1998, 391:485-492.
    207. Temnykh S, Park W I), Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch SR. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 697-712.
    
    208. Thiel T, Michalek W, Varshney R K, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgareL.). Theor Appl Genet, 2003, 106: 411-422.
    
    209. Timmis J N, Sinclair J, Iigle J. Ribosomal RNA genes in euploids of hyacinths. Cell Diff, 1972(1): 335-339.
    
    210. Tsumura Y, Ohba K, Stauss S. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Crytomera japonica). Theor Appl Genet, 1996, 92: 40-45.
    
    211. Varsan Y B, Gusella J F, Keys C. The organization of a nuclear DNA sequence from a higher plant: Molecular cloning and characterization of soybean ribosomal DNA. Gene, 1979, 7: 317-334.
    
    212. Vigouroux Y, McMullen M, Hittinger C T, Houchins K E, Schulz L, kresovich S, matsuoka Y, doebley J. Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA, 2002, 99: 9650-9655.
    
    213. Wang R R-C. Diploid perennial intergeneric hybrids in the tribe Triticeae. I . Agropyron cristatum × Pseudoroegeria libanatica and Cristesion violaceum × Psathrostachys juncea. Crop Sci, 1986, 26: 75-78.
    
    214. Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem repeats. Theor Appl Genet, 1994, 88:1-6.
    
    215. Wang, R R-C, Dewey D R, and Hsiao C. Intergeneric hybrids of Agropyron and Pseudoroegneria. Bot Gaz (Chicago), 1985, 146: 268-274.
    
    216. Wang R R-C. Diploid perennial intergeneric hybrids in the Tribe Triticeae. Ⅲ. Hybrids among Secale montanum, Pseudorogneria spicata and Agropyron monglicum. Crop Sci, 1987, 29: 80-84.
    
    217. Wang X, Bowen B A. Progress report on corn genome projects at pioneer hibred. Plant & Animal genome VI Conference, SanDiego, California, USA. 1998.
    
    218. Wei J Z, Wang R R-C. Genome and species-specific markers and genome relationships of diploid perennial species in Triticeae based on RAPD analysis. Genome, 1995, 38: 1230-1236.
    
    219. Wilson B L, Kitzmiller J, Rolle W. Isozyme variation and its environmental correlates in Elymus glaucus from the California Floristic province. Canadian Journal of Botany. 2001, 79: 2, 139-153.
    
    220. Wu K S, Tanksley S D. Abundance polymorphisms andgenetic mapping of microsatellites in rice. Mole Gen Genet, 1993, 241: 225-235.
    
    221. Xin Z Y and Appels R. Occurrence of rye (Secale cereale) 350family DNA sequences in Agropyron and other Triticeae. Plant Syst Evol, 1988, 160: 65-76.
    
    222. Yakura K, Kato, Tanfujis. Structural orgnization of ribosomal DNA in four T riticum species and paris verticillata. Plant Cell Physiol, 1983, 24: 1231-1240.
    
    223. Yu J K, Dake T M, Singh S, Benscher D, Li W, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818.
    
    224. Zakian V A . Structure and function of telomeres. Annu Rev Genet, 1989,23:579-604.
    
    225. Zhang H B, Devorak J. Isolation of repeated DNA sequences from Lophopyrum elongatum for detection of Lophopyrum chromatin in wheat genomes. Genome. 1990, 33: 283-293.
    
    226. Zhang H B, Dvorak J, Waines J G. Diploid ancestry and evolution of Triticum kotschyi and T. peregrinum examined using variation in repeated nucleotide sequences. Genome, 1992, 35: 182-191.
    
    227. Zhang X Q, Salomon B, Bothmer RV. Patterns and levels of genetic differentiation in North American populations of ths Alalkan wheatgrass complex. Hereditas Landskrona, 2002, 133: 123-132.
    
    228. Zhou Y H, Zheng Y L, Yang J L, Yen C. Relationships among species of Hystrix Moench and Elymus L. assessed by RAPDs. Genetic Resources and Crop Evolution, 2000, 47: 191-196.
    
    229. Ziekiewicz E, Rafalski A, Labuda D. Genome fringerprinting by simple sequence repeat (SSR)-anchored polymerase china-reaction amplification. Genome, 1994,20: 176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700